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ON DECIDING FINITENESS FOR MATRIX GROUPS
OVER FIELDS OF POSITIVE CHARACTERISTIC

A. DETINKO

Abstract

We consider the development of algorithms for deciding whether a
finitely generated matrix group over a field of positive characteris-
tic is finite. A deterministic algorithm for deciding the finiteness is
presented for the case of a field of transcendence degree one over a
finite field.

1. Introduction

This paper deals with the development of algorithms for matrix groups. Currently, this i
one of the most active areas of computational group theory (see, for exaBipl&drly
algorithms for computing with matrix groups used the induced actions of suitable subgrou
of these groups on carefully chosen sets of vectors and subspaces of the underlying ve:
space. Such an approach gives rise to algorithms with running times that depend expon
tially on the input size. Moreover, i8] p. 677] some basic ingredients have been described
these are crucial for the efficient handling of permutation groups, but are lost when deali
with matrix groups. These problems have motivated a new phase in the development
algorithms for matrix groups (historical remarks can be foun@&jh Most of the effort has
been concentrated on various recognition algorithms that detect certain properties of mat
groups given by a set of generating matrices. For potentially infinite matrix groups, one ¢
the most fundamental problems is the finiteness problem; that is, the problem of whethe
finitely generated subgroug of the general linear grou@ L (n, F) over a fieldF is finite.
An efficient algorithm for deciding finiteness is a necessary component of any library c
algorithms to be used to determine the structure of finitely generated groups (see [1]).
In the case of number fields, polynomial-time randomized and deterministic algorithrr
for solving the finiteness problem have been described jnQne of these algorithms
(Las-Vegas) has been implemented in @%P group theory language [6]. For a function
field F = F (11, ..., 1), the problem is considered iid][(here,, ..., t; are independent
indeterminates). A polynomial-time algorithm is presented7ipfpr the case wher&
is a number field. This algorithm either recognizes the group as infinite, or constructs
isomorphic matrix group oveF (not necessarily of the same dimension). The problem is
thereby reduced to the case of groups over the number field. Wheitheg-element field
F,, the situation is very different, and much more complicated.7Intivo deterministic
algorithms for deciding finiteness ovér= F,(¢) are described. Both of these algorithms
rely on constructing, from thé&,-algebra generated by, a chain of matrices that are
linearly independent ovef,. An exponential upper bound on the dimension of such an
algebra, obtained in [7, Theorem 3.3], suggests that such an approach can provide o
exponential-time algorithms.
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On deciding finiteness for matrix groups over fields of positive characteristic

These notes represent a contribution to the study of the finiteness problem for finite
generated subgroups 6fL(n, F), where chaF > 0. Our main objective is to design
algorithms that solve the problem by using polynomially many field operations. We assun
that the reader is familiar with the elementary notions and facts used in the theory of matt
groups and algebras; readers who are new to this field are referred to [9].

2. Preliminaries and background

Let F be a field of characteristip > 0, and letF,, be the field of elements af which
are algebraic over thg-element subfield of". Throughout the papef,, will stand for the
g-element field. We will use the notatiovi (n x m, F) to denote tha&"-module ofn x m
matrices with entries i, andM (n, F) for M(n x n, F).

Let A be an associative finite-dimensional algebra avevith an identity element. An
elementx € « is nilpotentif x™ = 0 for some positive integen. Similarly, x € A is
strongly nilpotent, ifxy is nilpotent for everyy € 4. Theradical Rad 4) of 4 is the set
of strongly nilpotent elements of. Let L be a set of matrices d# (n, F), and letIT be a
subfield of F. Theenveloping algebra&nvy; (L) of L overIl is all-algebra generated by
L.

LetGL(n, F) be the group of invertible x n matrices ovef (the general linear group).
Denote byF" the vector space of column vectors of lengtim whichG L (n, F) acts. Recall
that a subgroult; ¢ GL(n, F) isirreducibleif there is no non-trivial proper subspace of
F™ that is invariant unde6. Otherwise G is said to beeducible. If F* is a direct sum of
G-invariant subspaces on whichacts irreducibly ther@s is calledcompletely reducible.

