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Abstract

For a Tychonoff space X, let V(X) be the free topological vector space over X, A(X) the free abelian
topological group over X and I the unit interval with its usual topology. It is proved here that if X is a
subspace of I, then the following are equivalent: V(X) can be embedded in V(I) as a topological vector
subspace; A(X) can be embedded in A(I) as a topological subgroup; X is locally compact.
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1. Introduction

Free topological vector spaces were introduced in [2]. If X is a Tychonoff space, then
V(X) is said to be the free topological vector space on X if X is a subspace of V(X) and
every continuous mapping ϕ of X into any topological vector space E can be extended
uniquely to a continuous linear mapping Φ of V(X) into E. It has been shown that
V(X) exists and is unique up to isomorphism of topological vector spaces, and that X
is a Hamel basis for V(X).

For over half a century, free topological groups and free abelian topological groups
have been investigated. The following question turns out to be nontrivial: If Y is a
subspace of X, under what circumstances can the free (free abelian) topological group
F(Y) (respectively, A(Y)) be embedded as a topological group in F(X) (respectively,
A(X)). Note that this question is quite different from asking whether the subgroup of
F(X) (respectively, A(X)) generated by the given space Y is the free topological group
F(Y) (respectively, the free abelian topological group A(Y)). In this paper, we examine
the analogous question for free topological vector spaces and at the same time obtain
a new result for free abelian topological groups.

As special cases of our results, we obtain the main results of [3] and [4].
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Theorem 1.1. Let R denote the set of all real numbers with the Euclidean topology:

(i) A(R) embeds into A(I) as a topological group [4];
(ii) V(R) embeds into V(I) as a topological vector space [3].

Our approach is to obtain a very useful description of locally compact subspaces
of I.

2. Results
We use the following notation. Set N := {1, 2, . . . }. For a subset A of a vector space

E and a natural number n ∈ N, spn(A) denotes the subset of E defined by

spn(A) := {λ1x1 + · · · + λnxn : λi ∈ [−n, n], xi ∈ A,∀i = 1, . . . , n},

and sp(A) :=
⋃

n∈N spn(A) is the span of A in E.
The disjoint union of a nonempty family {Xi}i∈I of topological spaces is the

coproduct in the category of topological spaces and continuous functions and is
denoted by

⊔
i∈I Xi.

By an open interval in I, we mean an interval of the form [0, a), (a, b) or (b, 1] for
a, b ∈ I.

Proposition 2.1. Let X be a locally compact subspace of I. Then there is a countable
family {In : n ∈ N}, N ⊆ N, of pairwise disjoint open intervals in I, such that for every
n ∈ N there exists a countable family of increasing closed intervals {[li,n, ri,n] : i ∈ Mn}

satisfying the following conditions:

(i) li,n, ri,n ∈ X, for every n ∈ N and each i ∈ Mn;
(ii) [li,n, ri,n] ∩ X is a compact subset of X, for every n ∈ N and each i ∈ Mn;
(iii) X is homeomorphic to the disjoint union

X =
⊔
n∈N

(In ∩ X) =
⊔
n∈N

( ⋃
i∈Mn

[li,n, ri,n] ∩ X
)
.

Proof. We prove the proposition in four steps.

Step 1. Let x ∈ X. Choose ε > 0 and an open neighbourhood U of x of the form
U = (x − ε, x + ε) ∩ X which has compact closure in X. Then [x − ε/2, x + ε/2] ∩ X is
a compact subset of X. So, for every x ∈ X, there is a compact neighbourhood of x in
X of the form [a(x), b(x)] ∩ X, such that:

(i) a(x) < x < b(x) if 0 < x < 1;
(ii) 0 = a(x) < b(x) if x = 0; and
(iii) a(x) < b(x) = 1 if x = 1.

Step 2. For x, y ∈ X, set x ∼ y if the set [min{x, y},max{x, y}] ∩ X is compact in X. It
is easy to see that ∼ is an equivalence relation on X. For x ∈ X, we denote by x the
equivalence class of x and set

a(x) := inf{y : y ∈ x} and b(x) := sup{y : y ∈ x}.
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Note that, by Step 1, a(x) ∈ X if and only if a(x) ∈ x, and b(x) ∈ X if and only if
b(x) ∈ x. Then one of the following cases holds:

(1) a(x) ∈ X and a(x) = 0. Set c(x) := a(x) = 0.
(2) a(x) ∈ X, a(x) > 0 and [0, a(x)) ∩ X = ∅. Set c(x) := a(x)/2.
(3) a(x) ∈ X, a(x) > 0 and [0, a(x)) ∩ X , ∅. Set a−(x) := sup{a : a ∈ [0, a(x)) ∩ X}

and note that a−(x) < a(x) (otherwise, by Step 1, one can find a < a(x) such that
[a, a(x)] ∩ X is compact, and hence a ∼ x which contradicts the choice of a(x)).
Set c(x) := (2a(x) + a−(x))/3.

