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ON DECIDING FINITENESS FOR MATRIX GROUPS
OVER FIELDS OF POSITIVE CHARACTERISTIC

A. DETINKO

Abstract

We consider the development of algorithms for deciding whether a
finitely generated matrix group over a field of positive characteris-
tic is finite. A deterministic algorithm for deciding the finiteness is
presented for the case of a field of transcendence degree one over a
finite field.

1. Introduction

This paper deals with the development of algorithms for matrix groups. Currently, this is
one of the most active areas of computational group theory (see, for example, [8]). Early
algorithms for computing with matrix groups used the induced actions of suitable subgroups
of these groups on carefully chosen sets of vectors and subspaces of the underlying vector
space. Such an approach gives rise to algorithms with running times that depend exponen-
tially on the input size. Moreover, in [8, p. 677] some basic ingredients have been described;
these are crucial for the efficient handling of permutation groups, but are lost when dealing
with matrix groups. These problems have motivated a new phase in the development of
algorithms for matrix groups (historical remarks can be found in [8]). Most of the effort has
been concentrated on various recognition algorithms that detect certain properties of matrix
groups given by a set of generating matrices. For potentially infinite matrix groups, one of
the most fundamental problems is the finiteness problem; that is, the problem of whether a
finitely generated subgroupG of the general linear groupGL(n, F ) over a fieldF is finite.
An efficient algorithm for deciding finiteness is a necessary component of any library of
algorithms to be used to determine the structure of finitely generated groups (see [1]).

In the case of number fields, polynomial-time randomized and deterministic algorithms
for solving the finiteness problem have been described in [1]. One of these algorithms
(Las-Vegas) has been implemented in theGAP group theory language [6]. For a function
field F = F (t1, . . . , tl), the problem is considered in [7] (here,t1, . . . , tl are independent
indeterminates). A polynomial-time algorithm is presented in [7] for the case whereF
is a number field. This algorithm either recognizes the group as infinite, or constructs an
isomorphic matrix group overF (not necessarily of the same dimension). The problem is
thereby reduced to the case of groups over the number field. WhenF is theq-element field
Fq , the situation is very different, and much more complicated. In [7], two deterministic
algorithms for deciding finiteness overF = Fq(t) are described. Both of these algorithms
rely on constructing, from theFq -algebra generated byG, a chain of matrices that are
linearly independent overFq . An exponential upper bound on the dimension of such an
algebra, obtained in [7, Theorem 3.3], suggests that such an approach can provide only
exponential-time algorithms.
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On deciding finiteness for matrix groups over fields of positive characteristic

These notes represent a contribution to the study of the finiteness problem for finitely
generated subgroups ofGL(n, F ), where charF > 0. Our main objective is to design
algorithms that solve the problem by using polynomially many field operations. We assume
that the reader is familiar with the elementary notions and facts used in the theory of matrix
groups and algebras; readers who are new to this field are referred to [9].

2. Preliminaries and background

Let F be a field of characteristicp > 0, and letFa be the field of elements ofF which
are algebraic over thep-element subfield ofF . Throughout the paper,Fq will stand for the
q-element field. We will use the notationM(n × m, F) to denote theF -module ofn × m

matrices with entries inF , andM(n, F ) for M(n × n, F ).
Let A be an associative finite-dimensional algebra overF with an identity element. An

elementx ∈ A is nilpotent if xm = 0 for some positive integerm. Similarly, x ∈ A is
strongly nilpotent, ifxy is nilpotent for everyy ∈ A. Theradical Rad(A) of A is the set
of strongly nilpotent elements ofA. Let L be a set of matrices ofM(n, F ), and let5 be a
subfield ofF . Theenveloping algebraenv5(L) of L over5 is a5-algebra generated by
L.

LetGL(n, F ) be the group of invertiblen×n matrices overF (the general linear group).
Denote byFn the vector space of column vectors of lengthn on whichGL(n, F ) acts. Recall
that a subgroupG ⊂ GL(n, F ) is irreducible if there is no non-trivial proper subspace of
Fn that is invariant underG. Otherwise,G is said to bereducible. If Fn is a direct sum of
G-invariant subspaces on whichG acts irreducibly thenG is calledcompletely reducible.

