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CERTAIN CHARACTERIZATIONS OF VARIETIES OF BANDS
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1. Introduction and summary

The lattice of varieties of bands was constructed in [1] by providing a simple system
of invariants yielding a solution of the world problem for varieties of bands including a
new system of inequivalent identities for these varieties. References [3] and [5] contain
characterizations of varieties of bands determined by identities with up to three
variables in terms of Green’s relations and the functions figuring in a construction of a
general band. In this construction, the band is expressed as a semilattice of rectangular
bands and the multiplication is written in terms of functions among these rectangular
band components and transformation semigroups on the corresponding left zero and
right zero direct factors.

The present paper is essentially a continuation of [1]. We extend the above-
mentioned characterizations of varieties by means of Green’s relations and parameters
in the construction of bands to all varieties of bands. In addition, we characterize the
congruence on the lattice of varieties of bands induced by the left trace relation on the
corresponding fully invariant congruences.

Section 2 contains the terminology and notation and a few auxiliary results to be
used later. The needed material concerning invariants and identities, established in [1],
is gathered in Section 3 for easy reference. The purpose of Section 4 is establishing the
main characterization theorem for the varieties of bands of the form [G,=H,]. An
abbreviated version of the same type of analysis for the varieties [G,=1,] comprises
Section 5. One of the characterizations from these two sections is interpreted in Section
6 in terms of structure mappings on an arbitrary band. Left trace relation on the fully
invariant congruences on a free band is transferred to the lattice of varieties of bands in
Section 7 and studied in some detail.

In [1] we made a notational distinction between equality in the free semigroup and
equality in the free band. In the present paper we drop this distinction.

2. Preliminaries

We first record here the notation to be used throughout the paper.

Notation 2.1. We will consistently use the following symbolism.

B—an arbitrary band.
B'—a band B with an identity adjoined.
X-—a fixed countably infinite set. Elements of X are called variables.
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F = F(X)—the free semigroup on X. Elements of F(X) are called words. They are finite
strings of elements of X written as x,x,...x, where x,, x,,...,x,€X. The product
is concatenation.

F'—the identity added to F to obtain F! is denoted by . It is thought of as the
empty string.

F% = F2(X)—the free band on X.

c(w)—the content of we F is the set of variables occurring in w. By definition ¢(JJ) = .

# (w)—the number of elements in c¢(w), that is the number of distinct variables
occurring in w.

w—the dual of w is the word obtained from w by reversing the order of variables.
That is, if w=x,x,...x, with x{, X,,..., x,€ X, then w=x,x,_;...X,.

Let w=uxv where c(w)=c(ux) and c(w)# c(u). Then

s(w) =u—the longest left cut of w containing all but one of the variables of w. The
definition is to include s{x™) = .

o(w) = x—the last variable to occur in w in order from the left.

Note that c(w)=c(s(w)) U {o(w)}.

&(w) = a(w)—the last variable to occur in w in order from the right.

e(w) =s(w)—the longest right cut of w containing all but one of the variables of w.

[u,=v,]—the variety of bands determined by the family of identities u,=v,. The
defining identity for bands x*=x is consistently omitted.

P I =[x=xy]—the variety of left zero semigroups.

{/ >—the variety of bands generated by the class .«/ of bands.

u=yv=>p=g—implication of identities.

v, A—join and meet operations on a lattice.

[u, v]—the interval in a lattice L bounded by u, ve L.

& (#B)—the lattice of varieties of bands (see Figure 1).

py—the fully invariant congruence on F# determined by ¥ e £(4%). It is well known
that ¥"—p, is a lattice anti-isomorphism of .#(4) with the lattice of fully invariant
congruences on F2.

¥,—the variety of bands associated with the fully invariant congruence p on F(4%).
The map p—7, is the inverse of the map ¥"—p, discussed above.

0 is over # —if 8 is a congruence on a semigroup § and J¢ is a class of semigroups,
then 6 is over X if every idempotent O-class of S belongs to %"

Uo¥V —Let U,V € L(B). % ¥ is the Malcev product of % and ¥ defined by %-¥ =
{B|B a band for which there exists a congruence 8 on B such that § is over % and
B/6eV}.

p*—the congruence generated by the relation p.

p®—the largest congruence contained in the equivalence relation p.

n—for a band B written as a semilattice Y of rectangular bands B,, n:B—Y is the
natural homomorphism with ra=« if ae B,.