If nis a positive integer and = ny + --- + ng4, then denotdny, ..., ng) by n. Let
T (n, F) be the group of block upper triangular matricés= (X;;) € GL(n, F), where
Xij e M(n; x nj, F),i< j, X;; € GL(n;, F) andX,-j =0fori > ] DEmeTa(ﬁ, F) as
the subgroup of matrice¥ = (X;;) € T(n, F) such thatX;; € GL(n;, F,), 1< i < d.
Denote byy a homomorphisnT (z, F) — D(n1, F), whereX — X is given by projection
on the block-diagonal group (iz, F). Given G C T (i1, F), write ¢(G) asG. Note thatG
is not necessarily completely reducible.

Our approach is based on the description of periodic subgrougslef, F) given
in [10]. Periodic groups(that is, groups all elements of which have finite order) are the
straightforward generalization of finite groups. Note that by the well-known theorem o
I. Schur (see, for example, [9, Theorem 23.5]), periodic matrix groups are locally finite.

Proposition 2.1 ([10]). LetG c GL(n, F) be irreducible. TherG is periodic if and only
if G is conjugate to a subgroup dfL(n, F,).

Corollary 2.2 ([10]). LetG € GL(n, F). ThenG is periodic if and only ifG is conjugate
to a subgroup of, (n, F) for somex. In particular, a finitely generated grou@ is finite if
and only ifG is conjugate to a subgroup @f, (7, F).

Note that [7, Theorem 3.2 and Corollary 3.6] follow directly from Corollarg.

Lemma 2.3. Let G be a subgroup oG L(n, F). ThenG is periodic if and only ifG is
conjugate to a subgroufl C T (n, F) such thadimg, (envg, (H)) < n2.

Proof. If G is periodic, then by Corollary 2.2, subgrodpis conjugate to a subgroup
H C T,(n, F).Hence dim;, (envg, (H)) < n?.Conversely,lekGh—1 = H c T(n, F) for

https://doi.org/10.1112/51461157000000802 Published online by Ca@bridge University Press


https://doi.org/10.1112/S1461157000000802

On deciding finiteness for matrix groups over fields of positive characteristic

someh € GL(n, F), and ding, (envg, (H)) < n?. Suppose thall contains an elemegtof

infinite order. Then the order gf(g) = g is also infinite. Hence the matricgsg?, s g
are linearly independent ovei, for any positive integem; that is, dimg, (envg, (H)) is
infinite. From this contradiction it follows that is periodic. O

Corollary 2.4. LetG be afinitely generated subgroup@L (n, F). ThenG is finite if and
only if G is conjugate to a subgrouff C 7 (n, F) such thatdimg, (envg, (H)) < n2.

Proof. The corollary follows directly from the abovementioned theorem of |. Schur
[9, Theorem 23.5]. O

Lemma 2.5. LetG C GL(n, F) be completely reducible. Thenis periodic if and only
if dimg, (envg, (G)) < n?.

Proof. The lemma follows immediately from Lemn2a3. O

Directapplication of the above statements provides the following approach to the proble
of deciding finiteness for a finitely generated subgraug GL(n, F).

(i) Construct a representatign: G — T (n, F) such that the projectiop(G) is com-
pletely reducible.
(i) Calculated, = dimg, (envg, (p(G))).
By Lemma 2.5, ifG is finite thend, < n?; therefore P, Lemma 4.1] implies that the
dimension of eny, (0 (G)) can be calculated in polynomial time. d is infinite, then by
[2, Lemma 4.1] we can construct in polynomial time more thadmatrices of eny, (0 (G)),
which are linearly independent ovey,.
To construct the representatiprwe may use the correspondence between the structur
of envr (G) and the action o onV = F". Let R be the radical of enw(G). Then

VORVD---2>R"v 5 {0 (1)
is the chain ofG-modules, wherR?~1 £ 0 andR? = 0, ford < n (see [9, § 13]).
Chain (1) defines the representation G — T (n, F) wheren = (n1,...,nq) and

n; = dimR'~1V/R'V, for 1 < i < d. From [9, § 13] it follows that the group(G) is
completely reducible, as required.

