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REPRESENTATION OF BOOLEAN HYPOLATTICES

JOHN BORIS MILLER

The principal result is a representation theorem for relatively

distributive, relatively complemented hypolattices with zero,

generalizing the Stone representation theorem for a Boolean

lattice. It uses the small product of a family of Boolean

lattices which are maximal sublattices of the hypolattice. The

paper also characterizes the maximal sublattices when the hypo-

lattice is coherent; and it gives several examples of hypo-

lattices , including hypolattices of subgroups and of ideals by

direct sum, and examples from relative convexity, relative

closure, and cofinality.

1. Introduction

A hypolattice (X, £) is a nonempty set X partially ordered by - ,

such that for every pair k, I € X with k < I the closed interval

[k, I] = {x € X : k < x 5 1}

is a lattice, and moreover the lattice operations coincide on overlapping

intervals. Writing meet and join as A and v respectively, it follows

that when x, y € [k, I] then x A y is the infimum of x, y in X , and

dually. Thus an equivalent definition of a hypolattice is that it is a

poset (X, S) in which every closed interval is a sublattice.

The definition says that for x, y € X , a sufficient condition for

the existence of inf{x, y} in X is that x, y have a common lower

bound and a common upper bound. Thus if x, y have a common lower bound
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390 John Boris Miller

but no common upper bound, inf{x, y} may not exist in X : the concept

of hypolattice is distinct from that of conditional lattice. But

inf{x, y}' may exist in thi.s case; so we can distinguish two types of

infima: those (called de jure) which exist by virtue of the definition of

a hypolattice and those (called de facto) which exist although the

definition does not assert their existence. The same remarks apply to

suprema.

A poset (X, S) all of whose closed subintervals are lattices, though

perhaps not sublattices, is called a weak hypolattice. Here inf{x, y] ,

if x, y have common lower and upper bounds, may depend upon the interval

in which it is taken, and likewise for sup{x, y] .

Hypolattices arise naturally in describing the direct-sum relation

between convex l-subgroups of an arbitrary Z-group. This was shown in

[3], which gave examples showing the existence of nontrivial de facto

meets. We reformulate this example in a quite general group-theoretic

setting in §3 below, and give some other instances of hypolattices and weak

hypolattices, for example from convexity and cofinality.

The direct-sum hypolattices are relatively distributive and relatively

complemented, so it is natural to ask if the Stone representation theory

for Boolean algebras can be used to obtain a representation theorem for

them. We give such a representation in §5, as our main result. A final

section §6 deals with the notions of mutuality and coherence, and the

existence of maximal mutual subsets.

2. Further definitions and elementary facts

Let (X, £) be a hypolattice. If X has a zero (that is, least

element, written 0 ) then x v y , if it exists, is necessarily de jure.

Most hypolattices considered in this paper have a zero.

The partially-defined operations A, v are both associative, that is,

(1) (x A y) A z = x A (y A s) = A{x, y, z}

whenever x A */ , (x A y) A 3 , y A z , x A (y A s) exist in X ; and

dually for v . When (l) holds the common element is written x A y A z .

The hypolattice {X, S) is called distributive if the equation

(2) X A (y V 3) = (x A y) V (x A 2)
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holds whenever the 3 meets and 2 joins which appear in it exist, and

dually. {X, 5) is called relatively distributive if every closed interval

is a distributive lattice; this is equivalent to saying that (2) holds

provided the meets and joins which appear in it exist de jure, and dually.

Distributivity implies relative distributivity. It is possible for X to

be distributive and yet for (2) to fail, for example for one side to exist

but not the other. (X, S) is called relatively complemented if every

interval is a complemented lattice.

A nonempty subset A of a poset (X, S) is called convex in X if

u, i> € A , u < v imply [u, v] c A . Any convex subset of a hypolattice

is itself a hypolattice with respect to the relativized order.