D—a reference to which a D is appended means the dual of that statement.

We now establish a few simple lemmas that will be used later.

Lemma 2.2. In any band B, we have
a#°b <> xa=xaxb,xb=xbxa for all xeB. mn
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x=y

FIGURE 1 The lattice of proper varieties of bands.
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Proof. By definition, we have
a#°b <> xa=xaxh, xb=xbxa for all xe B!

since .Z is a right congruence. Letting x=a in xa=xaxb yields a=ab and similarly
xb=xbxa gives b=ba for x=b. It then follows that (1) holds.

Corollary 2.3. In any band B, if a2b, then
a#°b <> xa=xaxb for all xeB.

Proof. Indeed, if a2b and xa=xaxb, then xa%xb and thus xb=(xb)(xa)(xb)=xbxa.
The assertion now follows from 2.2.

Corollary 24. For any u,ve F#, we have
LF o[u=v]=[xu=xuxv, xv=xvxu].
If c(u)=c(v), then L& o [u=v]=[xu=xuxv].
Proof. This follows directly from 2.2 and 2.3 and the fact that #° is over £Z.

Lemma 2.5. Let B be a band. Then B/¥° is a right regular band if and only if & is a
congruence.

Proof. Necessity. By [4, Proposition 2] we get that #* < #° and since the opposite
inclusion holds trivially, we obtain #*=2°, This means that % is a congruence.

Sufficiency. Since % is a congruence, it follows that #°=2*. By [4, Proposition 2],
B/£* is a right regular band and thus so is B/.Z°.

3. Invariants and identities

We first list for reference certain notation and results from [1] needed in the present
paper. In particular we give the definitions of the invariants and identities introduced
there. Next we establish some additional lemmas which give results on invariants and
identities to be used in Sections 4 and $.

Notation 3.1. Let t() = if te{h,i, hi}. Set

h,(w)—the first variable in w, called the head of w,
i,(w)=1i,s(w)a(w)—the variables of w written in order of first occurrence, called the
initial part of w,

f(w)=t,(w) for n=22 and te{h,i},

t(w) =t,s(W)o(w)i,_(w) for n=3 and te{h,i}.
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Notation 3.2. We define inductively three systems of words as follows:
G, =x,xy, H;=Xx,, I, =x3%,X,,

G,=x,G,_,, T,=G,x,T,., for Te{H,I} and n23.

Lemma 3.3 [1,3.2]. Let te{h,|n23}u{i,|n22}.

(i) ct=c.
(i) st=ts.
(iii) ot=o0.

Lemma 3.4 [1, 3.3(ii), 6.1() (ii), 7.2(), 7.3(i)]. Let u, v, weF.

>3if 1=i
() tu(w)=t,s(w)a(w)e(w)E, - 1e(w) {jfrz: 224 Z;tt= ;1

(ii) Let n22.
G,=H,=u=v ifandonly if hy(u)=h,(v).
G,=l,=u=v ifandonly if ifu)=i,v).
(i) If c(u)#c(v), hy(u)=hy(v) and Fy(u) # Fy(v), then
[u=v)=[axy=ayx] A [a=axa) =[G, =H,].
(iv) If c(u)#c(v), hy(u)=h,(v) and Fiy(u)=F(v), then
[u=v]=[G,=H,] v [G,=HA,]1=[G,x3G,=H,x;H,]=[a=axad).

Lemma 3.5. Let t, stand for h, if n=4 or i, if n23.

(i) et,=e.

(ii) et,=E,_ e
Proof. In view of 3.4(i), statement 3.3(i) can be used to easily establish both (i) and (ii).
Lemma 3.6. For weF, te{h,i} and n22, we have t2(w) =t (w).

Proof. The proof is by induction on #(w). The result is trivial if n=2 and in all
cases if #(w)=1. The definition of h; means that a separate calculation is necessary in
this case, although the basic method of proof is similar in all the cases n=3. Recall that

hy(w) = hys(w)a(w)h,(w). Replacing w by h,(w) gives
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h3(w) = hashy(w)ohs(w)hshy(w)

= his(w)a(w)h,(w) by 3.3(ii) and (iii) and the definition of h,
= hys(w)a(w)h,(w) by induction
= hy(w).