If n is a positive integer andn = n1 + · · · + nd , then denote(n1, . . . , nd) by n. Let
T (n, F ) be the group of block upper triangular matricesX = (Xij ) ∈ GL(n, F ), where
Xij ∈ M(ni × nj , F ), i < j , Xii ∈ GL(ni, F ) andXij = 0 for i > j . DefineTa(n, F ) as
the subgroup of matricesX = (Xij ) ∈ T (n, F ) such thatXii ∈ GL(ni, Fa), 1 6 i 6 d.
Denote byϕ a homomorphismT (n, F ) → D(n, F ), whereX → X is given by projection
on the block-diagonal groupD(n, F ). Given G⊂ T (n, F ), write ϕ(G) asG. Note thatG
is not necessarily completely reducible.

Our approach is based on the description of periodic subgroups ofGL(n, F ) given
in [10]. Periodic groups(that is, groups all elements of which have finite order) are the
straightforward generalization of finite groups. Note that by the well-known theorem of
I. Schur (see, for example, [9, Theorem 23.5]), periodic matrix groups are locally finite.

Proposition 2.1 ([10]). LetG ⊂ GL(n, F ) be irreducible. ThenG is periodic if and only
if G is conjugate to a subgroup ofGL(n, Fa).

Corollary 2.2 ([10]). LetG ⊂ GL(n, F ). ThenG is periodic if and only ifG is conjugate
to a subgroup ofTa(n, F ) for somen. In particular, a finitely generated groupG is finite if
and only ifG is conjugate to a subgroup ofTa(n, F ).

Note that [7, Theorem 3.2 and Corollary 3.6] follow directly from Corollary2.2.

Lemma 2.3. Let G be a subgroup ofGL(n, F ). ThenG is periodic if and only ifG is
conjugate to a subgroupH ⊂ T (n, F ) such thatdimFa (envFa (H)) 6 n2.

Proof. If G is periodic, then by Corollary 2.2, subgroupG is conjugate to a subgroup
H ⊂ Ta(n, F ). Hence dimFa (envFa (H)) 6 n2. Conversely, lethGh−1 = H ⊂ T (n, F ) for
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someh ∈ GL(n, F ), and dimFa (envFa (H)) 6 n2. Suppose thatH contains an elementg of
infinite order. Then the order ofϕ(g) = g is also infinite. Hence the matricesg, g2, . . . , gm

are linearly independent overFa for any positive integerm; that is, dimFa (envFa (H)) is
infinite. From this contradiction it follows thatG is periodic.

Corollary 2.4. LetG be a finitely generated subgroup ofGL(n, F ). ThenG is finite if and
only if G is conjugate to a subgroupH ⊂ T (n, F ) such thatdimFa (envFa (H)) 6 n2.

Proof. The corollary follows directly from the abovementioned theorem of I. Schur
[9, Theorem 23.5].

Lemma 2.5. Let G ⊂ GL(n, F ) be completely reducible. ThenG is periodic if and only
if dimFa (envFa (G)) 6 n2.

Proof. The lemma follows immediately from Lemma2.3.

Direct application of the above statements provides the following approach to the problem
of deciding finiteness for a finitely generated subgroupG ⊂ GL(n, F ).

(i) Construct a representationρ : G → T (n, F ) such that the projectionρ(G) is com-
pletely reducible.

(ii) Calculateda = dimFa (envFa (ρ(G))).

By Lemma 2.5, ifG is finite thenda 6 n2; therefore [2, Lemma 4.1] implies that the
dimension of envFa (ρ(G)) can be calculated in polynomial time. IfG is infinite, then by
[2, Lemma 4.1] we can construct in polynomial time more thann2 matrices of envFa (ρ(G)),
which are linearly independent overFa .

To construct the representationρ we may use the correspondence between the structure
of envF (G) and the action ofG onV = Fn. Let R be the radical of envF (G). Then

V ⊃ RV ⊃ · · · ⊃ Rd−1V ⊃ {0} (1)

is the chain ofG-modules, whereRd−1 6= 0 andRd = 0, for d 6 n (see [9, § 13]).
Chain (1) defines the representationρ : G → T (n, F ) wheren = (n1, . . . , nd) and

ni = dimRi−1V/RiV , for 1 6 i 6 d. From [9, § 13] it follows that the groupρ(G) is
completely reducible, as required.

Let F = Fq(t1, . . . , tl). Then by [3, Corollary 3.4.6], the radical of envF (G) can be
found in deterministic polynomial time. This shows that finiteness for matrix groups over
the function fieldFq(t1, . . . , tl) is decidable in polynomial time.