A nonempty subset A of a hypolattice (X, 5) is called a subhypo-

lattice if {A, <\A) is a hypolattice, and for all x, y € A , if

inf{x, y} exists in A then x A y exists in / and the two are equal;

and dually. Note that this definition does not require x A y to exist in

A if it exists in X . Thus it is possible to have in a lattice X a

subhypolattice which is not a sublattice. A sublattice of a hypolattice is

a subhypolattice which is a lattice. Equivalently, a nonempty subset A

of a hypolattice X is a sublattice of X if x, y € A implies x t^ y ,

x v y exist in X and belong to A . As an application of Zorn's lemma

we have

PROPOSITION 2.1. In any hypolattice (X, s) , every sublattice is

contained in a maximal sublattice; every maximal sublattice is convex, and

contains 0 if X has zero 0 .

A {hypolattice) homomorphism from a hypolattice (X, s) to a poset

(Y, <) is a map <J> : X •*• Y such that, all a, b 6 X , if a A b exists

in X then <$>(a) A <$>(b) exists in Y and <|>(a A b) = ()>(a) A <$>(b) ; and

dually. A (hypolattice) isomorphism from X to Y is one-to-one onto

hypolattice homomorphism <j> such that a A b exists in X if and only if

<|>(a) A <j)(Z?) exists in Y , and dually. Every homomorphism is an order-

preserving map. Clearly <j) is an isomorphism if and only if <j) and

<J>~ are homomorphisms. Any map f : X •* Y is called isotone when a 5 b

if and only if f(a) £ f(b) . An ideal in X is a subset I such that

y 2 x € J implies y € I , and if a, b € X and a v b exists then

a v b € J .
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In seeking to describe a hypolattice (X, 5) i t is natural to look at

subsets in which A, v are everywhere-defined operations. To this end,

for x, y i X write

(3) x^y

and call x, y mutual when they are contained in an interval, or

equivalently, when x A y , x v y exist (de jure). The relation _̂ is

reflexive and symmetric, but not in general transitive. When X has a 0

or 1 then _̂, is transitive if and only if X is a lattice. The

following property, when present, is to some extent a compensation for lack

of transitivity. We say (X, 5) is coherent if:

for all x, y, z in X , if x ̂  y , y^z and z^x then

x A y A s and x v y v z exist.

If (X, 5) has a zero, then to prove that it is coherent it suffices to

verify the existence of x v y v z . Induction proves:

PROPOSITION 2.2. Let (X, s) be a coherent hypolattice and let

x , x , ..., x be elements of X . If x.^x. for all i, j in

{l, 2, ..., n} then x A a; A ... Ax and x., v x2 v ... v x exist.

3. Examples

3.1.

Let (£, S) be any lattice and X any convex subset of L . Then

(X, S\X) is a hypolattice.

Not every hypolattice can be regarded as a convex subset of a lattice.

Consider for example the poset of four elements X = {a, b, c, d] with

a < c , a < d , b < c , b < d , a\\b , c\\d . The example can be made

more elaborate by attaching disjoint lattices at a, b with a and b as

ones, and disjoint lattices at c, d with e and d as zeros. The poset

y = X u ie] with c < e and d < e is an example of a weak hypolattice.

It would be interesting to have a characterization of those hypolattices

which are embeddable as a convex subset of a lattice.

Let [L., S.) , i € J , be a family of lattices, pairwise disjoint.

On H = U L. define x 5 y to mean ar, y € L. and x 5. 1/ , for some
lr 1, If
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i € I . Then {B, s) is a hypolattice.

3.2. HYPOLATTICES OF DIRECT SUMMANDS

Let G be any group, let Gr(G) (more briefly, Gr ) denote the set

of all subgroups of G . It is known that Gr ordered by c is a

lattice, possibly nonmodular, the lattice operations being given by

B A K = H n K , H V K = gr(ff, X)

(gr denotes the generated subgroup). Let £ be any sublattice of

(Gr, c) which contains (0) and is distributive, and let ]| be any ideal

of £ . Define a relation 2, on £ as follows: for ff, M € £ ,

(1) H ~dM m e a n s M = B ® K for some X € E .

Here H ® K denotes the usual direct sum, that is, B ® K = B v K with

B h K = (0) and hk = kh for all h £ H , k (. K . Because £ is

distributive, K in (l) will be uniquely determined. We have

PROPOSITION 3.2.1. (c, <d) is a coherent, relatively distributive

hypolattice. It has a zero if and only if E. = £ j a«d in this case the

hypolattice is relatively complemented.