For the remaining cases (i,, n=3 and h,, n=4), the inductive hypothesis’is that t}(u)=
t,(u) for all n whenever # (u) < #(w). Then

t2(w) =t,st(w)ot,(wet,(w)f, - et,(w) by 3.4()

=t2s(w)o(w)e(w)E2_ ;e(w) ~ by 3.3and35
=t s(w)a(w)e(w),_ e(w) by induction
=tn(W).

Lemma 3.7. Let y;, 1<i<m be distinct variables. Then t(y,...Y)=Y1-..Vm Where
t=hfornz3 and t=i for n=2.

Proof. The proof is by induction on m. The result is trivial if m=1 and is also trivial
for i,. Now

hy(yy- - Ym) =h3(V1 - Y- )Ymbo (V1 - V)
=h3¥1 - Ym-1)VmVm by the definition of k,
=Y, ... Vm=1Vm by induction on m.
The inductive calculation for t=h,n=4 and t=i,n=23 is

1Yz Ym) =taV1 - Ym— 1)VmYV1En-1(V2 - - V) by 3.4(i)

=y e VmVi-Vm by induction
=YV
Lemma 3.8. In any band, we have
i(Gp)=il,)=G,  forn22,

h(G.)=h,(H,)=G, fornz3.
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Proof. Since G, is a product of distinct variables, the results about G, follow
immediately from 3.7. Also

(1) =iy(x2%1X2) = X%, =G,
ha(H 3) = hs(x3%1X2X3%3) =h3(X3% )X h5(x3% 1 XX 3%5)
=X3X;X3X, by 3.7 and the definition of h,
== X3xle = GJ.

The proof now proceeds by induction on n. Note that G,=x,G,_; =x,G,_x,_, for
n24 and that the statement also holds for n=3 if we set G, =x,. Let te {h,i}, Te {H, I}
and t=i if and only if T=1I. The inductive calculation (for n=3 if t=i, and n=4 for
t=h)is

tn( 7:!) = tn(annT:v- 1)

=tn(ann—2)xn— lx"f"_l('—j:._ 1) by 34(1)

=ann—2xn—lxnfn—l(T;l—l) by 3.7
=G,x,T,_, by induction
=T

4. Characterizations of varieties [G,=H,]

The main result here gives a three-fold characterization of the varieties [G,=H,] for
n22. The first of these is expressed in terms of identities satisfied by B/#° where B is a
band and #° is the greatest congruence on B contained in #. The second is a
statement concerning the satisfaction of a type of identity in terms of the invariant h,.
The third characterization is expressed by means of an implication which is then
interpreted in Section 6 in terms of a condition on structure mappings in the
construction of a general band.

The varieties [G,=H,] belong to the extreme left column of Figure 1, the lattice of
varieties of bands. The remaining part of that column, namely the varieties [G,=1,],
will be subjected to the same type of analysis in the next section. By duality, we may
obtain the analogous characterizations for the varieties [G,=H,] and [G,=1,]
comprising the extreme right-hand column of Figure 1, and by intersections the
remaining varieties of bands.

Besides the introductory simple proposition and the needed notation, the theorem is
preceded by two lemmas. It is followed by a comparison with an existing result which it
generalizes.

As a motivation for the form of the results in this section, we state the following
trivial result.
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Proposition 4.1. The following conditions on a band B are equivalent.
(i) B satisfies G,=H,.

(i) B/&° satisfies x=1y.

(iii} B satisfies w=h,(w) for any weF.

(iv) For any a,be B, we have a=ab.

This also represents the first step in the hierarchy of varieties satisfying various
identities of the form G,=H,. We now introduce notation which is related to the
symbolism used in [1] but is designed for easier manipulation.

Notation 4.2 Let G(x;)=G(x,)=x, and for n=3, inductively define

G(x3, X355 X)) =G (X2, X355 Xn)s

G(x3, X350, X)) =%, G (X3, X350 . s Xp_ ).

Note that G,=G(x,,X;,X3,...,X,).

Lemma 4.3 Every band satisfies the following implication for all n=3:

Xy ZMX3 2 " 2NX,,

G(x5 X3, X4y...,X,)=H,

x,Zx5 if nis even =
X, Rx4 if nis odd Glx3, X1, X4 -+ Xp) =Gy

Proof. The proof is by induction on n. For n=3 the hypotheses are nx,=nx; and
x,%x,. These give in particular that x; =x;x,x,x3 and x, =x,x,. Consequently

G(x3, X3) = X3X, =(X3XX,X3)X, = Hj,
G(x3, x1)=x,%; =(X3%,)x,=G3.