The main difficulty with this approach lies in the calculation of Rad(envF (G)). In the
next section we shall describe a more efficient approach, that relies on calculating only
some nonzero elements of Rad(envF (G)). Here we consider the case ofFq(t), although
our results can be extended toFq(t1, . . . , tl).

3. Algorithms for testing the finiteness of matrix groups overFq(t)

Let F = Fq(t), and letF andFq be the algebraic closures ofF andFq respectively. If
h = h(t) = (hij (t)) ∈ M(n, F ), and ifα is an element ofFq , then define the matrix9α(h)

as9α(h) = (hij (α)) ∈ M(n, Fq); that is,9α(h) is obtained by evaluating all elements of
h at α (assuming that they are defined). Denote byFq(α) the extension ofFq obtained by
adjoining the elementα, and write|Fq(α)/Fq | for the degree ofFq(α) overFq .
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Throughout this sectionS = {S1, . . . , Sr}, Sk = (s
(k)
ij ) ∈ GL(n, F ), andG = < S > is

the subgroup ofGL(n, F ) generated byS.

Lemma 3.1. Let α be an element ofFq such that matrices9α(Si) are defined for all
1 6 i 6 r. If G is finite, then

9α : G → GL(n, Fq), h(t) → h(α)

is a homomorphism ofG into GL(n, Fq).

Proof. It suffices to show that9α(h(t)) is defined for eachh = h(t) ∈ G, because in this
case it is clear that9α(hg) = 9α(h)9α(g) and9α(h−1) = (9α(h))−1, for g ∈ G.

Letm = m(t) be the least common multiple of the denominators ofs
(k)
ij , where 16 k 6 r

and 16 i, j 6 n. Since9α(Sk) is defined for allk, we havem(α) 6= 0. The groupG is
finite, and thereforeh = S

m1
i1

· . . . · Smr

ir
, wheremi are nonnegative integers and 16 i 6 r.

Henceh = m−l (t)h0(t), wherel is a positive integer andh0(t) ∈ GL(n, Fq [t]). Thus
9α(h) is defined, as required.

Let α ∈ Fq be defined as in Lemma3.1. Note that such anα exists. For example, if the
degree of the extensionFq(α)/Fq is greater than the degrees of the denominators ofs

(k)
ij ,

where 16 k 6 r and 16 i, j 6 n, thenα satisfies conditions of Lemma3.1.
Let P = Fq(α). If G is finite, then Lemma 3.1 implies that9α : envP (G) → M(n, P ),

h → 9α(h) is a homomorphism of algebra envP (G) into M(n, P ).

Proposition 3.2. If G is finite, thenker9α ⊂ Rad(envP (G)).

Proof. To prove the proposition, it suffices to show that each elementh ∈ ker9α is nilpo-
tent. By Corollary2.2, envP (G) is conjugate to a subalgebra of envP (Ta(n, F )). Henceh is
conjugate to a matrix of envP (Ta(n, F )). Consequently, all the coefficients of the character-
istic polynomialf (x) of h are contained inP . Hencef (x) is the characteristic polynomial
of the matrix9α(h). Fromh ∈ ker9α, it follows that9α(h) = 0; thereforef (x) = xn.
Thushn = 0; that is,h is nilpotent.

Corollary 3.3. If G is finite, thenker9α ⊂ Rad(envP(t)(G)).

Proof. By Proposition3.2, the kernel ker9α is a nilpotent ring; therefore [4, Chapter 8,
§ 5, Theorem 1] implies that the linear span of ker9α over P(t) is a nilpotent ideal of
envP(t)(G). Thus ker9α ⊂ Rad(envP(t)(G)), as desired.

Now let us choose an elementα ∈ Fq in the following manner. Letc be the largest of
the degrees of the denominators ofs

(k)
ij , where 16 k 6 r and 16 i, j 6 n. If c = 0 (that

is, if Si ∈ GL(n, Fq [t]) for 1 6 i 6 r), then letα ∈ Fq (for example,α = 0). If c > 0 and
p - c + 1, then letα be an element ofFq such thatFq(α) = Fqc+1. If c > 0 andp | c + 1,
then letα be an element ofFq such thatFq(α) = Fqc+2. DenoteFq(α) as above byP ,
and defineη as the degree of the extensionP/Fq . Note that ifSi ∈ GL(n, Fq [t]), where
1 6 i 6 r, thenP = Fq andη = 1.