Let F = F,(t1,...,1). Then by B, Corollary 3.4.6], the radical of ep¢G) can be
found in deterministic polynomial time. This shows that finiteness for matrix groups ove
the function fieldF, (r1, . . ., #/) is decidable in polynomial time.

The main difficulty with this approach lies in the calculation of Rt/ (G)). In the
next section we shall describe a more efficient approach, that relies on calculating or
some nonzero elements of Radvr(G)). Here we consider the case Bf (1), although
our results can be extendedRg(zy, ..., ).

3. Algorithms for testing the finiteness of matrix groups dvg(r)

Let F = F,(r), and letF andF, be the algebraic closures &fandF, respectively. If
h =h(t) = (hij(t)) € M(n, F), and if is an element o, then define the matriy,, (1)
asWy (h) = (hij(a)) € M(n, fq); that is, ¥, (h) is obtained by evaluating all elements of
h ata (assuming that they are defined). DenoteFpyw) the extension oF, obtained by
adjoining the element, and write|F, («)/F,| for the degree oF, («) overF,.
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Throughout this sectiof = {S1, ..., S}, Sk = (si(j'.‘)) € GL(n, F),andG = < § > is
the subgroup o6& L (n, F) generated bys.

Lemma 3.1. Let « be an element qu such that matricesV, (S;) are defined for all
1<i < r. If Gisfinite, then

Y, : G — GL(n, Fy), h(t) = h(a)
is a homomorphism daf into GL(n, Eq).

Proof. It suffices to show tha¥, (h(¢)) is defined for eachh = h(¢) € G, because in this
case it is clear thav, (hg) = W, (h) V4 (g) andWy (h~1) = (W, (k)L forg € G.

Letm = m(r) be the least common multiple of the denominator$’8f wherel< k < r
and 1< i, j < n. SinceVy, (Sk) is defined for allk, we havemn () # 0. The groupG is

finite, and thereforé = S S , Wherem; are nonnegative integers andli < r.
Henceh = m~L(t)ho(?), wherel |s a positive integer anflo(t) € GL(n, F4[t]). Thus
W, (h) is defined, as required. O

Leta € E be defined as in Lemnfal. Note that such am exists. For example, if the
degree of the extensidf, (o) /F, is greater than the degrees of the denommatosékbf
where 1< k < r and 1< i, j < n, thena satisfies conditions of Lemnfal.

Let P = F,(a). If G isfinite, then Lemma 3.1 implies th&4, : envp(G) — M (n, P),
h — Y, (h) is a homomorphism of algebra en{G) into M (n, P).

Proposition 3.2. If G is finite, therker ¥, c Radenvp (G)).

Proof. To prove the proposition, it suffices to show that each elerhenker W, is nilpo-
tent. By Corollary2.2, eny (G) is conjugate to a subalgebra of @7, (7, F)). Henceh is
conjugate to a matrix of e T, (7, F)). Consequently, all the coefficients of the character-
istic polynomial f (x) of i are contained iP. Hencef (x) is the characteristic polynomial
of the matrixW¥, (h). Fromh € kerW,, it follows that ¥, (k) = 0; thereforef (x) = x".
Thush™ = 0; that is, is nilpotent. O

Corollary 3.3. If G is finite, therker¥, C Radenvp ) (G)).