If n>3, we assume by the dual of the inductive hypothesis that G(x,, x3,...,x,_;)=
A,_, and G(x3,xy,...,%,_1)=G,_,. From the latter it follows that

G(x3, X153 X)) =%X,G (X3, X 15 ooy Xy 1) =XsGn_ 1 =G,

The hypotheses also imply that x,=x,G,_,x,. Therefore

G(X3, X3,y Xn) =X, G (X2, X350y Xy 1) = (%G1 X )H, -1 =G, x,H,_,=H,.

Lemma 4.4. Let u;, =G3x3x,, Uy =X,

= G,x, if n>3is odd
" \x,G, if n24 is even.
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(1) If n=3 is odd, then G(u,, us, Uy, ..., u)=H, and G(uy, uy, u,, ..., u,)=G,.
(ii) If n=4 is even, then G(ia,, s, iy, ..., 0,)=H, and G(ii,, 4,,1,,...,4,)=G,.

Proof. Note that 4.2. means that G(u,,...,u,)=G(i,,...,4,). The proof is by
induction on n. For n=3, we obtain

G(uy, uz) =uzu; =Gyx3x,=H,,
G(uy, uy) =uuy =G3x3x,x,=G3.

For the inductive step with n even,

Gliiy, i3, ..., 0,) =u,G(i1;, #s,...,0,_,)
=ua,H,_, by the dual of the inductive hypothesis
=G,x,H,-,=H,

Gliay, iy, - .., Uy) = 8,G(thy, By, ..., Uy y)
=u,G,_, by the dual of the inductive hypothesis
=G,x,G,.,=0G,

The inductive step for n odd is similar, relying again on the dual of the inductive
hypothesis.

We are finally ready for the first principal result of the paper.

Theorem 4.5. For n=3, the following conditions on a band B are equivalent.
(i) B satisfies G,=H,.
= i =3
(i) B/ZL° satisfies {é{:‘: :)Ic;"_l g :> 3
(iii) B satisfies w=h,(w) for any weF.
(iv) B satisfies the implication: if

X, 2AX3 2 2AX,, X, Fxy if niseven, x,&x; If nis odd, then
G(x3, X3, Xgs -, X)) =G(X3, X1, Xg5 ..., Xp).

Proof. (i) implies (ii). Let n=3. Since c(xya)=c(yxa), it is sufficient by 2.3 to show
that

z(xya) = z(xya)z(yxa) (1)
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holds in B. We have
hi(zxya)=hy(zxy)aa=hy(zxyazyxa)

and therefore by 3.4(ii), (1) holds in B.

Let n>3. Then ¢(G,_,)=c(H,_,). As above it is sufficient to show that x,G,_,=
x,G,-1x,H,_, holds in B. But this is just G,= H,,.

(ii) implies (i). Let n=3. Then xyaZyxa holds in B and in particular xya=xyayxa
holds in B. Set x=x;, y=x,X,, a=Xx,. Then B satisfies

X3X; X5 =X3X{X3XX5X3X3 =X3X(X,X3X5:G3=H3;.
If n>3, then since B/.#° satisfies G,_,=H,_, it follows that B in particular satisfies
ann—lxnﬁn—l=ann—l:Hn=Gm

as required.
(i) implies (iii). By 3.4 (ii), it is enough to show that h,(w)=h,h,(w) which is just 3.6.
(iii) implies (i). By 3.8 we have G,=h,(H,)=H,,.
(i) implies (iv). The hypotheses of (iv) are the same as those of 4.3. It therefore follows
from 4.3 and (i) that

G(XZ’ xl,...,x,,)=G,,=H,,=G(x2, X3,...,xn).

(iv) implies (i). The u; given in 4.4 satisfy the hypotheses of condition (iv).
Consequently

G,=G(uy, uy, Uy, ...,u) =Gy, U, Uy,...,u,)=H,.

We now discuss the contents of 4.5.

Comparison 4.6. For the case n=3, the above theorem is essentially the dual of [5,
11.3.8] which we reproduce below. In this sense, 4.5 may be viewed as a generalization
of the cited reference; for the case n=2, see 4.1.

