
4 
Strings on circles and T -duality 

In this chapter we shall study the spectrum of strings propagating in a 
spacetime that has a compact direction. The theory has all of the prop­
erties we might expect from the knowledge that at low energy we are 
placing gravity and field theory on a compact space. Indeed, as the com­
pact direction becomes small, the parts of the spectrum resulting from 
momentum in that direction become heavy, and hence less important, 
but there is much more. The spectrum has additional sectors coming 
from the fact that closed strings can wind around the compact direction, 
contributing states whose mass is proportional to the radius. Thus, they 
become light as the circle shrinks. This will lead us to T -duality, relat­
ing a string propagating on a large circle to a string propagating on a 
small circle 14 . This is just the first of the remarkable symmetries relating 
two string theories in different situations that we shall encounter here. 
It is a crucial consequence of the fact that strings are extended objects. 
Studying its consequences for open strings will lead us to D-branes, since 
T-duality will relate the Neumann boundary conditions we have already 
encountered to Dirichlet ones9 , 11, corresponding to open strings ending 
on special hypersurfaces in spacetime. 

4.1 Fields and strings on a circle 

Let us remind ourselves of what happens in field theory, for the case of 
placing gravity on a spacetime with a compact direction. This will help 
us appreciate the extra features encountered in the case of strings, and 
will also prepare for remarks to be made in a variety of cases much later. 
We start with the idea of Kaluza, later refined by Klein. 
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4.1 Fields and strings on a circle 95 

4.1.1 The Kaluza-Klein reduction 

Imagine that we are in five dimensions, with metric components G M N, 

M, N = 0, ... ,4, and that the spacetime is actually of topology JPi.4 x 8 1 , 

and so has one compact direction. So we will have the usual four dimen­
sional coordinates on JPi.4, (x{l, fL = 0, ... ,3) and a periodic coordinate, 
x4 = x4 + 2TiR, where R is the radius of the circle. 

Now as we have seen before, the five dimensional coordinate transfor­
mation x M ----+ x/M = x M + EM (x) is an invariance of our five dimensional 
theory, under which 

(4.1 ) 

The metric has the natural decomposition into G~~J, Gi~, and G~~ , where 
the superscript is necessary to distinguish similar-looking quantities in 
four dimensions, as we shall see. 

Let us consider the class of transformations E4(X{l), E{l = 0, which cor­
responds to an x{l-dependent isometry (rotation) of the circle. Then G~5J 
and Gi~ are invariant, and 

(4.2) 

However, from the four dimensional point of view, Gi~ is a scalar, G~5J is 
proportional to the metric, and G~~ is a vector, proportional to what we 
will call A{l' and so equation (4.2) is simply a U(l) gauge transformation: 
A{l ----+ A{l - o{lA (x). So the U (1) of electromagnetism can be thought of 
as resulting from compactifying gravity, the gauge field being an internal 
component of the metric. The idea of using this, as a first attempt at 
unifying gravity with electromagnetism, was that R is small enough that 
the world would be effectively four dimensional on larger scales, so an 
observer would have to work hard to see it. On distance scales much 
longer than that set by R, physical quantities in the theory would be 
effectively x4-independent. 

Let us be a bit more precise. Explicitly, we can write the most general 
metric consistent with the translation invariance in x4 as 

and we write G44 = e2rP . The five dimensional Ricci scalar decomposes as 

( 4.4) 
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96 4 Strings on circles and T-duality 

where F/1V = aMAI/ - al/Aw Notice for future reference that the lower di­
mensional metric components in the 0, 1,2,3 directions are a modification 
of the higher dimensional metric components: 

e (4) - e(5) - 2¢A A 
MI/ - MI/ e M 1/ , 

which is an important observation for later. So, suppressing the x4 de­
pendence of the fields, we get 

S = 1 !(-e )1/2 R(5)d5x 
16'ITeN (5) 

(5) 

= 1 !(-e )1/2 (R(4) _ '.ia ~aM~ _ le3¢ F FMI/) d4x 
16 e N (4) 2 M'P 'P 4 MI/ , 

'IT (4) 

where we have defined G~~ = e¢e~~ and used equation (2.110). Now we 
have a relation between the five dimensional and four dimensional Newton 
constants: 

1 
eN' 

( 4) 

and the gauge coupling is set by cP and Newton's constant. 

(4.5) 

Let us be more careful about following how the x4-independence of the 
theory arises. Since momentum in x4 is quantised as P4 = n/ R, any scalar 
(or component of a field) in D = 5 (which obeys aMaMcP = 0) can be 
expanded: 

cP(xM) = L cPn(xM)einx4/R, (4.6) 
nEZ 

giving 

(4.7) 

and so we see that the cPn appear in four dimensions as a family of scalars 
of mass m = n/ R, and U(l) charge n. We get a tower of states which 
becomes extremely heavy for very small R, and are therefore hard to 
excite. We shall see this sort of spectrum arise in the closed string theory 
as well (since it contains gravity at low energy), but accompanied by new 
features. 

4.1.2 Closed strings on a circle 

The mode expansion (2.84) for the closed string theory can be written as: 

x M iP fit fit XM(z z) = - + - - i -(oP + (iM)T + -(oP - (iM)(J + oscillators. 
, 22 2 00 2 00 

(4.8) 

https://doi.org/10.1017/9781009401371.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371.005


4.1 Fields and strings on a circle 97 

We have already identified the spacetime momentum of the string: 

PIL = _l_(o:IL + (jP). 
V20:' 0 0 

( 4.9) 

If we run around the string, i.e. take (J" ----+ (J" + 27T, the oscillator terms are 
periodic and we have 

(4.10) 

So far, we have studied the situation of non-compact spatial directions 
for which the embedding function XIL(z, z) is single-valued, and therefore 
the above change must be zero, giving 

(4.11) 

Indeed, momentum plL takes a continuum of values reflecting the fact that 
the direction XIL is non-compact. 

Let us consider the case that we have a compact direction, say X 25 , of 
radius R. Our direction X 25 therefore has period 27T R. The momentum 
p25 now takes the discrete values n/ R, for n E Z. Now, under (J" ;v (J" + 21T, 
X25(z, z) is not single valued, and can change by 27TWR, for W E Z. Solving 
the two resulting equations gives: 

and so we have: 

25 - 25 2Rn (d2' 
0:0 + 0:0 = V 2: 
",25 _ ;;,25 _ uo uo- (2wR V-;;; 

0:65 (n + WR) (d == PL (d 
R 0:' V2: V2: 

a65 = (~ - :~)~ ==PR~' 

(4.12) 

(4.13) 

We can use this to compute the formula for the mass spectrum in 
the remaining uncompactified 24+ 1 dimensions, using the fact that 
M2 = -PlLpIL, where now fL = 0, ... ,24. 

2 4 
M2 = _pILplL = 0:' (0:65)2 + 0:' (N - 1) 

--;(a65)2 + ~(N - 1), 
0: 0: 

(4.14) 
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98 4 Strings on circles and T-duality 

where N, f.r denote the total levels on the left- and right-moving sides, as 
before. These equations follow from the left and right La, La constraints. 
Recall that the sum and difference of these give the Hamiltonian and the 
level-matching formulae. Here, they are modified, and a quick computa­
tion gives: 

2 n 2 w2 R2 2 -
M =-+-+-(N+N-2) 

R2 a'2 ex' 
nw+N -N= O. (4.15) 

The key features here are that there are terms in addition to the usual 
oscillator contributions. In the mass formula, there is a term giving the 
familiar contribution of the Kaluza-Klein tower of momentum states for 
the string (see section 4.1.1), and a new term from the tower of winding 
states. This latter term is a very stringy phenomenon. Notice that the 
level matching term now also allows a mismatch between the number of 
left and right oscillators excited, in the presence of discrete winding and 
momenta. 