The proof that (c, S^) is a hypolattice is like that in [3],

Proposition 10°. Note that every interval [(0), B] , for B € £ is

relatively complemented, but an interval [A, B] , where (0) t A <,B

need not be so. We write [A, B] , for an interval in (£, £,) ; meet and

join are shown as A ,, v, . We also have the following generalization of a

remark in [33.

PROPOSITION 3.2.2. Let G be commutative. Let H , H I £ . A

necessary and sufficient condition for B v, B to exist is that there

exist F , F2 in E such that

(2) Bx = [Bx A B2) ®F1, H2= [BX A B2) ® F2 .

If such F-, F2 exist then

(3) Bx vd B2 = Hxy B2= [Bx A B2) ®F1@F2, ^ Arf B£ = ^ A B2 .
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If H A , Hp exists as a de faoto meet, then it does not equal HA #2 .

It should be emphasised that H v , H is in general distinct from

H ® H~ ; the first may exist without- the second. If the direct stun

exists, and H , H both belong to 12 , then the direct join exists and

the two are equal. If both sum and join exist but not both of H , H are

in E then ^ vrf H? + ^ @ # 2 .

A special case of these two propositions is discussed in [3]. There

G is an Z—group, and

E = £ = Cls(G) ,

the complete distributive lattice of all convex Z-subgroups of G , so

that H 5j M says that H is a cardinal summand of M . (cis, 5,) is a

relatively complemented, relatively distributive hypolattice. The subset

LcCls consisting of all lattice-closed members of Cls is, with respect

to -j relativized, a hypolattice with those same properties. In general

LcCls is not a sublattice of (Cls, c) ; on the other hand it was shown

in [3], 11°, that LcCls is an ideal of the hypolattice (cis, 5,) when

G is complete, and the lattice-closure map Cls -»• LcCls is strictly

order-preserving and onto, preserving all de jure meets and joins. However

when G is not complete, v, for Cls and LcCls may differ. These

properties of LcCls are not instances of Proposition 3.2.1. Examples of

de facto meets are given in [3], together with various counterexamples. By

Proposition 3.2.1, (Cls, -A is coherent; it can be shown that

(LcCls, SJ) is coherent if G is complete.

In Proposition 3-2.2, commutativity is specified in order to be able

to deduce the existence of F © F from F n F = (0) . Without

commutativity one still has [fi A H ) ® [F V F ) as the third term of

(3). Commutativity is not required in Proposition 3.2.2 in the case when

G is an £-group.

3.3. DIRECT SUMMANDS IN RINGS

Let R be any associative ring and let Id(i?) be the set of all two-
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sided ideals of R , Gr(fl) the set of all subgroups of the additive group

of R . (id(fl), c) and (Gr(i?), c) are both complete modular lattices,

and Id is a closed sublattice of Gr . The sum of two ideals is direct

if and only if it is direct as a sum of subgroups. Choose any distributive

sublattice £ of Id containing (0) , and any ideal £ of £ , and

define H 5^ M for H, M € £ as in (l); again (£, £,) is a coherent,

relatively distributive hypolattice; it has a zero and is relatively

complemented if and only if £ = £ •

Leigh Samphier (Private Communication) has shown how hypolattices

occur in direct-sum-admitting categories, in generalization of 3.2 and 3.3.

3.4. EXAMPLES FROM CONVEXITY

Let V be any real vector space, and for nonempty subsets A, B of

V write

A -^ B

to mean that A is a subset of B convex relative to B , that is, A cfl

and if y = Xx + (l-\)x , 0 < X < 1 , x , x (. A , y € B then

y i A . If P(V) denotes the power set of V , then

fi= (P(JO\{0>, "=<)

is a weak hypolattice. The infimum of any two elements A, B in any

interval [K, L] of £ is their intersection and so is independent of the

interval; the supremum is t n conv(/l u S) (where conv denotes convex

hull in V ) which depends upon L but not on K . It is easy to

construct an example of a de facto meet in £ which equals the inter-

section of the two sets concerned; of. Cls , where this is not possible.