(4) a(x) < X. Set a−(x) := a(x) and c(x) := (2a(x) + a−(x))/3 = a(x).

In particular, c(x) ∈ X if and only if c(x) = a(x) = 0.
Analogously, one of the following cases holds:

(1)′ b(x) ∈ X and b(x) = 1. Set d(x) := b(x) = 1.
(2)′ b(x) ∈ X, b(x) < 1 and (b(x), 1] ∩ X = ∅. Set d(x) := (1 + b(x))/2.
(3)′ b(x) ∈ X, b(x) < 1 and (b(x), 1] ∩ X , ∅. Set b+(x) := inf{b : b ∈ (b(x), 1] ∩ X}

and note that b+(x) > b(x) (otherwise, by Step 1, one can find b > b(x) such that
[b(x), b] ∩ X is compact, and hence b ∼ x which contradicts the choice of b(x)).
Set d(x) := (2b(x) + b+(x))/3.

(4)′ b(x) < X. Set b+(x) := b(x) and d(x) := (2b(x) + b+(x))/3 = b(x).

In particular, d(x) ∈ X if and only if d(x) = b(x) = 1.
Let I(x) be the open interval in I with endpoints c(x) and d(x) such that, if c(x) = 0

or d(x) = 1, then I(x) contains c(x) or d(x), respectively. By construction, the length
of I(x) is positive.

Step 3. We claim that if x / y, then I(x) ∩ I(y) = ∅. Indeed, assume that x < y and
note that d(x) < 1 by (1)′ and c(y) > 0 by (1). So d(x) < I(x) ∪ X and c(y) < I(y) ∪ X.
Therefore, to prove the claim it is sufficient to show that d(x) ≤ c(y).

First, we note that b(x) ≤ a(y). Indeed, if b(x) > a(y), there is a z ∈ y such that
b(x) > z ≥ a(y). Therefore, z ∼ x. Hence, x ∼ y, a contradiction.

Next we show that

b+(x) ≤ a(y) and b(x) ≤ a−(y). (2.1)

Indeed, if b(x) < X, then b+(x) = b(x) ≤ a(y) by the above. Assume that b(x) ∈ X,
so only (3)′ holds for b(x) since x < y. Now, if a(y) ∈ X, then b(x) < a(y) (otherwise,
b(x) = a(y) ∈ X and hence x ∼ y, a contradiction), and if a(y) < X, then also b(x) < a(y).
Thus, b+(x) ≤ a(y) by the definition of b+(x). Analogously one can prove that
b(x) ≤ a−(y).

Since y ∈ X, for d(x) only one of the cases (3)′ and (4)′ can hold. Analogously,
since x ∈ X, for c(y) only one of the cases (3) and (4) can hold. In all these cases, by
(2.1),

c(y) = 1
3 (2a(y) + a−(y)) ≥ 1

3 (2b+(x) + b(x)) ≥ 1
3 (2b(x) + b+(x)) = d(x).
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Step 4. Since the length of I(x) is positive for every x ∈ X, Step 3 implies that there
is only a countable family of equivalence classes. Let {xn}n∈N be an enumeration of all
equivalence classes. For every n ∈ N, set In := I(xn), and consider the following cases:

(a) If a(xn), b(xn) ∈ X, set Mn := {1}, l1,n := a(xn) and r1,n := b(xn).
(b) If a(xn) ∈ X and b(xn) < X, choose arbitrarily a strictly increasing sequence

{bi(xn)}i∈N ⊆ xn converging to b(xn). Set Mn := N and, for every i ∈ Mn, put
li,n := a(xn) and ri,n := bi(xn).

(c) If a(xn) < X and b(xn) ∈ X, choose arbitrarily a strictly decreasing sequence
{ai(xn)}i∈N ⊆ xn converging to a(xn). Set Mn := N and, for every i ∈ Mn, put
li,n := ai(xn) and ri,n := b(xn).

(d) if a(xn) < X and b(xn) < X, choose arbitrarily a strictly decreasing sequence
{ai(xn)}i∈N ⊆ xn converging to a(xn) and a strictly increasing sequence
{bi(xn)}i∈N ⊆ xn converging to b(xn). Set Mn := N and, for every i ∈ Mn, put
li,n := ai(xn) and ri,n := bi(xn).