In fact, notice that we can get our usual massless Kaluza-Klein states* 
by taking 

n = w = 0; N= N= 1, (4.16) 

exciting an oscillator in the compact direction. There are two ways of 
doing this, either on the left or the right, and so there are two U (1) s 
following from the fact that there is an internal component of the metric 
and also of the antisymmetric tensor field. We can choose to identify the 
two gauge fields of this U (1) x U (1) as follows: 

We have written these states out explicitly, together with the correspond­
ing spacetime fields, and the vertex operators (at zero momentum), below. 

field state operator 

G/1V (O:~la~l + O:~la~l)IO; k; aXJLaxV + aXJLaxV 

BJLv (o:JL aV - o:V aJL ) 10· k; -1 -1 -1 -1 , aXJL[}xv - aXJL[}xv 

AJL(R) o:JL a 25 10· k; aXJL[}x25 
-1 -1 , 

AJL(L) aJL 0: 25 10· k; ax25 [}xJL -1 -1 , 

¢ == ~ log G25,25 0: 25 a 25 10· k; ax25 [}x 25 -1 -1 , 

* We shall sometimes refer to Kaluza-Klein states as 'momentum' states, to distinguish 
them from 'winding' states, in what follows. 
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4.2 T-duality for closed strings 99 

So we have these 25-dimensional massless states which are basically 
the components of the graviton and antisymmetric tensor fields in 26 
dimensions, now relabelled. (There is also of course the dilaton <P, which 
we have not listed.) There is a pair of gauge fields giving a U(l)LxU(l)R 
gauge symmetry, and in addition a massless scalar field ¢. Actually, ¢ 
is a massless scalar which can have any background vacuum expectation 
value (vev), which in fact sets the radius of the circle. This is because the 
square root of the metric component G25 .25 is indeed the measure of the 
radius of the X 25 direction. . 

4.2 T-duality for closed strings 

Let us now study the generic behaviour of the spectrum (4.15) for different 
values of R. For larger and larger R, momentum states become lighter, 
and therefore it is less costly to excite them in the spectrum. At the same 
time, winding states become heavier, and are more costly. For smaller 
and smaller R, the reverse is true, and it is gets cheaper to excite winding 
states while it is momentum states which become more costly. 

We can take this further: as R ----+ 00, all of the winding states, i.e. 
states with w i- 0, become infinitely massive, while the w = ° states with 
all values of n go over to a continuum. This fits with what we expect 
intuitively, and we recover the fully uncompactified result. 

Consider instead the case R ----+ 0, where all of the momentum states, 
i.e. states with n i- 0, become infinitely massive. If we were studying field 
theory we would stop here, as this would be all that would happen - the 
surviving fields would simply be independent of the compact coordinate, 
and so we have performed a dimension reduction. In closed string theory 
things are quite different: the pure winding states (i.e. n = 0, w i- 0, 
states) form a continuum as R ----+ 0, following from our observation that 
it is very cheap to wind around the small circle. Therefore, in the R ----+ ° 
limit, an effective uncompactified dimension actually reappears! 

Notice that the formula (4.15) for the spectrum is invariant under the 
exchange 

n----+w and R ----+ R' == (x' / R. ( 4.17) 

The string theory compactified on a circle of radius R' (with momenta 
and windings exchanged) is the 'T-dual' theory14, and the process of going 
from one theory to the other will be referred to as 'T -dualising'. 

The exchange takes (see (equation 4.13)) 

(4.18) 

The dual theories are identical in the fully interacting case as well (after a 
shift of the coupling to be discussed shortly) 15. Simply rewrite the radius 
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100 4 Strings on circles and T-duality 

R theory by performing the exchange 

X25(z, z) = X 25 (z) + X 25 (z) ------+ X,25(z, z) = X 25 (z) - X 25 (z). (4.19) 

The energy-momentum tensor and other basic properties of the conformal 
field theory are invariant under this rewriting, and so are therefore all of 
the correlation functions representing scattering amplitudes, etc. The only 
change, as follows from equation (4.18), is that the zero mode spectrum 
in the new variable is that of the ex' / R theory. 

So these theories are physically identical. T-duality, relating the Rand 
ex' / R theories, is an exact symmetry of perturbative closed string theory. 
Shortly, we shall see that it is non-perturbatively exact as well. 

N.B. The transformation (4.19) can be regarded as a spacetime parity 
transformation acting only on the right-moving (in the world sheet 
sense) degrees of freedom. We shall put this picture to good use in 
what is to come. 

4.3 A special radius: enhanced gauge symmetry 

Given the relation we deduced between the spectra of strings on radii R 
and a' / R, it is clear that there ought to be something interesting about 
the theory at the radius R = Vd. The theory should be self-dual, and 
this radius is the 'self-dual radius'. There is something else special about 
this theory besides just self-duality. 

At this radius we have, using (4.13), 

25 (n + w) 
aD = J2 ; 

and so from the left and right we have: 

(n - w) 

J2 

2 2 2 4 M = _pILp = -(n + w) + -(N - 1) 
IL a' a' 

2 2 4-
= -(n - w) + -(N - 1). 

a' a' 
So if we look at the massless spectrum, we have the conditions: 

(n + w) 2 + 4N = 4; (n - w) 2 + 4N = 4. 

( 4.20) 

( 4.21) 

( 4.22) 

As solutions, we have the cases n = w = 0 with N = 1 and N = 1 from 
before. These are include the vectors of the U(l) x U(l) gauge symmetry 
of the compactified theory. 
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4.3 A special radius 101 

Now, however, we see that we have more solutions. In particular: 

n = -w = ±1, N = 1, N = 0; n = w = ±1, N = 0, N = 1. 

( 4.23) 

The cases where the excited oscillators are in the non-compact direction 
yield two pairs of massless vector fields. In fact, the first pair go with 
the left U(l) to make an SU(2), while the second pair go with the right 
U(l) to make another SU(2). Indeed, they have the correct ±1 charges 
under the Kaluza-Klein U(l)s in order to be the components of the 
W-bosons for the SU(2)L x SU(2)R 'enhanced gauge symmetries'. The 
term is appropriate since there is an extra gauge symmetry at this special 
radius, given that new massless vectors appear there. 

When the oscillators are in the compact direction, we get two pairs of 
massless bosons. These go with the massless scalar ¢ to fill out the mass­
less adjoint Higgs field for each SU(2). These are the scalars whose vevs 
give the W-bosons their masses when we are away from the special radius. 

In fact, this special property of the string theory is succinctly visible at 
all mass levels, by looking at the partition function (4.30). At the self-dual 
radius, it can be rewritten as a sum of squares of 'characters' of the su(2) 
affine Lie algrebra: 

(4.24) 

where 
( 4.25) 

n n 

It is amusing to expand these out (after putting in the other factors of 
(rrf!) -1 from the uncompactified directions) and find the massless states 
we discussed explicitly above. 