Proposition [, 11.3.8]. The following conditions on a band S are equivalent.
(i) oM =c.

(1) £ is a left normal band congruence.

(iii) S is a right seminormal band: yxa= yayxa.

(iv) S satisfies every identity u=v with h(u)=h(v), r(u) ~r(v).

(v) S satisfies an identity u=v with h(u)=h(v), i(u) #i(v), r(u) ~ r(v).

The following table describes the comparison.

https://doi.org/10.1017/50013091500003424 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500003424

CERTAIN CHARACTERIZATIONS OF VARIETIES OF BANDS 31

[5, 11.3.8D] n=3 Comments
(i) 4.5(iv) in a different notation as explained in Section 6
(ii) 4.5(ii) in view of 2.5
(iii) 4.5(1)
(iv) 4.5(iii) see 4.8
v) [1, 7.1Gi1)]  see 4.9

Interpretation 4.7. In 4.5 for n=4,

(i) means that {B><[G,=H,],
(i) means that {(B/#°><[G,_,=H,_,] where the latter is in the extreme right-hand
column of Figure 1 immediately below [G,=H,].

The equivalence of (i) and (iii) means that [G,=H,] = ﬂF [w=h,(w)].

Proposition 4.8. The following are equivalent for any band B.

(i) w=hs(w) holds for all we F.
(i) u=v holds for all u,veF with h,(u)=h,(v) and u®v.

Proof. (i) implies (ii). Since u%v, we have s(u) =s(v) and o(u) = o(v). Therefore
h(u) = hys(u)o(u)h,(u)
= h35(v)a(v)hy(v) = h3(v).

If (i) holds, then u=h;(u) =h;(v)=v.
(ii) implies (i). The proof is by induction on # (w). For #(w)=1, the result is trivial.
For #(w)22,

hy(w) = hys(w)o(w)hy(w)
=s(w)a(w)h,(w) by induction
=w by (ii).
Observe that 4.8(ii) is a restatement of [S, 11.3.8(iv)] in the present notation.

Proposition 4.9. The following are equivalent for any band B.
(i) B satisfies an identity u=v with hy(u) = h,(v), [,(u) #1,(v), uZv.
(i) B satisfies an identity u=v with hiy(u) = h;(v), [,(u) #5(v).

Proof. (i) implies (ii). Since hi(u)=h,s(u)a(u)h,(u), it follows that if the conditions of
(i) hold, then so do the conditions of (ii).

(ii) implies (i). If B satisfies u=v as in (ii), then B satisfies u=uv and the conditions in
(ii) for u=v imply those of (i) for u=uw.

Remark that 4.9(i) is [5, 3.8(v)D] and 4.9(ii) is [1, 7.1(ii)] in the present notation.
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5. Characterizations of varieties [G,=1,]

The analysis performed in the preceding section on the varieties [G,=H,] can be
done also for the varieties [G,=1,]. In view of strong similarity of these analyses, we
restrict our attention to the differences and supply only the needed minimum of

explanations.

Lemma 5.1. Every band satisfies the following implication for nz3
AX, 2 AX3 2 2 X, G(x,, X3,...,x)=1,

x,x, if nis odd =

X &x, if nis even G(xy,X3,...,Xx,) =G,

Proof. The proof is by induction on n. For n=3 the hypotheses are nx,=nx; and
x,#x,. These give in particular that x;=x;x,x,X3, X, =X,Xx;Xx, and x, =x,x,. Hence

G(x3, x3) = X3x3 =(X3XX,X3) (X%, %) =135,
G(x1, x3) =x3x; =Xx3(x;X;) = G3.

The inductive argument is similar to the one in the proof of 4.3.

Lemma 5.2. Let Ul = Gz, Uy =72 (=12),

{G,,x,, if n23is odd
v,= _
x,G, if n=4is even.

(1) If n=3 is odd, then G(vy,vs,...,0,)=1, and G(v,,vs,...,0,)=G,,.
(1) If n=4is even, then G(v,,0s,...,0,)=1I, and G(v,v;,...,0,)=G,.

Proof. Compare the proof of 4.4. In fact,
G(v, 03) =030, =Gyx;31, =13,
G(vy,v3) =030, = G3x3G, =G

The inductive part of the proof is similar to the corresponding proof in 4.4.