Proof. By Proposition3.2, the kernel kew,, is a nilpotent ring; therefore [4, Chapter 8,
§ 5, Theorem 1] implies that the linear span of #grover P(¢) is a nilpotent ideal of
envp((G). Thus ke, C Radenvp()(G)), as desired. O

Now let us choose an elemamnte Eq in the following manner. Let be the largest of
the degrees of the denominators;#?, where 1< k <rand 1< i, j < n. If ¢ =0 (that
is,if S; € GL(n, Fy[t]) for 1 <i < r), thenletx € F, (for examplex = 0). If ¢ > 0 and
p1c+ 1, then letw be an element d?q such than (@) =Fget1. lf ¢ >0 andp |c + 1,
then lete be an element oﬁ, such thatF, («) = F,e+2. DenoteF, («) as above byP,
and define; as the degree of the extensidiF,. Note that ifS; € GL(n, F,[t]), where
1<i<r,thenP =F,andp = 1.

Define the matrices = J(Ay) andJ’ = J'(Ay) as follows. Let

A1, ..., Ag (2)
be matrices of enw(G) that are linearly independent ovEr such that

Wy (A1), ..., Yy (Ar) € M(n, P) 3
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are linearly dependent oveé®; that is
k-1
Wo(A) = ) aiWe(A)) (4)
i=1

for someqw; € P.

Denote byJ(Ay) the matrix J(Ay) = Ay — Y i o;A; € envp(G), and define
J(Ap) = nAy — Zf;ll tr(ei)A; € enk, (G), where t;) is the trace oty; € P over
F,. Note thatifP = F,, thenJ = J'.

Lemma 3.4. If G is finite, then/ is a nonzero element &ery,,.

Proof. SinceW, (J(Ar) = Wo(Ar — Yr_1 i Ai) = Wo(Ar) — Yr1 i W (A;), equa-

tion (4) implies thaty, (J (Ax)) = O; that is,J (Ax) € ker¥,. Matrices @) are linearly
independent oveP, and therefore/ (A;) # 0. O

Corollary 3.5. If G is finite andA; € enw, (G), then J'(Ay) is a nonzero element of
Radenvg (G)).

Proof. Leto be anautomorphism @ overF, which generates the Galois group Ga}F,).
We shall also denote hythe extension of to P(¢) suchthat (r) = 7. SinceA; € M(n, F),
we haves/(A;) = A;, for 1< j < n, and hencab,,,(A;) = 0/ (¥4 (A;)). Thus
‘ =" k=1
W o (A) = 0/ (Wa(Ap)) = o/ (Zaiwam») =Y 07 @)Wy (g (AD).
i=1 i=1
Lemma3.4implies that the matrix
k=1
B, = Ar— Y ol (a)A ®)
i=1
is containedinkew, ; ), for1 < j < n;thatis, by CorollanB.3,B,,; € Radenvp(G)).
Hence, by equation (5) it follows that

n k—1
> B, =nAr— ) _tr(e)A; = J'(Ax) € Radenvp()(G)).
j=1 i=1
SinceJ'(Ay) € M(n, F), we havel’(A;) € Radenvg(G)). Finally, note that/’(A;) # 0
because matrices (2) are linearly independent Byeandp { 1. O
Lemma 3.6. Let A1, ..., Ay € envp(G) be linearly dependent oveP(t). Then

W, (A1), ..., Yy (Ay) are linearly dependent over.

Proof. Let
k—1
A=Y A, ) € P(). (6)
i=1

LetBbean eIementcﬁq suchthaty; (B) are defined for eaaly (1), where 1< i <k — 1,
and p does not divide the degree of the extensionP(8)/P. By [5, Theorem 2.23],
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we can choosg in such a way that t8) = «, where t(g) is the trace ofg over P.
Let < § > = Gal(P(B)/P). Then equation (6) implies that
k=1
Wi (A = D 87 (B)Wsi (5 (AD). @)
i=1
where 1< j < r andg; = «;(8). Since t(g8) = a, we havezj?=l Wsip)(Ai) = Vo (A)).
Hence the sum of both sides of equation (7) gvaill give
k—1
W (A) = ) tr(B) Wa (A,
i=1
where t(8;) € P. Thus,¥, (A1), ..., Yy (Ax) are linearly dependent ovér. O