It does not matter if an affine Lie algebra has not been encountered 
before by the reader. We can take this as an illustrative example, arising in 
a natural and instructive way. See insert 4.1 for further discussion 12. In the 
language of two dimensional conformal field theory, there are additional 
left- and right-moving currents (i.e. fields with weights (1,0) and (0,1)) 
present. We can construct them as vertex operators by exponentiating 
some of the existing fields. The full set of vertex operators of the SU(2)L x 
SU(2)R spacetime gauge symmetry: 

SU(2)L: 8X'"[)X25 (z), 8X'" exp(±2iX25 (z)/Vd) 

SU(2)R: [)X'"8X 25 (z), [)X'"exp(±2iX25 (z)/Vd), ( 4.26) 

corresponding to the massless vectors we constructed by hand above. 
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102 4 Strings on circles and T-duality 

Insert 4.1. Affine Lie algebras 

The key structure of an affine Lie algebra is just what we have seen 
arise naturally in this self-duality example. In addition to all of the 
nice structures that the conformal field theory has - most pertinently, 
the Virasoro algebra - there is a family of unit weight operators, 
often constructed as vertex operators as we saw in equation (4.26), 
which form the Lie algebra of some group G. They are unit weight as 
measured either from the left or the right, and so we can have such 
structures on either side. Let us focus on the left. Then, as (1,0) 
operators, Ja(z), (a is a label) we have: 

( 4.27) 

where 

( 4.28) 

and 
( 4.29) 

where it should be noticed that the zero modes of these currents 
form a Lie algebra, with structure constants jabc ' The constants dab 

define the inner product between the generators (ta , tb) = dab. Since 
in bosonic string theory a mode with index -1 creates a state that 
is massless in spacetime, J~l can be placed either on the left with 
0:~1 on the right (or vice versa) to give a state J~l 0:~110) which is 
a massless vector Alta in the adjoint of G, for which the low energy 
physics must be Yang-Mills theory. 

The full algebra is called an 'affine Lie algebra', or a 'current 
algebra', and sometimes a 'Kac-Moody' algebra275 . In a standard 
normalisation, k is an integer and is called the 'level' of the affinisa­
tion. In the case that we first see this sort of structure, the string at 
a self-dual radius, the level is 1. The currents in this case are: 

J3(Z) = ia/-1/2azX25(z), 

J1(z) = : cos(2a/- 1/ 2 X 25 (z)):, J2(z) =: sin(2a/-1/ 2 X 25 (z)) : 

which satisfy the algebra in (4.29) with r bc = Eabc , k = 1, and 
dab = ~8ab, as appropriate to the fundamental representation. 
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4.4 The circle partition function 103 

The vertex operator for the change of radius, 8X 25 [JX 25 , correspond­
ing to the field ¢, transforms as a (3,3) under 5U(2)L x 5U(2)R, and 
therefore a rotation by 7T in one of the 5U(2)s transforms it into minus 
itself. The transformation R ----+ ex' / R is therefore the £::2 Weyl subgroup 
of the 5U(2) x 5U(2). Since T-duality is part of the spacetime gauge 
theory, this is a clue that it is an exact symmetry of the closed string 
theory, if we assume that non-perturbative effects preserve the spacetime 
gauge symmetry. We shall see that this assumption seems to fit with non­
perturbative discoveries to be described later. 

4.4 The circle partition function 

It is useful to consider the partition function of the theory on the circle. 
This is a computation as simple as the one we did for the uncompactified 
theory earlier, since we have done the hard work in working out Lo and 
Lo for the circle compactification. Each non-compact direction will con­
tribute a factor of (rriJ)-l, as before, and the non-trivial part of the final 
T-integrand, coming from the compact X 25 direction is: 

I '\"' ex' p2 ex' p2 
Z(q, R) = (TJrj)- ~ q4 Lij4 R, ( 4.30) 

n,w 

where PL,R are given in (4.13). Our partition function IS manifestly 
T-dual, and is in fact also modular invariant. Under T, it picks us a 
phase exp ( 7Ti (p[ - P~)), which is again unity, as follows from the second 
line in (4.15): p[ - P~ = 2nw. Under 5, the role of the time and space 
translations as we move on the torus are exchanged, and this in fact ex­
changes the sums over momentum and winding. T-duality ensures that 
the 5-transformation properties of the exponential parts involving PL,R 
are correct, while the rest is 5 invariant as we have already discussed. 

It is a useful exercise to expand this partition function out, after com­
bining it with the factors from the other non-compact dimensions first, 
to see that at each level the mass (and level matching) formulae (4.15) 
which we derived explicitly is recovered. 

In fact, the modular invariance of this circle partition function is part 
of a very important larger story. The left and right momenta PL,R are 
components of a special two dimensional lattice, rl,l. There are two basis 
vectors k = (l/R,l/R) and k = (R, -R). We make the lattice with 
arbitrary integer combinations of these, nk + wk, whose components are 
(PL,PR). (d. equation (~.13)). If we define the dotApr~ducts between our 
basis vectors to be k . k = 2 and k . k = 0 = k . k, our lattice then 
has a Lorentzian signature, and since p[ - P~ = 2nw E 2£::, it is called 
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104 4 Strings on circles and T-duality 

'even'. The 'dual' lattice ri.1 is the set of all vectors whose dot product 
with (PL , PR ) gives an integer. In fact, our lattice is self-dual, which is to 
say that r 1,1 = r*1.1. It is the 'even' quality which guarantees invariance 
under T as we have seen, while it is the 'self-dual' feature which ensures 
invariance under S. In fact, S is just a change of basis in the lattice, and 
the self-duality feature translates into the fact that the Jacobian for this 
is unity. 

4.5 Toriodal compactifications 

It will be very useful later on for us to outline how things work more 
generally. The case of compactification on the circle encountered above 
can be easily generalised to compactification on the torus Td c::::' (Sl )d. Let 
us denote the compact dimensions by X rn , where m, n = 1, ... , d. Their 
periodicity is specified by 

Xrn ;v Xrn + 27rR(rn)n rn , 

where the nrn are integers and R(rn) is the radius of the mth circle. 
The metric on the torus, Grnn , can be diagonalised into standard unit 
Euclidean form by the veilbeins e~ where a, b = 1, ... ,d: 

and it is convenient to use tangent space coordinates xa = xrne~ so that 
the equivalence can be written: 

We have defined for ourselves a lattice A = {ea nrn nrn E Z}. We now rn , 

write our torus in terms of this as 

There are of course conjugate momenta to the X a , which we denote 
as pa. They are quantised, since moving from one lattice point to an­
other, producing a change in the vector X by oX E 27rA are physi­
cally equivalent, and so single-valuedness of the wavefunction imposes 
exp(ip· X) = exp(ip· [X + oX]), i.e. 

from which we see that clearly 
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where nm are integers. In other words, the momenta live in the dual lattice, 
A *, of A, defined by 

where the inverse veilbiens ewmnm are defined in the usual way using the 
inverse metric: 

*am _ a Gmn 
e = em , or 

Of course we can have winding sectors as well, since as we go around 
the string via cr ----+ cr + 27T, we can change to a new point on the lattice 
characterised by a set of integers wm , the winding number. Let us write 
out the string mode expansions. We have 

where 

(4.31) 

for the left, while on the right we have 

X R = xR - i[f;PR(T + cr) + oscillators 
a 

a X (Ja xR=-+ 
2 

w a R(a) 1 PR = pa - == e*am n - _ea wm 
ex' m ex' m 

( 4.32) 

The action of the manifest T-duality symmetry is simply to act with a 
right-handed parity, as before, swopping PL +--+ PL and PR +--+ -PR, and 
hence momenta and winding and XL +--+ XL and XR +--+ -XR. 