The desired characterization follows.
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Theorem 5.3. For n22, the following conditions on a band B are equivalent.
(i) B satisfies G,=1,.
Xy=yx if n=2

3 o .
(ii) B/Z° satisfies {Gn—1=1_n—1 if n>2.

(iii) B satisfies w=i,(w) for any we F.
(iv) B satisfies the implication: if

Xy ZMX3 2" X, X, BX, if niseven, x,¥x, ifnisodd,
then
X=X, if n=2

G(X3y X35 X455 X)) =G(Xy, X3, X4y ..., X,)  if n23.

Proof. The proof is similar to the proof of 4.5. We indicate the changes.

(i) implies (ii). For n=2 it is sufficient to show that
22Xy =2ZXYZyX (1)
holds in B. Now

i(zxy)=zxy=i,(zxyzyx)

and therefore by 3.4(ii), (1) holds in B.

For n> 2 the proof is similar to 4.5.

(ii) implies (i). Let n=2. Then xyZyx holds in B and in particular xy=xyyx=xyx
holds in B. This is just G,=1I, with the obvious renaming of the variables. For n>?2
compare with 4.5.

(i) implies (iv) Compare with 4.5 and use 5.1.
(iv) implies (i) Compare with 4.5 and use 5.2.

As in the preceding section, a comparison with the earlier results as well as an
interpretation can be given in this case. The comparison is with [§, 11.3.12D] for n=2
and [5, 11.3.5D] for n=3. We omit the details.

6. Structure mappings

Condition (iv) in 4.5 admits an interpretation in terms of structure mappings [,]
figuring in the construction of an arbitrary band to be reproduced below. This structure
theorem is a specialization of the structure theorem for general completely regular
semigroups in [6] and can be easily deduced from [6, Corollary].
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Theorem 6.1. Let Y be a semilattice. For every a€Y, let B,=L,x R, where L, is a left
zero semigroup and R, is a right zero semigroup. Assume that B,nBg=( if a#p. For
each a€Y, fix an element in L,N R, and denote it by a. Let

(G OiByx Lg—=Lg, [,]:Rgx B,>Ry,

be functions defined wherever a2 . Assume that for all a=(i, A)€ B, and b=(j, u) € By, the
following conditions (i) and (ii) hold.

(1) If (k,v)eB,, then {a,k)=i and [v,a] =A.
On B= ) B, define a multiplication by

aey

aob=(<a,<b,apD, [[B, al, b]).
(i) If y<ap and (k,v)€ B,, then |
{a,{b,k»=Laob, k), [[v,a],b]l=[v,ao-b].
Then B is a band. Conversely, every band is isomorphic to one so constructed.

We will need some more notation.

Notation 6.2. Let everything be as in 6.1. For (i, y) e B, let
A =i, p(i, p)=p.
For ye Y and q;eB, i=1,2,..., n, inductively define
[y, a4, a,, ...,a,,]=[[y,a1l, Ayy.eeylyoy],a,]
Lemma 6.3. With the notation as in 6.2, we have
[y.as,....a,]=[y0a,...a,]).

Proof. The proof is by induction on n. For n=1 the result is trivial and for n=2 it is
just (ii) of 6.1. For n=3,

[}’, Aysenny an] =[[Y, al: KRR an—l]’ an]
=[[v.a,...a,-:],a,] by induction
=[y,a,...a,] by case n=2.

The hypotheses of condition (iv) in 4.5, in particular that nx, <nx; for i <n, imply that
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G(x3 X350y X)) =X G(X 5, X35 -0y Xp— 1)
= (AXps [9Xns Glx3, X35+, Xy - )]
For n=3 therefore G(x,, x3)=G(x;, x,) if and only if [px;, x,]=[px,, x,]. This is the
same statement as (i) cited in 4.6 in a different notation.