In particular, Lemma3.6 implies that in order to construct the matricégAy), it is
actually not necessary to calculalg (A;), and to test whether the matrice) ére linearly
dependent oveP. Indeed, suppose that matric&3 ére linearly dependent ovénr); that
is, that

k—1

a;(t)

A, = ;i (1)A;, ;i (t) = ,

k ; i i i az (l)
wherewy; (1), azi(t) € Pltland 1< i < k—1. Ifagi (o) # Oforeach,1<i < k—1,then
itis easy to see thak(Ay) = Ay — Y *_1 a; A;, wherea; = a; (). If @z (@) = O for some

i, then we can always replaaeby another elemerg from ﬁq satisfying the conditions of
Lemma3.1and such thaky; (8) # 0,for1<i < k—1andp { [F,(B)/F,I|. SinceJ’' (Ax)
is always contained iM (n, F'), such areplacement causes no extension of the ground fiel
in further calculations.

Thus, if G is finite, then we have constructed a nonzero element ofdag(G)).

Now we proceed to construct a nonzeFemodule by means of'. Given a set Xof
matrices ofM (n, F), denote by kK the setfv € F" : g(v) =0, g € X}. If B € envg(G),
denote byB the right ideal of eny(G) generated bys.

Lemma 3.7. Let Ay, ..., A,, be a basis oénvy (G) such thatdetA; # 0, forl <i < m.
If B € envg(G) and W = krB, thenU = AIl(W) N---N A,;l(W) is a G-invariant
subspace of™".

Proof. First prove thatU = kr8B. Letu € U; that is,u = Al._l(v,-) wherev; ¢ W

and 1< i < m. If h is an element ofB, thenk = Bg for someg € envg(G). Since
g =Y " a4 fora; € F, we have

hw) = Bgw) = (B aa)w
m m i=1
= YaBAiw) = Y eiBAATW)
i=1 i=1
- YwBw) = O
i=1

because; € W. Thusu € kr8; thatis,U C krB.

Conversely, leb € krB; that is,Bg(v) = 0 for eachg € envg(G). Settingg = A;, we
seethatBA; (v) = 0; thatis,A;(v) = u; € W, for1 < i < m. Consequentlyy = Al._l(u,-)
andv € N, A-X(W). Thus ke € U, and hence kB = U.
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Finally, we show that/ is aG-module. Letu € krB, and letg € envg(G). SinceB is
a right ideal of eny (G), we have hge 8B for eachh € 8. Hencehg(u) = h(g(u)) = 0,
and thereforer(u) € kr8. Thus,g(u) € kr8B for eachu € kr8 andg € envg(G); that is,
kr8 = U is aG-module. O

Corollary 3.8. Let B € Radenvr(G)), and letU be defined as in Lemn&a7. ThenU is
a nontrivial G-module.

Proof. By Lemma3.7, it suffices to show tha/ # 0. Let R = Radenvy(G)). Since
B € R, we have BC R.Hence kB D krR # 0. O

Corollary 3.9. Let G be irreducible, and leU be defined as in Lemnfa7. IfU # F",
thenU = 0.

Proof. By Lemma3.7, subspac¥ is aG-invariant subspace df”. SinceG is irreducible,
U = 0, as required. O

Define the seS* as follows:S1 = S and fork > 1 let Sk = Uycs S¥1A:; that is, S¥
is a set of products of length over S. In [1] the following procedure for constructing a
basis of eny (S), for IT C F, is described. Le#; = E, (hereE, is the identity matrix).
Suppose that matricess, . .., A., which are linearly independent ovBr and satisfy the
conditionA; € S, wherek < e — 1 and 1< j < e, have been constructed. If there are
Si € SandA; (for 1 < j < e), suchthatdy, ..., A., A;S; are linearly independent over
IT, then letA. 1 = A;S;. We repeat this process until we reach: m, such that all of the
productsA; S;, for 1 < j <m and 1< i < r, are contained in Spg{A1, ..., A,,). Then
A1, ..., A, is abasis of eny(S). In what follows we denote by, ..., A, the basis of
envy(S) constructed by this procedure. LBte envy(S) and letW = krB. Denote the
subspacet; }(W) N --- N A, L(W) by KrB.