To see more, let us enlarge our bases for the two separate lattices A, A * 
into a singe one, via: 

A_I ( e~) 
em - ex' -e~ , 

and now we can write 

which lives in a (d + d)-dimensional lattice which we will call r d,d. We 
can choose the metric on this space to be of Lorentzian signature (d, d), 
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106 4 Strings on circles and T-duality 

which is achieved by 

G= (Doab 0) 
-Dab ' 

and using this we see that 

( 4.33) 

which shows that the lattice is self-dual, since (up to a trivial overall 
scaling), the structure of the basis vectors of the dual is identical to that 
of the original: rd,d = r d,d. Furthermore, we see that the inner product 
between any two momenta is given by 

( 4.34) 

In other words, the lattice is even, because the inner product gives even 
integer multiples of 2/c/. 

It is these properties that guarantee that the string theory is modu­
lar invariant 173 . The partition function for this compactification is the 
obvious generalisation of the expression given in (4.30): 

( 4.35) 

where the PL,R are given in (4.32). Recall that the modular group is gen­
erated by T : T ---+ T + 1, and S : T ---+ -l/T. So T-invariance follows 
from the fact that its action produces a factor exp( i'TrO:' (PL - P~J /2) = 

exp( i'TrO:' (jJ2) /2) which is unity because the lattice is even, as shown in 
equation (4.34). 

Invariance under S follows by rewriting the partition function Z ( -1 / T) 
using the Poisson resummation formula given in insert 4.2, to get the 
result that 

Zr ( -~) = vol(r*)Zp(T). 

The volume of the lattice's unit cell is unity, for a self-dual lattice, since 
vol(A)vol(A*) = 1 for any lattice and its dual, and therefore S-invariance 
is demonstrated, and we can define a consistent string compactification. 
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Insert 4.2. The Poisson resummation formula 

A very useful trick is the following. Assume that we have a function 
f (x) defined on ]]{n. Then its Fourier transform is given as 

The formula we need is written in terms of this. If we sum over a 
lattice A c ]]{n, then: 

'" J '" dnk k 
A '" A ~ f(n) = ~ (27T)n et >·m f(k) = vol(A *) ~ f(2TIrn). 

nEA nEA mEA" 

We shall meet two very important examples of large even and self-dual 
lattices later in subsection 7.2. They are associated to the construction of 
the modular invariant partition functions of the ten dimensional Es xEs 
and 50(32) heterotic strings2o . 

There is a large space of inequivalent lattices of the type under discus­
sion, given by the shape of the torus (specified by background parameters 
in the metric G) and the fluxes of the B-field through it. We can work 
out this 'moduli space' of compactifications. It would naively seem to be 
simply O(d, d), since this is the space of rotations naturally acting, tak­
ing such lattices into each other, i.e. starting with some reference lattice 
ro, r' = Gro should be a different lattice. We must remember that the 
physics cares only about the values of PI and p~, and so therefore we must 
count as equivalent any choices related by the O( d) x O( d) which acts inde­
pendently on the left and right momenta: G rv G'G, for G' E O(d) x O(d). 
So at least locally, the space of lattices is isomorphic to 

O(d, d) 
M = O(d) x O(d) ( 4.36) 

A quick count of the dimension of this space gives 2d(2d - 1) /2 - 2 x 
d( d - 1) /2 = d2 , which fits nicely, since this is the number of independent 
components contained in the metric Gmn , (d(d + 1)/2) and the antisym­
metric tensor field Bmn , (d(d-1)/2), for which we can switch on constant 
values (sourced by winding). 

There are still a large number of discrete equivalences between the 
lattices, which follows from the fact that there is a discrete subgroup of 
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O(d, d), called O(d, d, Z), which maps our reference lattice ro into itself: 
ro rv G"ro. This is the set of discrete linear transformations generated 
by the subgroups of SL(2d, Z) which preserves the inner product given 
in equations (4.33). This group includes the T-dualities on all of the d 
circles, linear redefinitions of the axes, and discrete shifts of the B-field. 
The full space of torus compactifications is often denoted: 

M = O(d, d, Z)\O(d, d)j[O(d) x O(d)], ( 4.37) 

where we divide by one action under left multiplication, and the other 
under right. 

Now we see that there is a possibility of much more than just the 
SU(2)L x SU(2)R enhanced gauge symmetry which we got in the case 
of a single circle. We can have this large symmetry from any of the d 
circles, of course but there is more, since there are extra massless states 
that can be made by choices of momenta from more than one circle, 
corresponding to weight one vertex operators. This will allow us to make 
very large enhanced gauge groups, up to rank d, as we shall see later in 
section 7.2. 

4.6 More on enhanced gauge symmetry 

The reader is probably keen to see more of where some of the structures 
of sections 4.3, 4.4, and 4.5 come from, and so we will pause here to study 
a little about Lie groups and algebras. 

4.6.1 Lie algebras and groups 

Lie algebras are usually described in terms of a basis of generators, t a , 

which have a specific antisymmetric product: 

( 4.38) 

where the Jab c are often called the structure constants. This product must 
satisfy the Jacobi identity, which states that: 

Once we have the algebra, we can form the group G by exponentiating 
the generators, to make a group element 
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N.B. One of the reasons why Lie groups are interesting is that the 
group elements form a manifold, and so there is a lot of familiar 
geometry to be found in their description. For example, one can think 
of the Lie algebra as the vector space that is simply the tangent 
space to the group manifold, G, and keep in mind a picture like that 
in figure 2.14. The natural way to make the Lie algebra from the 
group elements g is via the Maurer-Cartan forms, g-ldg which give 
a family of one-forms which are valued in the Lie algebra. We won't 
use this much, but the curious reader can look ahead to insert 7.4, 
where we make this explicit for SU(2), which is the manifold S3. 

There is also an inner product between the generators, which is defined 
as (ta, t b) = dab, which is positive if the group is compact. We can lower 
and raise indices with this fellow, and having done this on the structure 
constants to get r bc , there is an additional condition that they are totally 
antisymmetric in all of their indices. We shall restrict our attention mostly 
to the simple Lie algebras, for which a choice can be made to make dab 
proportional to {5ab. 

Most familiar is of course the representation of the algebra in (4.38) by 
matrices, for which we can use the notation t~, where R stands for a repre­
sentation, and the matrix elements are denoted t~,ij. The antisymmetric 
product is then the familiar matrix commutator, and the inner product 
is matrix multiplication with the trace. Then we have Tr(t~t~) = TR{5ab, 
where TR is a number which depends on the representation. Note that we 
can define the Casimir invariant of the representation R as t~t~ = QRl. 

The Jacobi identity above translates into 

A most convenient matrix representation of the algebra is given by 

and for this we see that we get 

and so we see that the structure constants themselves form a representa­
tion of the Lie algebra. This is the adjoint representation. Notice that the 
dimension of the representation is the number of generators of the group. 
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It is useful to divide the generators ta into two families. There is the 
maximal set of commuting generators, which are denoted Hi, where i = 

1, ... , r with r being the rank of the group, and there are the rest, denoted 
EO! of reasons to be given very shortly. 