By Step 3 and (a)–(d), we see that (i)–(iii) are satisfied. �

Lemma 2.2. Let {Xi}i∈N and {Yi}i∈N be families of Tychonoff spaces:

(i) if V(Xi) embeds into V(Yi) as a topological vector subspace for every i ∈ N, then
V
(⊔

i∈N Xi
)

embeds into V
(⊔

i∈N Yi
)

as a topological vector subspace;
(ii) if A(Xi) embeds into A(Yi) as a topological subgroup for every i ∈ N, then

A
(⊔

i∈N Xi
)

embeds into A
(⊔

i∈N Yi
)

as a topological subgroup.

Proof. We prove only (i) as (ii) can be proved similarly. Set X :=
⊔

i∈N Xi and
Y :=

⊔
i∈N Yi and note that V(X) and V(Y) are canonically topologically isomorphic

to the direct sums (⊕
i∈N

V(Xi),Tb

)
and

(⊕
i∈N

V(Yi),Tb

)
,

respectively, where Tb denotes the box topology on the direct sums. (See [2,
Proposition 2.8].) For every i ∈ N, let pi : V(Xi) → V(Yi) be an embedding of
topological vector spaces. Denote by p : V(X)→ V(Y) the map defined by

p((ui)) := (pi(ui)), (ui) ∈ V(X).

We claim that p is an embedding of topological vector spaces. Clearly, p is
continuous. To prove that p is relatively open, for every i ∈ N, take arbitrarily an
open neighbourhood Ui of zero in V(Xi) and choose an open neighbourhood of zero in
V(Yi) such that

pi(Ui) = Vi ∩ p(V(Xi)).

Now to prove the claim, it is sufficient to show that

p
(∏

i

Ui ∩ V(X)
)

=
∏

i

Vi ∩ p(V(X)).
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The inclusion ‘⊆’ is clear. Conversely, let (vi) ∈
∏

i Vi ∩ p(V(X)). Take (ui) ∈ V(X)
such that p((ui)) = (pi(ui)) = (vi), and if vi = 0 then also ui = 0. Then pi(ui) = vi ∈

Vi ∩ pi(V(Xi)) and hence ui ∈ Ui for every i ∈ N. Noting that all but finitely many of
the vi are zero, (ui) ∈

∏
i Ui ∩ V(X). Thus, (vi) ∈ p

(∏
i Ui ∩ V(X)

)
. �

We shall also use the following proposition.

Proposition 2.3 [2]. Let X =
⋃

n∈N Cn be a kω-space and let Y be a subset of V(X)
such that Y is a vector space basis for the subspace, sp(Y), that it generates. Assume
that K1, K2, . . . is a sequence of compact subsets of Y such that Y =

⋃
n∈N Kn is a

kω-decomposition of Y inducing the same topology on Y that Y inherits as a subset
of V(X). If for every n ∈ N there is a natural number m such that sp(Y) ∩ spn(Cn) ⊆
spm(Km), then sp(Y) is V(Y), and both sp(Y) and Y are closed subsets of V(X).

Now we prove the main result of the paper.

Theorem 2.4. For a subspace X of I the following assertions are equivalent:

(i) V(X) embeds into V(I) as a topological vector space;
(ii) A(X) embeds into A(I) as a topological group;
(iii) X is locally compact.

Proof. (i)⇒ (iii) Since A(X) is a closed subgroup ofV(X) by [2, Proposition 5.1], A(X)
is a subgroup of V(I). As X is metrisable, the group A(X) is complete by [6]. Since
V(I) is a kω-space by [2, Theorem 3.1], we see that A(X) and hence also X are closed
subspaces of V(I). So X is a kω-space. Being also metrisable, X is locally compact by
[1, Exercise 3.4.E(c)].

(ii)⇒ (iii) As X is metrisable, the group A(X) is complete by [6]. Since A(I) is a
kω-space by [5], we see that A(X) and hence also X are closed subspaces of A(I). So X
is a kω-space. Being also metrisable, X is locally compact by [1, Exercise 3.4.E(c)].

(iii)⇒ (i), (ii) By [2, (the proof of) Theorem 4.2], if {Kn}n∈N is a sequence of disjoint
compact subsets of R, then V

(⊔
n∈N Kn

)
embeds onto a closed vector subspace of V(I),

and A
( ⊔

n∈N Kn
)

embeds onto a closed subgroup of A(I). Now Proposition 2.1 and
Lemma 2.2 imply that to prove the theorem it is sufficient to show the following: if the
subspace X of I has the form ⋃

i∈N

[ui, vi] ∩ X,

where ui, vi ∈ X, [ui, vi] ∩ X is a compact subspace of X, ui < vi, ui+1 ≤ ui and vi ≤ vi+1

for every i ∈ N, then V(X) and A(X) embed into V(I) and A(I), respectively. Below we
consider only the most difficult and general case when ui+1 < ui and vi < vi+1 for every
i ∈ N.