Define the matricesJ = J (Ak) andJ ′ = J ′(Ak) as follows. Let

A1, . . . , Ak (2)

be matrices of envP (G) that are linearly independent overP , such that

9α(A1), . . . , 9α(Ak) ∈ M(n, P ) (3)
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are linearly dependent overP ; that is

9α(Ak) =
k−1∑
i=1

αi9α(Ai) (4)

for someαi ∈ P .
Denote byJ (Ak) the matrix J (Ak) = Ak − ∑k−1

i=1 αiAi ∈ envP (G), and define
J ′(Ak) = ηAk − ∑k−1

i=1 tr(αi)Ai ∈ envFq (G), where tr(αi) is the trace ofαi ∈ P over
Fq . Note that ifP = Fq , thenJ = J ′.

Lemma 3.4. If G is finite, thenJ is a nonzero element ofker9α.

Proof. Since9α(J (Ak)) = 9α(Ak −∑k−1
i=1 αiAi) = 9α(Ak) −∑k−1

i=1 αi9α(Ai), equa-
tion (4) implies that9α(J (Ak)) = 0; that is,J (Ak) ∈ ker9α. Matrices (2) are linearly
independent overP , and thereforeJ (Ak) 6= 0.

Corollary 3.5. If G is finite andAi ∈ envFq (G), thenJ ′(Ak) is a nonzero element of
Rad(envF (G)).

Proof. Letσ be an automorphism ofP overFq which generates the Galois group Gal(P/Fq).
We shall also denote byσ the extension ofσ toP(t)such thatσ(t) = t . SinceAi ∈ M(n, F ),
we haveσ j (Ai) = Ai , for 1 6 j 6 η, and hence9σj (α)(Ai) = σ j (9α(Ai)). Thus

9σj (α)(Ak) = σ j
(
9α(Ak)

) = σ j

(
k−1∑
i=1

αi9α(Ai)

)
=

k−1∑
i=1

σ j (αi)9σj (α)(Ai).

Lemma3.4 implies that the matrix

Bσj = Ak −
k−1∑
i=1

σ j (αi)Ai (5)

is contained in ker9σj (α), for 1 6 j 6 η; that is, by Corollary3.3,Bσj ∈ Rad(envP(t)(G)).
Hence, by equation (5) it follows that

η∑
j=1

Bσj = ηAk −
k−1∑
i=1

tr(αi)Ai = J ′(Ak) ∈ Rad(envP(t)(G)).

SinceJ ′(Ak) ∈ M(n, F ), we haveJ ′(Ak) ∈ Rad(envF (G)). Finally, note thatJ ′(Ak) 6= 0
because matrices (2) are linearly independent overFq andp - η.

Lemma 3.6. Let A1, . . . , Ak ∈ envP (G) be linearly dependent overP(t). Then
9α(A1), . . . , 9α(Ak) are linearly dependent overP .

Proof. Let

Ak =
k−1∑
i=1

αi(t)Ai, αi(t) ∈ P(t). (6)

Letβ be an element ofFq such thatαi(β)are defined for eachαi(t), where 16 i 6 k − 1,
and p does not divide the degreeτ of the extensionP(β)/P . By [5, Theorem 2.23],
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we can chooseβ in such a way that tr(β) = α, where tr(β) is the trace ofβ over P .
Let < δ > = Gal(P (β)/P ). Then equation (6) implies that

9δj (β)(Ak) =
k−1∑
i=1

δj (βi)9δj (β)(Ai), (7)

where 16 j 6 τ andβi = αi(β). Since tr(β) = α, we have
∑τ

j=1 9δj (β)(Ai) = 9α(Ai).
Hence the sum of both sides of equation (7) overj will give

9α(Ak) =
k−1∑
i=1

tr(βi)9α(Ai),

where tr(βi) ∈ P . Thus,9α(A1), . . . , 9α(Ak) are linearly dependent overP .