The set Hi, for which 
[Hi,Hj] = 0, 

is the Cartan subalgebra, and the Hi are often said to form the maximal 
torus, which we shall discuss more later. These elements are the gener­
alisation of J3 from the familiar case of SU(2). For a representation of 
dimension d, we can think of the Hi as d x d matrices. We will pick 
a specific basis for these and keep in that basis to describe everything 
else. Being all mutually commutative, they may be simultaneously diag­
onalised, and there are d distinct eigenvalues for each H. Consider the 
nth entry along a diagonal. Each of the Hi supplies a component, wi, of 
a vector w in a space ]RT. There are d such weight vectors. 

Everything else can be given an assignment of 'charges' corresponding 
to the H-eigenvalues, via 

[Hi, EO!] = o:iEO!. 

We can think of the o:i as components of an r-dimensional vector known 
as a root. It is a vector in the space ]RT mentioned above. Every root is 
uniquely associated to a generator EO!. The remaining parts of the Lie 
algebra are: 

if 0: + {3 is a root, 
if 0: + (3 = 0, 

otherwise, 

where the dot product is defined with the relevant part of the inner prod­
uct form, dij, and E(o:,{J) is ±l. It is worth noting that the roots are the 
weights of the adjoint representation. 

The EO! are the generalisations of the J± familiar from SU(2), the 
raising and lowering operators. One can decompose weights into three 
classes, whether they are positive, negative, or zero. This is given by 
whether or not the first non-zero entry is positive, negative or zero (i.e. all 
components zero). There is a unique highest weight in any representation. 
Specialising to the weights of the adjoint representation, the roots, divides 
the EO! into raising operators, if 0: is positive, and lowering operators if 0: 

is negative. One can build the whole representation of the groups starting 
with the highest weight and acting with the lowering operators, while 
acting on a highest weight with a raising operator gives zero. 

The simple roots are the positive roots that cannot be written as the 
sum of two positive roots, and they form a linearly independent set. The 
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number of them is equal to the rank of the group, r. Using these, it can 
be shown that the entire structure of the group may be reconstructed. A 
useful way of specifying the simple roots is to give their relative lengths 
and the angles between them, which turn out to be restricted to between 
90° and 180°. The Dynkin diagram is a very useful way of giving that 
information in an easy to read form. Each simple root is a node in the 
diagram. There are links between nodes if the angle between them is not 
90°. There is a single line if the angle is 120°, a double line if the angle is 
135° and a triple line if it is 150°. To denote the odd root which is shorter 
than the rest, it is often a practice to make the note a different shade of 
colour in the diagram. 

4.6.2 The classical Lie algebras 

Let us list the classical Lie algebras of Cartan's classification. 

• SU(n) Denoted An - 1 in Cartan's classification. The generators are 
traceless n x n Hermitian matrices, and the group elements of SU (n) 
are unit determinant unitary matrices. 

• SO(n) If n = 2k + 1 this is denoted B k , while if n = 2k it is D k . 

The generators are n x n antisymmetric Hermitian matrices, and 
the group elements of SO( n) are real orthogonal matrices. 

• Sp(k) = USp(2k) This is denoted Ck in the classification. The gen­
erators are Hermitian 2k x 2k matrices t satisfying 

where T denotes the transpose and 

M = i ( 0 Ik) 
-Ik 0 ' 

where Ik is the k x k identity matrix. The groups is the set of unitary 
matrices u satisfying 

where - T denotes the inverse of the transpose. 

We will often have cause to encounter some non-compact groups closely 
related to these. We obtain them by multiplying some generators by 
an i. In this way we will get the set of traceless imaginary matrices to 
make the group of real matrices of unit determinant, SL(n) by continuing 
SU(n). We have already encountered O(n, m), which is a continuation of 
O(n + m) made by such a continuation. 
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Insert 4.3. The simply laced Lie algebras 

It turns out that for the Lie algebras An, Db E6, E7 and Es, all of the 
roots are the same length. These are called the simply laced algebras. 
It is very useful to know a bit about their structure, as manifest in 
the Dynkin diagrams given below. 

An-l ~I----~----
(n-l nodes) 
---------- ~ SU(n) 

(n nodes) 
~ SO(2n) 

~ ~ I ~ ~ 

E7 ~ ~ I ~ ~ ~ 

E8 ~ ~ I ~ ~ ~ ~ 
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4.6.3 Physical realisations with vertex operators 

Now we can return to some of the physical objects that we saw arising in 
the string theory and make contact with some of the structures we saw 
above. Recall that we represented the weights as vectors in lPi.r , where r 
was the rank of the Lie algebra, arising as charges under the commuting 
generators or maximal torus given by the Hi. These vectors came with a 
specific set of entries, and we could build all representations out of them, 
by adding vectors. The set of points in lPi. r made in this way is the Lie 
algebra lattice, and it can be placed on a very physical footing in the 
context of toroidal compactification in the following way. 

If we placed r directions Xi on a torus T r , the weight (0,1) objects 
Hi(z) = ia'-1/2f)z X i parameterise the very object we have been working 
with: the maximal torus. The weight vectors that we had, with the addi­
tive structure allowing us to reach other points in the lattice, building up 
other representations, are simply the momenta, which are the zero modes 
of the Hi(z), which are also additive. 

In general, we can make states corresponding to the weight vector wi 

with the vertex operator exp(2ia'-1/2w . ¢). So now we see how to get a 
gauge symmetry, following the discussion in insert 4.1, we need to have 
vertex operators of weight (0,1) to go with the Hi(z). These can be made 
with the vertex operators if the w 2 = 2. So we see that we need the simply 
laced algebras to do this. They are listed in insert 4.3, together with their 
Dynkin diagrams. 

4.7 Another special radius: bosonisation 

Before proceeding with the T-duality discussion, let us pause for a moment 
to remark upon something which will be useful later. In the case that 
R = J( a' /2), something remarkable happens. The partition function is: 

( 0') 1( w)2 1( w)2 Z q, R = V 2: = (7]7])-1 L. q'i n+"2 ij'i n-"2 . 
n,w 

(4.39) 

Note that the allowed momenta at this radius are (d. equation (4.13)): 

a65 = PL ~ = (n + ~) 
&65 = PR ~ = (n - ~), ( 4.40) 

and so they span both integer and half-integer values. Now when PL is an 
integer, then so is PR and vice versa, and so we have two distinct sectors, 
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integer and half-integer. In fact, we can rewrite our partition function as 
a set of sums over these separate sectors: 

( 4.41) 

The middle sum is rather like the first, except that there is a -1 whenever 
n is odd. Taking the two sums together, it is just like we have performed 
the sum (trace) over all the integer momenta, but placed a projection 
onto even momenta, using the projector 

( 4.42) 

In fact, an investigation will reveal that the third term can be written 
with a partner just like it save for an insertion of (_l)n also, but that 
latter sum vanishes identically. This all has a specific meaning which we 
will uncover shortly. 

Notice that the partition function can be written in yet another nice 
way, this time as 

where, for here and for future use, let us define 

CXl 

h(q) == = q~ II (1 - qn) == TJ(T) 
n=l 

CXl 

12(q) == = v'2q~ II (1 + qn) 
n=l 

CXl 1 

h(q) == = q--is II (1 + qn-"2) 
n=l 

CXl 1 
14(q) == = q--is II (1 - qn-"2), 

n=l 

and note that 

12 ( -~) = 14 (T); h ( -~) = h (T); 

h(T+1)=14(T); 12(T+1)=12(T). 