For n>3, G(x,, X3, X4, ..., X,) =G(x5, Xy, X45- - -, X,,) if and only if

[pxm G(xb X35 Xg9005Xp— l)] = [pxm G(xb Xys Xgs ooy Xy 1)] (1)

It is clear from its definition that G is just the product of distinct variables each
occurring once. In fact

XpXy_2+..X3X2X4...X,—, fornodd
G(xy, X35, X,)=
XpXp_2-..X4X2X5...X,—, for neven.
Therefore by 6.3, (1) holds if and only if (for example for n even),
[0X0s X 25 Xnmts o5 Xy X25 X35 X5y oo ey X 1 1= L0Xn— 15 Xpm 25+ -9 X4 X25X 15 X554 » Xn— 1]

and it is this equality as an iteration of the basic structure map [,] which can be
interpreted as a restriction on structure mappings on the band B in [G,=H,]. The
equality holds under the hypotheses of (iv) which can be visualized in the following way:

X, &£ ifniseven
x,Px; where =

X4 #® if nis odd.

x'l

In conjunction with the general structure Theorem 6.1 for bands, this provides a
construction of bands in the variety [G,=H,]. The same type of analysis is valid for
(G,=1,].

7. Left trace relation

We express here the relation of having the same left trace for fully invariant
congruences on FZ in terms of the Malcev product £Z o¥ and of the classes of left
fundamental members of the corresponding varieties. Also, we describe the bounds of
the intervals of this congruence. The main result is preceded by a number of auxiliary
ones providing some additional information. For a full discussion of the following
notation and terminology, see [2].
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Notation 7.1. In this section, we will use the following concepts and symbolism.

B is left fundamental if £° is the equality relation on B.

LF—the class of all left fundamental bands.

<,—the relation on B defined by: e<,fif fe=e.

p v F—the join of the congruence p with .# in the lattice of equivalence relations on B.
Itr p=(p v £)°—the left trace of the congruence p.

& =[xy =yx]—the variety of semilattices.

The following simple result will be used repeatedly.
Lemma 7.2. For any ¥ € £(%),
LX oV ={BecB|B/L°cV}.

Proof. Let Be % o7 so that there exists a congruence p on B over £Z and such
that B/pe¥ . But then p=.#° and thus B/#° is a homomorphic image of B/p and
consequently B/#%e¥ . Conversely, if B/4%c ¥, then £° being over L% it follows
that Be Z o ¥ .

Lemma 7.3. The following statements are true.
() LZo[x=yl=[G,=H,1=2LZ[G,=H,].
(i) LZo[G,=H,]=[a=axa]=LZ o[a=axa].
(ill) LZo[xy=yx]=[G,=1,]1=FZ[G,=1,].
(iv) LZo[xya=yxal=[Gy=H3]=L%o[G;=H,].
(V) £Zo[G,-1=1,_,]=[G,=1,]=%Z[G,=1,] forn23.
i) %o[G,_,=H,.,1=[G,=H,]=%2[G,=H,] forn=4.

Proof. Each item is of the form &/ =#=%. The equality &/ =% follows from 7.2
using the appropriate result in 4.1, 4.5 and 5.3. The inclusion Z<% is trivial. The
inclusion € = 2 will follow by 2.4 if we find, for each of the varieties [u=v], an equation
of the form tu=tutv which implies u=v.

(i) tx=txtxy=>x=xy by 3.4(iii).

(ii) ta=tataxa=a=axa by 3.4(iv).

(ii))—(vi) Now x,G,=G,, x,H,=H,, x,1,=1,. We prove (v); the others are similar.
Indeed, x,G,=x,G,x,H, is the identity G,= H, and the desired implication is trivial.

Observe that the above lemma gives a precise description of the Malcev product
LZ oV for any ¥V € L(B).

Lemma 7.4. Let 8 be a relation on a semigroup S. If 6 is invariant under all
endomorphisms of S, then 8* is a fully invariant congruence on 8.
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Proof. This follows by a straightforward argument from the construction of the
congruence 6*.

Lemma 75. For v € £(%), we have
(pyrN E)*=pez.v.

Proof. First note that <, is a relation on F#% which is invariant under all
endomorphisms of F#. For any fully invariant congruence p on F%, we then get that
8=pn <, is invariant under all endomorphisms and hence by 7.4, 8* is a fully invariant
congruence on F#. We will use this in the remainder of the proof.

The four cases ¥ ¢ ¥  are handled separately and then the result established for
& <¥. By 7.3(1) and (i) and monotonicity for ¥ &¥" we need only consider the two
cases (i) ¥ =[x=y] and (ii) ¥ = [Gz— H,].