In particular, Lemma3.6 implies that in order to construct the matricesJ (Ak), it is
actually not necessary to calculate9α(Ai), and to test whether the matrices (3) are linearly
dependent overP . Indeed, suppose that matrices (3) are linearly dependent overP(t); that
is, that

Ak =
k−1∑
i=1

αi(t)Ai, αi(t) = α1i(t)

α2i (t)
,

whereα1i(t), α2i (t) ∈ P [t] and 16 i 6 k−1. If α2i (α) 6= 0 for eachi, 1 6 i 6 k−1, then
it is easy to see thatJ (Ak) = Ak −∑k−1

i=1 αiAi , whereαi = αi(α). If α2i (α) = 0 for some
i, then we can always replaceα by another elementβ from Fq satisfying the conditions of
Lemma3.1and such thatα2i (β) 6= 0, for 16 i 6 k − 1 andp - |Fq(β)/Fq |. SinceJ ′(Ak)

is always contained inM(n, F ), such a replacement causes no extension of the ground field
in further calculations.

Thus, ifG is finite, then we have constructed a nonzero element of Rad(envF (G)).
Now we proceed to construct a nonzeroG-module by means ofJ ′. Given a set Xof

matrices ofM(n, F ), denote by krX the set{v ∈ Fn : g(v) = 0, g ∈ X}. If B ∈ envF (G),
denote byB the right ideal of envF (G) generated byB.

Lemma 3.7. LetA1, . . . , Am be a basis ofenvF (G) such thatdetAi 6= 0, for 1 6 i 6 m.
If B ∈ envF (G) and W = krB, thenU = A−1

1 (W) ∩ · · · ∩ A−1
m (W) is a G-invariant

subspace ofFn.

Proof. First prove thatU = krB. Let u ∈ U ; that is,u = A−1
i (vi) wherevi ∈ W

and 1 6 i 6 m. If h is an element ofB, thenh = Bg for someg ∈ envF (G). Since
g = ∑m

i=1 αiAi , for αi ∈ F , we have

h(u) = Bg(u) =
(
B

m∑
i=1

αiAi

)
(u)

=
m∑

i=1
αiBAi(u) =

m∑
i=1

αiBAiA
−1
i (vi)

=
m∑

i=1
αiB(vi) = 0,

becausevi ∈ W . Thusu ∈ krB; that is,U ⊂ krB.
Conversely, letv ∈ krB; that is,Bg(v) = 0 for eachg ∈ envF (G). Settingg = Ai , we

see thatBAi(v) = 0; that is,Ai(v) = ui ∈ W , for 1 6 i 6 m. Consequently,v = A−1
i (ui)

andv ∈ ∩m
i=1 A−1

i (W). Thus krB ⊂ U , and hence krB = U .
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Finally, we show thatU is aG-module. Letu ∈ krB, and letg ∈ envF (G). SinceB is
a right ideal of envF (G), we have hg∈ B for eachh ∈ B. Hencehg(u) = h(g(u)) = 0,
and thereforeg(u) ∈ krB. Thus,g(u) ∈ krB for eachu ∈ krB andg ∈ envF (G); that is,
krB = U is aG-module.

Corollary 3.8. LetB ∈ Rad(envF (G)), and letU be defined as in Lemma3.7. ThenU is
a nontrivialG-module.

Proof. By Lemma3.7, it suffices to show thatU 6= 0. Let R = Rad(envF (G)). Since
B ∈ R, we have B⊂ R. Hence krB ⊃ krR 6= 0.

Corollary 3.9. Let G be irreducible, and letU be defined as in Lemma3.7. If U 6= Fn,
thenU = 0.

Proof. By Lemma3.7, subspaceU is aG-invariant subspace ofFn. SinceG is irreducible,
U = 0, as required.

Define the setSk as follows:S1 = S and fork > 1 let Sk = ∪A∈S Sk−1A; that is,Sk

is a set of products of lengthk overS. In [1] the following procedure for constructing a
basis of env5(S), for 5 ⊂ F , is described. LetA1 = En (hereEn is the identity matrix).
Suppose that matricesA1, . . . , Ae, which are linearly independent over5 and satisfy the
conditionAj ∈ Sk, wherek 6 e − 1 and 1< j 6 e, have been constructed. If there are
Si ∈ S andAj (for 1 6 j 6 e), such thatA1, . . . , Ae, AjSi are linearly independent over
5, then letAe+1 = AjSi . We repeat this process until we reache = m, such that all of the
productsAjSi , for 1 6 j 6 m and 16 i 6 r, are contained in Span5(A1, . . . , Am). Then
A1, . . . , Am is a basis of env5(S). In what follows we denote byA1, . . . , Am the basis of
envF (S) constructed by this procedure. LetB ∈ envF (S) and letW = krB. Denote the
subspaceA−1

1 (W) ∩ · · · ∩ A−1
m (W) by KrB.