( 4.43) 

( 4.44) 

( 4.45) 

( 4.46) 
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While the rewriting as (4.43) might not look like much at first glance, 
this is in fact the partition function of a single Dirac fermion in two 
dimensions: Z(R = Ja'/2) = ZDirac' We have arrived at the result that a 
boson (at a special radius) is in fact equivalent to a fermion. This is called 
'bosonisation' or 'fermionisation', depending upon one's perspective. How 
can this possibly be true? 

The action for a Dirac fermion, W = (WL' wRf (which has two compo­
nents in two dimensions) is, in conformal gauge: 

where we have used 

-1) o . 

Now, as a fermion goes around the cylinder (J" ----+ (J" + 27T, there are two 
types of boundary condition it can have. It can be periodic, and hence 
have integer moding, in which case it is said to be in the 'Ramond' (R) 
sector. It can instead be antiperiodic, have half-integer moding, and is 
said to be in the 'Neveu-Schwarz' (NS) sector. 

In fact, these two sectors in this theory map to the two sectors of allowed 
momenta in the bosonic theory: integer momenta to NS and half-integer 
to R. The various parts of the partition function can be picked out and 
identified in fermionic language. For example, the contribution: 

looks very fermionic, (recall insert 3.4 (p. 92)) and is in fact the trace 
over the contributions from the NS sector fermions as they go around 
the torus. It is squared because there are two components to the fermion, 
wand W. We have the squared modulus beyond that since we have the 
contribution from the left and the right. 

The f4(q) contribution on the other hand, arises from the NS sector 
with a (_)F inserted, where F counts the number of fermions at each 
level. The h(q) contribution comes from the R sector, and there is a 
vanishing contribution from the R sector with (-l)F inserted. We see 
that that the projector 

( 4.48) 
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is the fermionic version of the projector (4.42) we identified previously. 
Notice that there is an extra factor of two in front of the R sector contri­
bution due to the definition of 12. This is because the R ground state is 
in fact degenerate. The modes \[10 and \jIo define two ground states which 
map into one another. Denote the vacuum by IS}, where s can take the 
values ±~. Then 

\[101- ~} = 0; 

~ol- ~} = I + ~}; 

- 1 
\[101 + 2} = 0; 

\[101 + ~} = 1- ~}, 
( 4.49) 

and \[10 and ~o therefore form a representation of the two dimensional 
Clifford algebra. We will see this in more generality later on. In D dimen­
sions there are D /2 components, and the degeneracy is 2D /2. 

As a final check, we can see that the zero point energies work out nicely 
too. The mnemonic (2.80) gives us the zero point energy for a fermion 
in the NS sector as -1/48, we multiply this by two since there are two 
components and we see that that we recover the weight of the ground state 
in the partition function. For the Ramond sector, the zero point energy of 
a single fermion is 1/24. After multiplying by two, we see that this is again 
correctly obtained in our partition function, since -1/24+ 1/8 = 1/12. It 
is awfully nice that the function fi (q) has the extra factor of 2ql/8, just 
for this purpose. 

This partition function is again modular invariant, as can be checked 
using elementary properties of the J-functions (4.46): 12 transforms into 
J4 under the S transformation, while under T, J4 transforms into h. 

At the level of vertex operators, the correspondence between the bosons 
and the fermions is given by: 

\[IL(z) = eif3xl5(z); 

\[IR(Z) = eif3X~5U:); 
~L(z) = e-if3xl5(z); 

~R(Z) = e-if3X~5(;:), 
( 4.50) 

where (3 = J2/ci. This makes sense, for the exponential factors define 
fields single-valued under X 25 ---+ X 25 + 2TIR, at our special radius R = 

J ex' /2. We also have 

(4.51) 

which shows how to combine two (0,1/2) fields to make a (0,1) field, with 
a similar structure on the left. Notice also that the symmetry X 25 ---+ 

_X25 swaps \[IL(R) and ~L(R)' a symmetry of interest in the next subsec­
tion. We will return to this bosonisation/fermionisation relation in later 
sections, where it will be useful to write vertex operators in various ways 
in the supersymmetric theories. 
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4.8 String theory on an orbifold 

There is a rather large class of string vacua, called 'orbifolds,23 , with 
many applications in string theory. We ought to study them, as many of 
the basic structures which will occur in their definition appear in more 
complicated examples later on. 

The circle Sl, parametrised by X 25 , has the obvious £::2 symmetry R25 : 

X 25 ----+ - X25. This symmetry extends to the full spectrum of states and 
operators in the complete theory of the string propagating on the circle. 
Some states are even under R25 , while others are odd. Just as we saw 
before in the case of 0, it makes sense to ask whether we can define 
another theory from this one by truncating the theory to the sector which 
is even. This would define string theory propagating on the 'orbifold' space 
Sl/£::2. 

In defining this geometry, note that it is actually a line segment, where 
the endpoints of the line are actually 'fixed points' of the £::2 action. The 
point X 25 = 0 is clearly such a point and the other is X 25 = 'IT R rv -'IT R, 
where R is the radius of the original Sl. A picture of the orbifold space is 
given in figure 4.1. In order to check whether string theory on this space is 
sensible, we ought to compute the partition function for it. We can work 
this out by simply inserting the projector 

( 4.52) 

which will have the desired effect of projecting out the R 25-odd parts 
of the circle spectrum. So we expect to see two pieces to the partition 
function: a part that is ~ times Zcircle, and another part which is Zcircle 
with R25 inserted. Noting that the action of R25 is 

( 4.53) 

the partition function is: 

Zorbifold = ~ [Z(R, T) + 2 (Ih(q) 1-2 + Ih(q) 1-2 + If4(q) 1-2)]. (4.54) 

o 'ITR 0»(-( ----------7<)( 'IT R 

Fig. 4.1. A £::2 orbifold of a circle, giving a line segment with two fixed 
points. 
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The 12 part is what one gets if one works out the projected piece, but 
there are two extra terms. From where do they come? One way to see that 
those extra pieces must be there is to realise that the first two parts on 
their own cannot be modular invariant. The first part is of course already 
modular invariant on its own, while the second part transforms (4.46) into 
14 under the S transformation, so it has to be there too. Meanwhile, 14 
transforms into h under the T-transformation, and so that must be there 
also, and so on. 

While modular invariance is a requirement, as we saw, what is the 
physical meaning of these two extra partition functions? What sectors of 
the theory do they correspond to and how did we forget them? 

The sectors we forgot are very stringy in origin, and arise in a similar 
fashion to the way we saw windings appear in earlier sections. There, the 
circle may be considered as a quotient of the real line .!Pi. by a translation 
X 25 ----+ X 25 + 27T R. There, we saw that as we go around the string, cr ----+ 

cr + 27T, the embedding map X 25 (cr) is allowed to change by any amount 
of the lattice, 27TRw. Here, the orbifold further imposes the equivalence 
X 25 rv - X 25 , and therefore, as we go around the string, we ought to be 
allowed: 

X 25 (cr + 27T, T) = _X25(cr, T) + 27TWR, 

for which the solution to the Laplace equation is: 

X25(z,z) =X25 +if;' f= 1 (0:25 lZn+~ +0;25 lZn+~), 2 (if> + 1) n+-2 n+-2 n=-oo II, 2 

( 4.55) 
with x 25 = 0 or 7T R, no zero mode 0:65 (hence no momentum), and no 
winding: w = o. 