(i) Let 6=p-,,n <,. Then 6==<,={(p, q)|p=qp}. In particular h,(p)=h,(q) for all
(p, @) €0. 1t follows from 3.4(ii) that GZ=H2=>p=q for all (p,q)€6. It is easy to check
that (G,, H,) € 6. Together these two results show that 6*=pg,-y,). That 0*=p ez -
then follows from 7.3(i).

(ii) The proof is similar to (i). Indeed, let

6= PiG,= Hzln {(Pa q)lhz(P 2(q)’P=‘1P}-

Then by 3.4(iv), a=axa=>p=gq for all (p,q)ef and it is easy to check that (a, axa)ed.
Therefore, using 7.3(ii), we get

9* =p[a=axa] = p.?’.‘!’-[n=axa]'

Now assume ¥ <¥ =[u=v]. A proof along the lines of (i) and (ii) above can be
given using 7.3 in the several cases. We prefer a more general approach. Since =¥
we have ¢(u)=c(v) and c(p)=c(q) ror all (p, q) € py. It follows from [1, 2.5D] that xu=
xuxv=>p=pq. If (p,q)e <,, then p=gp. These two results, together with the fact that
c(p)=c(qg), give

XU =XUXv=>p=qppq=g.

By 2.4 therefore peg.42(py N £,)*. It is obvious that (xu, xuxv) € py N £, which gives
the other inclusion.

Lemma 7.6. For any band B, B/¥° is left fundamental.

Proof. Let B=B/%° and let a,be B be such that 3.#°b. Then xa.¥xb for all xe B!
and thus xa=xaxb and xb=xbxa for all xe B'. It follows that

xa¥%xaxb, xb¥°xbxa  (xeB!)
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and therefore

xa¥xaxb, xb¥xbxa (xe BY).
Consequently

xa=xaxb, xb=xbxa (xeB')
so that a.#°b and thus a=b. Therefore B/#° is left fundamental.

Lemma 7.7. Let %,7V € £(A).
(1) LAV NLTF Y=L XV
(i) LLoU=LX oV =>UNLF V.
Proof. (i) To establish the non-trivial inclusion let Be £Z o¥ . Then B/¥°c¥ by
72 and B/¥°ce¥% by 7.6. Therefore B/¥°e{¥ "¥F). Finally by 7.2 again

BeLPZ oV NLF)>.
(ii) Let BeUnLF.Then Be LZ o U =% o¥ and hence B=B/%°e¥ by 7.2.

We will need the following general result.

Lemma 7.8 [2,4.7D and 4.12D]. The relation Itr on the lattice L of congruences on B
defined by

Altrpesltr A=ltrp
is a complete congruence on L. The class of Itr containing p is the interval
[en=)%(p v )1

If we take F2, the free band on a countably infinite set of generators, for B in 7.8,
then the left trace restricted to the lattice of fully invariant congruences on F#% induces a
relation on #(#). This relation may again be called the left trace relation and denoted
by Itr. We thus arrive at the main result of this section.

Theorem 7.9. For %,V € ¥(%), we have

UtV SUNLF =V NLF SLEU=LFV .

For any ¥ € (%), the ltr-class containing ¥~ equals the interval [{V "L F >, L% V"]

Proof. It follows from 7.5 and 7.8 that #£Z 0¥ is the upper bound of the Itr-class
containing ¥". By 7.7(i), we have that (¥ nZ% ) Itr ¥ and by 7.7(ii) that (¥ " L% is
the lower bound of the ltr-class containing ¥". This proves the assertion concerning the

interval. If #NLF =V NnLF, then (UnLF>=(V"n"nFF)> and thus %ltrv.
Conversely, if Zltr ¥", then LZ o U =FZ o¥" which by 7.7(ii) implies that L F =
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V' n¥Z. This establishes the first equivalence in the statement of the theorem; the
second follows from the statements already established.

As a consequence of the theorem, we obtain the precise form of the ltr-classes on
F(%B) as follows.

Corollary 7.10. The following intervals constitute the complete set of left trace classes
on L(%).
() [[x=y).[G,=H,1].
(i) [[G,=H,],[a=axa]].
(i) [[xy=yx],[G,=1,]].
(iv) [[xya=yxa),[G3=H,]].

(V) [[Qn—l=§|—l]’[cn=1n]] forn;3.
(VI) [[Gn—l=Hn—l]:[Gn=Hn]] for ng4

Proof. This follows directly from 7.3 and 7.9.
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