Based on the results of this section, we develop the following algorithm for testing the
finiteness ofG = < S >.

Input: S = {S1, . . . , Sr}
Step 1:calculateA1, . . . , Am, a basis of envF (S);

if there areSi andAj such thatAjSi 6∈ SpanFq
(A1, . . . , Am)

then setAm+1 := AjSi and proceed to Step 2
elsereturn ‘G is finite’;

Step 2:calculateJ ′ = J ′(Am+1) and the chain Kr(J ′) ⊂ · · · ⊂ Kr((J ′)n);
if Kr(J ′) = 0 or Kr((J ′)n) 6= Fn

then return ‘G is infinite’
elsecalculateρ(S1), . . . , ρ(Sr);

Go to Step 1, settingS := {ρ(S1)|Ui
, . . . , ρ(Sr)|Ui

}, whereUi = Kr((J ′)i)/Kr((J ′)i−1),
for 1 6 i 6 n.

Remark 1. (i) To construct the representationρ : G → T (n, F ), the algorithm calcu-
lates the matrixh ∈ GL(n, F ) such thatρ(G) = hGh−1 ∈ T (n, F ). To avoid an
extension of the fieldP , the algorithm turnsρ(Si) into the formh−1(hSih−1)h.

(ii) The algorithm decides the finiteness for each of the groupsρ(G)|Ui
. If, for at least

oneUi , the algorithm recognizesρ(G)|Ui
as infinite, then it returns ‘G is infinite’.

Otherwise, the algorithm recognizes the group as finite.
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Note that all the assumptions which are necessary for the feasible calculation by the
algorithm of the matrixJ ′ are fulfilled. Indeed, sinceA1, . . . , Am+1 are linearly independent
overFq andAi ∈ GL(n, F ), for 1 6 i 6 m + 1, we find thatA1, . . . , Am+1 are linearly
independent overP . By Lemma3.6, the matrices9α(A1), . . . , 9α(Am+1) are linearly
dependent overP . HenceJ ′ can be calculated in Step 2. Also note that, sinceA1, . . . , Am+1
are linearly independent overFq , the definition ofJ ′ implies thatJ ′ 6= 0.

The algorithm terminates as follows.
Suppose thatG is finite. Then Corollary3.5implies thatJ ′ is an element of Rad(envF (G)).

By Corollary3.8, the subspace Kr(J ′) is a nontrivialG-module. Since each round reduces
the dimension of at least one of theρ(G)-modulesUi , Corollary2.4implies that in at most
n rounds the algorithm constructs matricesρ(S1), . . . , ρ(Sr) generating the groupρ(G)

which is conjugate to a subgroup ofGL(n, Fq). Hence, in the next round the algorithm
calculates a basis of envFq (ρ(G)), and terminates after having recognized the group as
finite.

Let G be infinite. In contrast to the case of a finite group, it follows from Corollary2.4
that a matrixAm+1 = AjSi 6∈ SpanFq

(A1, . . . , Am) always exists. Hence, in each round
the algorithm will be able to calculateJ ′. If J ′ is not nilpotent, then(J ′)n 6= 0, and the
algorithm recognizesG as infinite. Suppose thatJ ′ is nilpotent. By Lemma3.7, Kr(J ′) is
a properG-invariant subspace (recall thatJ ′ 6= 0). If Kr (J ′) 6= 0, then we proceed to the
next round. If Kr(J ′) = 0, then the algorithm terminates with the result that the group is
infinite. Note that by Corollary3.5and Corollary3.8 the situation Kr(J ′) = 0 is possible
only for the case of an infinite group. Each round reduces the dimension of at least one of the
ρ(G)-modulesUi ; therefore in at mostn rounds the algorithm constructs aρ(G)-module
Ui such that the groupρ(G)|Ui

is irreducible and infinite. Hence, by Corollary3.9, the
algorithm terminates at the next round after having recognized the group as infinite.

The calculation of the basisA1, . . . , Am of envF (G) is the key component of this al-
gorithm. Sincem 6 n2, by [7, p. 110] in order to constructA1, . . . , Am we need at most
O(rn8) field operations, in contrast to the algorithms presented in [7].

Note that the construction of the chain ofG-modules Kr(J ′) ⊂ · · · ⊂ Kr((J ′)n) relies on
solving systems of linear algebraic equations, and can be performed by means of Gaussian
elimination.
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