This is a configuration of the string allowed by our equations of motion 
and boundary conditions and therefore has to be included in the spectrum. 
We have two identical copies of these 'twisted sectors' corresponding to 
strings trapped at 0 and 7TR in spacetime. They are trapped, since x 25 is 
fixed and there is no momentum. 

Notice that in this sector, where the boson X25(w, w) is antiperiodic as 
one goes around the cylinder, there is a zero point energy of 1/16 from 
the twisted sector: it is a weight (1/16,1/16) field, in terms of where it 
appears in the partition function. 

Schematically therefore, the complete partition function ought to be 

Z T ( (1+R25) Lo-.l-Lo-.l) 
orbifold = r untwisted 2 q 24 q 24 

T ( (1+R25) LO-.l-Lo-.l) + rtwisted 2 q 24 q 24 ( 4.56) 
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to ensure modular invariance, and indeed, this is precisely what we have 
in (4.54). The factor of two in front of the twisted sector contribution is 
because there are two identical twisted sectors, and we must sum over all 
sectors. 

In fact, substituting in the expressions for the f-functions, one can 
discover the weight (1/16,1/16) twisted sector fields contributing to the 
vacuum of the twisted sector. This simply comes from the q-1/48 factor in 
the definition of the h,4-functions. They appear inversely, and for example 
on the left, we have 1/48 = -c/24 + 1/16, where c = 1. 

Finally, notice that the contribution from the twisted sectors do not 
depend upon the radius R. This fits with the fact that the twisted sectors 
are trapped at the fixed points, and have no knowledge of the extent of 
the circle. 

4.9 T-duality for open strings: D-branes 

Let us now consider the R ----+ 0 limit of the open string spectrum. Open 
strings do not have a conserved winding around the periodic dimension 
and so they have no quantum number comparable to w, so something 
different must happen, as compared to the closed string case. In fact, it 
is more like field theory: when R ----+ 0 the states with non-zero internal 
momentum go to infinite mass, but there is no new continuum of states 
coming from winding. So we are left with a theory in one dimension fewer. 
A puzzle arises when one remembers that theories with open strings have 
closed strings as well, so that in the R ----+ 0 limit the closed strings live in 
D spacetime dimensions but the open strings only in D - 1. 

This is perfectly fine, though, since the interior of the open string is 
indistinguishable from the closed string and so should still be vibrating in 
D dimensions. The distinguished part of the open string are the endpoints, 
and these are restricted to a D - 1 dimensional hyperplane. 

This is worth seeing in more detail. Write the open string mode expan­
sion as 

XI"(z, z) = XI"(z) + XI"(z), 

xl" x/I" (a/) 1/2 1 
XI"(z) = - + - - ia'pl" in z + i - L -a~z-n, 

2 2 2 ny!oO n 

xl" x/I" (a/) 1/2 1 
XI"(z) = - - - - ia'pl" in z + i - L -a~z-n, 

2 2 2 ny!oO n 
( 4.57) 

where x/I" is an arbitrary number which cancels out when we make the 
usual open string coordinate. Imagine that we place X 25 on a circle of 
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radius R. The T-dual coordinate is 

= x'25 - ia'p25 In (~) + i(2a')1/2 L ~a~5e-inT sin nO' 
Z n#Q n 

= x'25 + 2a'p25O' + i(2a')1/2 L ~a~5e-inT sin nO' 
n#Q n 

= x'25 + 2a' ~O' + i(2a')1/2 L ~a~5e-inT sin nO'. 
R n#Q n 

( 4.58) 

Notice that there is no dependence on T in the zero mode sector. This is 
where momentum usually comes from in the mode expansion, and so we 
have no momentum. In fact, since the oscillator terms vanish at the end­
points 0' = 0, TI, we see that the endpoints do not move in the X'25 direc­
tion! Instead of the usual Neumann boundary condition 8nX == 8IJX = 0, 
we have 8t X == i8TX = O. More precisely, we have the Dirichlet condition 
that the ends are at a fixed place: 

( 4.59) 

In other words, the values of the coordinate X'25 at the two ends are 
equal up to an integral multiple of the periodicity of the dual dimension, 
corresponding to a string that winds as in figure 4.2 . 
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Fig. 4.2. Open strings with endpoints attached to a hyperplane. The 
dashed planes are periodically identified. The strings shown have winding 
numbers zero and one. 
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4.9 T-duality for open strings 121 

This picture is consistent with the fact that under T-duality, the defi­
nition of the normal and tangential derivatives get exchanged: 

25( ) 8X25 (z) 8X25 (z) _ 8 X,25( -) 8n X z,z = + z z 8z 8z - t , 

8tX25(z, z-) = 8X25 (z) _ 8X25 (z) - 8 X'25( -) 
8z 8z - n Z, Z . ( 4.60) 

Notice that this all pertains to just the direction which we T -dualised, 
X25. So the ends are still free to move in the other 24 spatial dimensions, 
which constitutes a hyperplane called a 'D-brane'. There are 24 spatial 
directions, so we shall denote it a D24-brane. 

4.9.1 Chan-Paton factors and Wilson lines 

This picture becomes even more rich when we include Chan-Paton 
factors25 . Consider the case of U (N), the oriented open string. When 
we compactify the X 25 direction, we can include a Wilson line 

A25 = diag{e1, e2, ... , eN }/27TR, 

which generically breaks U(N) ----+ U(l)N. (See insert 4.4 (p. 122) for a 
short discussion.) Locally this is pure gauge, 

A25 = -iA -1825A, A = diag{ eix258l/27TR, eix2582/27TR, ... , eix258l/27TR}. 

(4.61) 
We can gauge A25 away, but since the gauge transformation is not peri­
odic, the fields pick up a phase 

( 4.62) 

under X 25 ----+ X 25 + 27T R. 
What is the effect in the dual theory? From the phase (4.62) the open 

string momenta are now fractional. As the momentum is dual to winding 
number, we conclude that the fields in the dual description have frac­
tional winding number, i.e. their endpoints are no longer on the same 
hyperplane. Indeed, a string whose endpoints are in the state lij; picks 
up a phase ei(8j-8;), so their momentum is (2TIr~+ej - ei)/27TR. Modifying 
the endpoint calculation (4.59) then gives 

( 4.67) 

In other words, up to an arbitrary additive constant, the endpoint in state 
i is at position 

( 4.68) 
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122 4 Strings on circles and T-duality 

Insert 4.4. Particles and Wilson lines 

The following illustrates an interesting gauge configuration which 
arises when spacetime has the non-trivial topology of a circle (with 
coordinate X 25 ) of radius R. Consider the case of U(l). Let us make 
the following choice of constant background gauge potential: 

Me. -1 aA 
A 25 (X ) = - 2TIR = -zA aX25' ( 4.63) 

iex25 
where A(X25) = e- 2TIR • This is clearly pure gauge, but only lo-
cally. There still exists non-trivial physics. Form the gauge invariant 
quantity ('Wilson line'): 

Wq = exp (iq f dX25 A25) = e-iq8 . (4.64) 

Where does this observable show up? Imagine a point particle of 
charge q under the U(l). Its action can be written (see section 4.2) 
as: 

( 4.65) 

The last term is just -iq I A = -iq I AMdxM, in the language of forms. 
This is the natural coupling of a world volume to an antisymmetric 
tensor, as we shall see.) Recall that in the path integral we are com­
puting e-s . So if the particle does a loop around X 25 circle, it will 
pick up a phase factor of W q . Notice: the conjugate momentum to 
XM is 

af: . 
lIM = i-.- = iXM 

aXM ' 
except for 

where the last equality results from the fact that we are on a circle. 
Now we can of course gauge away A with the choice A-I, but it will 
be the case that as we move around the circle, i.e. X 25 ---+ X 25 + 2TI R, 
the particle (and all fields) of charge q will pick up a phase eiq8 . So 
the canonical momentum is shifted to: 

2" n qe 
p ;) = R + 2TIR· ( 4.66) 
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Fig. 4.3. Three D-branes at different positions, with various strings at­
tached. 