For every i ∈ N, define ci := vi and c1−i := ui. For every k ∈ Z, set Jk := [ck, ck+1] ∩ X
and recall that ck ∈ X and Jk is a compact subset of X. Below we proceed as in the proof
of [3, Theorem 3.5] and prove the implication (iii)⇒ (i). Replacing V(X) and V(I) by
A(X) and A(I), respectively, we prove (iii)⇒ (ii).
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Step 1. The basic construction. Take two sequences {ak}k∈Z, {bk}k∈Z ⊂ I such that

0 < a0 < b0 < a1 < b1 < a−1 < b−1 < a2 < b2 < a−2 < b−2 < · · · < 1,

and set Ik = [ak, bk] for every k ∈ Z.
For k = 0, define the continuous injection g0,0 : J0 → I0 by

g0,0(x) := a0 + (b0 − a0) ·
x − c0

c1 − c0
.

For every k ∈ Z \ {0}, set

S k := 8(T1 + · · · + T|k|) and Ak := 1
2 S k, where Tn := 1 + · · · + n.

For every k ∈ Z \ {0} and i ∈ N such that 1 ≤ i ≤ Ak, we define pairwise disjoint closed
intervals by

Ii,k :=
[
ak +

bk − ak

S k
(2i − 1), ak +

bk − ak

S k
2i

]
⊂ Ik,

and define the continuous injection gi,k : Jk → Ii,k by

gi,k(x) := ak +
bk − ak

S k
(2i − 1 + (x − ck)).

For every k ∈ Z, define the maps Hk : Jk → V(I) by

Hk(x) :=
{

g0,0(x) if k = 0,
g1,k(x) + g2,k(x) + · · · + gAk ,k(x) if k , 0,

where ‘+’ denotes the vector space addition in V(I).
Now we define the map χ : X → V(I) inductively as follows: if x ∈ J0, set

χ(x) := H0(x);

if k ∈ N and x ∈ Jk, put

χ(x) := Hk(x) − Hk(ck) + χ(ck) = Hk(x) −
k∑

i=1

(Hi(ci) − Hi−1(ci)),

and if −k ∈ N and x ∈ Jk, set

χ(x) := Hk(x) − Hk(ck+1) + χ(ck+1) = Hk(x) −
−1∑
i=k

(Hi(ci+1) − Hi+1(ci+1)).

Clearly, χ is well-defined and continuous. Since all the intervals Ii,k are disjoint
and the functions gi,k are injective, the map χ is one-to-one. For every n ∈ N, set
Yn := χ([un, vn] ∩ X) and put Y := χ(X).

Step 2. For every s ∈ N there is M(s) ∈ N such that sp(Y) ∩ sps(I) ⊆ spM(s)(YM(s)).
Indeed, fix t ∈ sp(Y) ∩ sps(I). So there are distinct x1, . . . , xs ∈ I, distinct y1, . . . , ym ∈ Y ,
nonzero real numbers a1, . . . , am and nonzero numbers λ1, . . . , λs ∈ [−s, s] such that

t = a1y1 + · · · + amym = λ1x1 + · · · + λsxs.

By construction, there are r ∈ N, integers n1 < · · · < nr, natural numbers q1, . . . , qr
with q1 + · · · + qr = m, and pairwise distinct elements z j,i ∈ X, where 1 ≤ j ≤ qi for
1 ≤ i ≤ r, such that:
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(1) z1,i, . . . , zqi,i ∈


[c0, c1] ∩ X if ni = 0,
(cni , cni+1] ∩ X if ni > 0,
[cni , cni+1) ∩ X if ni < 0,

(2) for every y ∈ {y1, . . . , ym} there is a unique pair ( j, i) such that y = χ(z j,i).

So we can uniquely represent t in the form

t =

r∑
i=1

qi∑
j=1

a j,iχ(z j,i) = λ1x1 + · · · + λsxs. (2.2)

Since all the intervals Ii,k are disjoint and the functions gi,k are injective, the
construction of the map χ and (2.2) imply the following: if z j,i ∈ (cni , cni+1) ∩ X, then
a j,i ∈ {λ1, . . . , λs} and χ(z j,i) has at least Ani distinct summands from the basis I of V(I),
which do not appear in another summand in the middle sum of (2.2). Therefore

(q1 − 1) + · · · + (qr − 1) ≤ s. (2.3)

Assume that nr > 0. Then χ(zqr ,r) has at least Anr distinct basic elements from I
which do not appear in other summands in the middle sum of (2.2). Therefore, (2.2)
implies that Anr ≤ s and |aqr ,r | ≤ s. If n1 < 0, the same argument shows that An1 ≤ s
and |aq1,1| ≤ s. Since Ak ≥ 4|k|, this implies in particular that r ≤ s, and therefore (2.3)
yields

m = q1 + · · · + qr ≤ 2s.