Let 0, T be chosen nonempty subsets of V , the obstacle set and

base set respectively, and write X for the collection of all subsets of

V which are convex relative to V and which meet T but not 0 . Then

(i, -^<) is a hypolattice, -^< coinciding with c . It is easy to

construct an example of sets A, B, C in X for which A v B , B v C ,

C v A exist de facto in (X, -^<) but A v B v C does not exist.

Modify this example by omitting the reference to T and adjoining 0

to X at a least element. The resulting hypolattice is not coherent.
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3.5.

The weak hypolattice J3 described above is a particular case of the

following general construction. Let (X, S) be any lattice and / any

closure operator on X . For a, b € X write a -~ b to mean

f(a) A b = a . Then [x, 5 J is a weak hypolattice, in which every de

jure meet X A „ y coincides with x A y and so is independent of the

containing interval (but [X, A „) need not be a semilattice) , while for

x, y € [k, I] we have x V„ y = f{x v y) A I . For £ the function /

is conv . Another example is relative closure in a topological space, /

be closure.

3.6. COFINALITY

The concept of cofinality gives rise to weak hypolattices in a natural

way. Let U be a given nonempty set. Suppose we have a collection of

nonempty subsets of V ,

each A. equipped with some partial order -• . These orders are not
Lr If

required to coincide on intersections. It suffices to assume that R is

P(i/)\{0} or more generally is any subhypolattice with respect to c . For

each i € J , A. denotes the poset (A., S.) . Write
~~"U lr lr

to mean A. c A . ; the restriction of £. to A. is -. ; A. is
i~3 3 ^ v ^

cofinal in (A., — .) . Then (R, S J is a weak hypolattice. A de jure
3 0 x*

meet ^ A 13 has set A n B and its order is the relativized order of A

or B , so A is independent of the containing interval. However V

may depend upon the interval.

3.7.

Abbott [7] introduced the concept of a semi-Boolean algebra. It is

defined to be a A-semilattice with zero 0 , in which every interval

[0, a] is a Boolean algebra with respect to the relativized order. Every
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semi-Boolean algebra is a Boolean hypolattice (see §5 below). For an

example of a Boolean hypolattice which is not a semi-Boolean algebra see

[3], p. 185.

3.8.

A Eickart ring is a ring R with identity in which 0 is the only

nilpotent, and moreover for every x £ R there exists an idempotent x°

such that for all y € R , xy = o if and only if S = x°y . R ±s

2
partially ordered by writing x £ y to mean xy = x . A result of

Janowitz [Z] shows that (R, 2) is a Boolean hypolattice.

4. Products of Boolean lattices

For the representation to be given in §5 we need to use a product of

Boolean algebras; we shall define it and describe its Stone space before

proceeding. See Sikorski [4], pp. 50, 51.

Let M = (̂ )-igj b e a n arbitrary family of Boolean lattices (that is,

distributive, relatively complemented lattices with zero, and having at

least two elements); the relations on M. are written 2, A, v, 0 , and
Is

M. is not assumed to have a one. If M. has a one its presence is
Is is

signalled by "there exists 1 € M. " (thus 0,1 may be used to denote

distinct elements on successive occurrences). For the theory of Boolean

lattices in this generality see the original papers by Stone [5], [6].

For each i € J let £2. denote the Stone space of M. , its elements

p, q, ... being the prime ideals of M. , and let S. be the Stone

topology; (ft., S.) is a locally compact, 0-dimensional Hausdorff space,
Is %

compact if and only if there exists 1 € M. . For any a; € M. and any

ideal J of M. write
Is

Nix) = {p € Qi : x £ p} , N(J) = {p € ̂  : J £ p} .