Based on the results of this section, we develop the following algorithm for testing th
finiteness ofG = < S >.

Input: S =1{81,...,S;}
Step 1:calculateAy, ..., A,,, a basis of eny(S);
if there areS; andA; such thatd; S; ¢ Sparpcq (A1, ..., Ap)
thensetA,, ;1 := A;S; and proceed to Step 2
elsereturn ‘G is finite’;

Step 2:calculateJ’ = J'(A,,+1) and the chain KtJ') c --- C Kr((J")");
if Kr(J) =0 or Kr((J")") # F"
thenreturn ‘G is infinite’
elsecalculatep (S1), ..., p(Sy);
GotoStep1,setting := {p(SDv;, - - ., p(S,) v, }, Wherel; = Kr((J')')/Kr((J')71),
forl<i < n.

Remark 1. (i) To construct the representatipn: G — T (n, F), the algorithm calcu-
lates the matris € GL(n, F) such thato(G) = hGh~1 € T(m, F). To avoid an
extension of the field?, the algorithm turng (S;) into the formh=1(hS;h—1)h.

(i) The algorithm decides the finiteness for each of the grqu@s)|y,. If, for at least

oneU;, the algorithm recognizes(G)|y, as infinite, then it returnsG is infinite’.
Otherwise, the algorithm recognizes the group as finite.
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Note that all the assumptions which are necessary for the feasible calculation by t
algorithm of the matrix/’ are fulfilled. Indeed, sincy, . .., A,,+1 are linearly independent
overF, andA; € GL(n, F),for1 <i < m + 1, we find thatAy, ..., A, are linearly
independent oveP. By Lemma3.6, the matricesV, (A1), ..., ¥, (A,,+1) are linearly
dependent oveP. HenceJ’ can be calculated in Step 2. Also note that, siAge. .., A, 11
are linearly independent ovey,, the definition of/’ implies that/’ # 0.

The algorithm terminates as follows.

Suppose thaf isfinite. Then Corollarg.5implies that/’ is an element of Ra@nvg (G)).

By Corollary 3.8, the subspace KF’) is a nontrivialG-module. Since each round reduces
the dimension of at least one of th€G)-modulesU;, Corollary2.4implies that in at most

n rounds the algorithm constructs matrige&Ss), . .., p(S,) generating the group(G)
which is conjugate to a subgroup GfL(n, F,). Hence, in the next round the algorithm
calculates a basis of e@l\(m), and terminates after having recognized the group as
finite.

Let G be infinite. In contrast to the case of a finite group, it follows from Coroliady
that a matrixA,, 11 = A;S; ¢ Spamq (A1, ..., A,) always exists. Hence, in each round
the algorithm will be able to calculat&’. If J’ is not nilpotent, thedJ’)" # 0, and the
algorithm recognize& as infinite. Suppose that is nilpotent. By Lemma.7, Kr(J') is
a properG-invariant subspace (recall that # 0). If Kr(J’) # 0, then we proceed to the
next round. If KiJ") = 0, then the algorithm terminates with the result that the group is
infinite. Note that by Corollarng.5and Corollary3.8 the situation K¢J’) = 0 is possible
only for the case of an infinite group. Each round reduces the dimension of at least one of 1
p(G)-modulesU;; therefore in at mosi rounds the algorithm constructso&G)-module
U; such that the group(G)|y; is irreducible and infinite. Hence, by Corollagy9, the
algorithm terminates at the next round after having recognized the group as infinite.

The calculation of the basidy, ..., A,, of envy(G) is the key component of this al-
gorithm. Sincen < n?, by [7, p. 110] in order to construct, . .., A, we need at most
0 (rn®) field operations, in contrast to the algorithms presented in [7].

Note that the construction of the chain@modules K(J')  --- C Kr((J")") relieson
solving systems of linear algebraic equations, and can be performed by means of Gauss
elimination.
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