Now if nr > 0, let w ∈ N be the least index such that nw ≥ 0. By the definition of χ
and (2.2), for every i with 1 ≤ i ≤ nr the coefficient of Hi(ci) in the sum

∑qr
j=1 a j,rχ(z j,r)

is −
∑qr

j=1 a j,r, and hence ∣∣∣∣∣ qr∑
j=1

a j,r

∣∣∣∣∣ ≤ qr · s ≤ 2s · s. (2.4)

Therefore, if w < r and zqr−1,r−1 = cnr−1+1, by (2.2), the coefficient aqr−1,r−1 satisfies

|aqr−1,r−1| ≤ s + qr · s = (qr + 1) · s ≤ 2s2. (2.5)

Analogously, assume that w < r − 1 and zqr−2,r−2 = cnr−2+1. Then the coefficient of
Hnr−2 (cnr−2 ) in the middle sum of (2.2) is

aqr−2,r−2 −

qr−1−1∑
j=1

a j,r−1 − aqr−1,r−1 −

qr∑
j=1

a j,r.

This and (2.2)–(2.5) imply

|aqr−2,r−2| ≤ s + (qr−1 − 1) · s + (qr + 1) · s + qr · s = s(2qr + qr−1 + 1) < s · 4s.

Continuing this process, M+ > 0 such that |aqi,i| ≤ M+ for every i > w. In a similar way,
one can show that if n1 < 0, then there is M− > 0 such that |aqi,i| ≤ M− for every i such
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that ni > 0. Now, if nw = 0, the boundedness of a j,i corresponding to i , w and (2.2)
easily imply that there exists an M such that

|a j,i| ≤ M for 1 ≤ i ≤ r and 1 ≤ j ≤ qi.

Then M(s) := max{2s,M} is as desired.

Step 3. Next we show that if a1y1 + · · · + amym = 0, then a1 = · · · = am = 0. Indeed,
we can represent 0 in the form (2.2). Now, as above, if nr > 0, then χ(zqr ,r) has at
least Anr distinct basic elements from I which do not appear in other summands in
the middle sum of (2.2). So aqr ,r = 0. Analogously, if n1 < 0, aq1,1 = 0. Therefore,
r = 1 and n1 = 0. In this case we also easily obtain a j,1 = 0 for 1 ≤ j ≤ q1. Thus,
a1 = · · · = am = 0 as desired.

Step 4. We claim that Y is a closed subset of V(I). First, Y ∩ sps(I) = Ys ∩ sps(I) for
every s ∈ N. Indeed, let

y := χ(x) = λ1x1 + · · · + λsxs ∈ Y ∩ sps(I). (2.6)

If x ∈ J0, then y ∈ Y1 and we are done. Suppose that x ∈ (ck, ck+1] ∩ X for some k > 0,
or x ∈ [ck, ck+1) ∩ X for some k < 0. If y < Ys, then either k ≥ s or k + 1 ≤ −s. In both
cases y has at least Ak ≥ 4|k| > s distinct basic summands from I which contradicts
(2.6). Hence, y ∈ Ys. Thus, Y ∩ sps(I) ⊆ Ys ∩ sps(I). The converse inclusion is clear.

Now fix a closed subset F of X. Then, for every s ∈ N,

χ(F) ∩ sps(I) = χ(F) ∩ (Y ∩ sps(I)) = χ(F) ∩ (Ys ∩ sps(I))
= (χ(F) ∩ χ([us, vs] ∩ X)) ∩ sps(I) = χ(F ∩ [us, vs]) ∩ sps(I).

Since, by the definition of us and vs, the set F ∩ [us, vs] = F ∩ ([us, vs] ∩ X) is a
compact subset of X and χ is continuous, we see that χ(F) ∩ sps(I) is a closed subset
of sps(I). As V(I) =

⋃
s∈N sps(I) is a kω-space by [2, Theorem 3.1], it follows that χ(F)

is closed in V(I). Therefore, χ is a closed map. Thus, χ is a homeomorphism of X
onto Y .

Finally, by Steps 2–4, we can apply Proposition 2.3 to show that V(X) is linearly
isomorphic to the closed linear subspace sp(Y) of V(I). �
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