Then S. is the collection of al l sets of the form N(J) , and the sets

N(x) form a base for S. . Next write
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for the small product of the family M ; i ts elements are all tuples

x = [x.) -CT , x. £ M. , whose suppor t
1s Is fc-L 1s 1s

suppCx) = \i £ I : x. # o}

is finite. K is given the weak componentwise order: x ̂  y means

x. S y. in M. for each i £ I . It is routine to verify that (K,^)

is a Boolean lattice, the meet, join, zero 0 and relative complementation

being componentwise. K has a one if and only if J is finite and there

exists 1 £ M. for each i £ J . We find
i

THEOREM 4.1. The Stone space ¥ of K is homeomorphio to the

topologioal free union of the Stone spaces 9.. of the Boolean lattices
is

M. .

By the theorem, we can express V itself as a topological free union,

writing

f = U 0. ,

the spaces 0. being pairwise disjoint, clopen in ¥ , with 0.

homeomorphic to fi. . In fact, for any prime ideal P of K write
1s

a.(P) = {a € M. : a = x. for some x £ P] .

Then

Qi = {P € Y : a^P) * Mj\ ,

and the required homeomorphism from 0. to ft. is a. .
Is 1s 1s

5. Representation of Boolean hypolattices

Throughout this section (X, s) denotes a Boolean hypolattice, that

is, a relatively distributive, relatively complemented hypolattice with

zero 0 .

X has at least one maximal sublattice, by Proposition 2.1. Let
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^e any nonempty family of maximal sublattices; none of these

can be trivial. We suppose M chosen and fixed, with M. # M. when

i + j ; but M need not contain every maximal sublattice, nor do we

assume yet that X = U M •

Since each M. contains 0 and is convex, if k, I € M. and
Is Is

k < y < I then the relative complement of y in [k, 1] lies in M. ;
Is

thus (A/-, -|#.) is a Boolean lattice.
t- z-

For each x d X and i i. I let

9..(x) = [0, x] n Mi ;

we have 8-(x) = M. if and only if there exists 1 € M. and x = 1 ; if
U is Is

there does not exist 1 € M. then 9-(x) is a proper ideal of Af. and

hence

= ff(tya)) = {p 6 ̂  : [0, x] n M .

is an open subset of SI - . We have a map into the topology on SI • ,

X. : X •+ S.

with the following properties:

5.1. (i) X.(0) = 0 ; X.(x) = 0 if and only if [0, x] n M. = {0}

(ii) X.(x) = fl. if and only if M. has a one and x is it.
Is Is Is

(iii) X. maps the elements of M. one-to-one onto the base sets of
Z- Is

h
(iv) x 5 y in X implies X.(x) c X.(j/) .

Z- ™""* Is

(v) If x A y exists in X then X.(x A y) = X.(x) n X.(t/) . If
Is Is Is

x v # exists in X then X .(x V t/) = X .(x) u X .(y) .
% Is %•

Write

= TT S. ;
ill V
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the elements of S are a l l families U = [U.) . ,T where U. i s open in

Q. . S i s given the weak componentwise order;

U £ v means U. c y. for a l l t € I" ,
"I- Z-

where on the right (but not on the left) c denotes set inclusion. Now

write

y(x) = (A.

THEOREM 5 . 2 . Viifo £7ze above notation, (S , c ) i s a complete

distributive lattice, the lattice operations being componentwise. The map

u : X •* S

is a hypolattice homomorphism, sending 0 to the zero of S . The map is

onto S only if X is a lattice with 1 . The map is one-to-one and

isotone when restricted to U M . If X = U U then p is a hypolattice

isomorphism of X onto a subhypolattice of the lattice (S, c) .

Proof. The homomorphism properties of p follow immediately from

5.1. Let x, y € U M and p(x) 5 \i(y) ; we have x € M. for some i € I

and then

[0, x] = [0, x] n Mi c [o, y] n AT.

so x € [0, t/] ; that is, I < J . Thus y is isotone on U hi . The

rest of the proof is straightforward. //

We remark that \i(X) may not be a convex subset of S .

The representation y depends of course upon the chosen family M of

maximal sublattices. We can always find a family which covers X ; for

example the family of all maximal sublattices, for if x € X then [0, x]

is contained in some maximal sublattice. Thus

COROLLARY 5.3. Every Boolean hypolattice is isomorphic to a subhypo-

lattice of a complete distributive lattice.

Now invoke the representation Theorem U.I: to every element

V = fy.) . ,T of S there corresponds an open set U a. [ll.) of the
1 t€i i J 1 I

topological free union, in fact the map
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v : (y;W^ u

where T is the Stone topology on f , is a lattice isomorphism from

(S, c) to (T, c) . Write 5 = V o u , so that, for all a: € X ,

5(ar) = _U a^lp € £h : [0, i l n W . ^ p } .

Considering only the case where U M = X , we get the main result.

THEOREM 5.4. Let {X, 5) be a Boolean hypolattice, and [M.) -M.)

any covering of X by maximal svblattices. Then there exists an

isomorphism

5 : X - T

from X onto a subhypolattice of the topology of the Stone space of the

small product K = ] \ M. .
ill x

We remark that y in Theorem 5.2 and £ in Theorem 5-1* necessarily

preserve complementation. Note also that they preserve de facto meets as

well as de jure meets.

If (X, S) is a Boolean lattice then we can take M to consist of

the singleton {X} , and then \i reduces to the Stone representation.

We have not made reference to prime ideals of the hypolattice X . It

is possible to define ideals in a hypolattice in several natural ways, and

then prime ideals. Unfortunately these definitions seem not to lead to

lemmas like the basic lemmas on which the Stone representation of Boolean

lattices is based. For example, one lacks results like the following:

(1) an ideal is prime if and only if it is maximal;

(2) the collection of all prime ideals is trivially ordered by

inclusion;

(3) given an ideal A and an element x not in A , there

exists a prime ideal containing A but not x .

For this reason our construction has resorted to sublattices which are

Boolean lattices.
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6. Mutuality and maximal mutual subsets

The relation of mutuality ((3) of §2) has some interesting properties.

Call a subset A of hypolattice (X, 5) mutual if x _- y for all

x, y € A . Every sublattice is mutual, but not every mutual subset need be

a sublattice. By Zorn's lemma any given mutual subset is contained in a

maximal mutual subset, which is proper when X is not a lattice. For any

A c X write

A" = {x 6 X : x — a for all a € A] when A t 0 , 0W = X .

Here A" may be empty. The map A i—• A" is a Galois connection, so

is a closure operator on P(X) . Subset A is mutual if and only if

A c A~ . For all A c X , J4~ is a convex subset of X and hence

(4W, <|-4W) is a hypolattice. If X has a zero 0 then 0 € 4" . There

is a superficial resemblance between a symmetry such as — and an

orthogonality relation j_ , but the latter has no mutual subsets other than

{o} , being antireflexive.

PROPOSITION 6.1. If A is a mutual subset of a hypolattice (X, s)

then

A c A"" c A"

and 4 W W is a mutual subset.

COROLLARY 6.2. If M is a maximal mutual subset then

M = M~~ = M~ .

Let A be a mutual subset. If there exists a sublattice L of

hypolattice X , with A c L , then there exists a smallest sublattice of

X containing A , which we denote by A . It is not required that A

be convex in X . In general there may exist no sublattice containing A ;

certainly there exists none if A is not mutual.

If M is a maximal mutual subset and if M exists then

M = AT" = AT = M

and M is a convex sublattice of X .

PROPOSITION 6.3. If the hypolattice (X, 5) is coherent, then A1

exists for every mutual subset A . Moreover, there exists a smallest
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convex sublattice containing A .

Proof. Since X is coherent and A is mutual, X contains elements

/\ x. , V x. for every finite family {x. : i € F\ of elements in
v iZF V %

A . Write

B = {t € X : A x. 5 t < V y.,F,G finite, x., w. €

B is the smallest convex sublattice containing A . //

THEOREM 6.4. In any coherent hypolattice (X, £) the maximal mutual

subsets are -precisely the maximal sublattices.

Proof. If M is a maximal mutual subset, then it is a sublattice, by

Proposition 6.3 and the preceding remark, and if L is any sublattice

containing M then L is mutual, so L = M ; thus M is a maximal

sublattice. Conversely if K is any maximal sublattice and K c A for a

mutual subset A then A exists by Proposition 6.3 and K = A = A ; so

K is maximal mutual. //
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