We have in general N hyperplanes at different positions as depicted in 
figure 4.3. 

4.10 D-brane collective coordinates 

Clearly, the whole picture goes through if several coordinates 

Xm = {X 25 , X 24 , ... , XP+1} ( 4.69) 

are periodic, and we rewrite the periodic dimensions in terms of the dual 
coordinates. The open string endpoints are then confined to N (p + 1)­
dimensional hyperplanes, the D(p + l)-branes. The Neumann conditions 
on the world-sheet, 8n X m(crl, cr2 ) = 0, have become Dirichlet conditions 
8t x'm(crl, cr2 ) = ° for the dual coordinates. In this terminology, the orig­
inal 26 dimensional open string theory theory contains N D25-branes. 
A 25-brane fills space, so the string endpoint can be anywhere: it just 
corresponds to an ordinary Chan-Paton factor. 

It is natural to expect that the hyperplane is dynamical rather than 
rigid8 . For one thing, this theory still has gravity, and it is difficult to see 
how a perfectly rigid object could exist. Rather, we would expect that the 
hyperplanes can fluctuate in shape and position as dynamical objects. We 
can see this by looking at the massless spectrum of the theory, interpreted 
in the dual coordinates. 

Taking for illustration the case where a single coordinate is dualised, 
consider the mass spectrum. The D - 1 dimensional mass is 

M2 = (p25)2 + ~(N - 1) 
a/ 

= ([2m? + (()i - ()j)]R') 2 + ~(N -1). 
27Ta/ a/ 

(4.70) 
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Note that [27Tn + (ei - e j ) 1 R' is the minimum length of a string winding 
between hyperplanes i and j. Massless states arise generically only for 
non-winding (i.e. n = 0) open strings whose end points are on the same 
hyperplane, since the string tension contributes an energy to a stretched 
string. We have therefore the massless states (with their vertex operators): 

a~llk; ii), V = [AXiL, 

arrlllk; ii), V = OtX25 = onx,25. (4.71) 

The first of these is a gauge field living on the D-brane, with p + 1 com­
ponents tangent to the hyperplane, AiL(ea ), IL, a = 0, ... ,po Here, eiL = xiL 
are coordinates on the D-branes' world-volume. The second was the gauge 
field in the compact direction in the original theory. In the dual theory 
it becomes the transverse position of the D-brane (see equation (4.68)). 
From the point of view of the world-volume, it is a family of scalar fields, 
<I>m(ea ) , (m = p + 1, ... , D - 1) living there. 

We saw this in equation (4.68) for a Wilson line, which was a con­
stant gauge potential. Now imagine that, as genuine scalar fields, the <I>m 
vary as we move around on the world-volume of the D-brane. This there­
fore embeds the brane into a variable place in the transverse coordinates. 
This is simply describing a specific shape to the brane as it is embed­
ded in spacetime. The <I>m(ea ) are exactly analogous to the embedding 
coordinate map X iL (rJ, T) with which we described strings in the earlier 
sections. 

The values of the gauge field backgrounds describe the shape of the 
branes as a soliton background, then. Meanwhile their quanta describe 
fluctuations of that background. This is the same phenomenon which 
we found for our description of spacetime in string theory. We started 
with strings in a flat background and discover that a massless closed 
string state corresponds to fluctuations of the geometry. Here we found 
first a flat hyperplane, and then discovered that a certain open string 
state corresponds to fluctuations of its shape. Remarkably, these open 
string states are simply gauge fields, and this is one of the reasons for 
the great success of D-branes. There are other branes in string theory (as 
we shall see) and they have other types of field theory describing their 
collective dynamics. D-branes are special, in that they have a beautiful 
description using gauge theory. Ultimately, we can use the long experience 
of working with gauge theories to teach us much about D-branes, and 
later, the geometry of D-branes and the string theories in which they 
live can teach us a lot about gauge theories. This is the basis of the 
dialogue between gauge theory and geometry which dominates the field 
at present. 
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It is interesting to look at the U(N) symmetry breaking in the dual pic­
ture where the brane can move transverse to their world-volumes. When 
no D-branes coincide, there is just one massless vector each, or U(l)N 
in all, the generic unbroken group. If k D-branes coincide, there are new 
massless states because strings which are stretched between these branes 
can achieve vanishing length. Thus, there are k2 vectors, forming the ad­
joint of a U (k) gauge group25, 26. This coincident position corresponds to 
e1 = e2 = ... = ek for some subset of the original {e}, so in the original 
theory the Wilson line left a U(k) subgroup unbroken. At the same time, 
there appears a set of k 2 massless scalars: the k positions are promoted 
to a matrix. This is not intuitive at first, but plays an important role in 
the dynamics of D-branes26 . We will examine many consequences of this 
later in this book. Note that if all N branes are coincident, we recover the 
U (N) gauge symmetry. 

Although this picture seems quite odd, and will become more so in the 
unoriented theory, note that all we have done is to rewrite the original 
open string theory in terms of variables which are more natural in the 
limit R « R. Various obscure features of the small-radius limit become 
clear in the T-dual picture. 

Observe that, since T-duality interchanges Neumann and Dirichlet 
boundary conditions, a further T-duality in a direction tangent to a Dp­
brane reduces it to a D(p - l)-brane, while a T-duality in a direction 
orthogonal turns it into a D(p + 1 )-brane. 

4.11 T-duality for unoriented strings: orientifolds 

The R ---+ 0 limit of an unoriented theory also leads to a new extended 
object. Recall that the effect of T-duality can also be understood as a 
one-sided parity transformation. For closed strings, the original coordi­
nate is xm(z, z) = Xm(z) + xm(z). We have already discussed how to 
project string theory with these coordinates by O. The dual coordinate is 
x'm(z, z) = xm(z) - xm(z). The action of world sheet parity reversal is 
to exchange XM(z) and XM(z). This gives for the dual coordinate: 

(4.72) 

This is the product of a world-sheet and a spacetime parity operation. 
In the unoriented theory, strings are invariant under the action of [2, 

while in the dual coordinate the theory is invariant under the product 
of world-sheet parity and a spacetime parity. This generalisation of the 
usual unoriented theory is known as an 'orientifold', a term that mixes 
the term 'orbifold' with orientation reversal. 
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Imagine that we have separated the string wavefunction into its internal 
part and its dependence on the centre of mass, xm. Furthermore, take 
the internal wavefunction to be an eigenstate of D. The projection then 
determines the string wavefunction at _xm to be the same as at xm, up 
to a sign. The various components of the metric and antisymmetric tensor 
satisfy, for example, 

Gi-'n(xi-', _xm) = -Gi-'n (xi-' , x m), 
Gmn(xi-', _xm) = Gmn (xi-' , x m), 

Bi-'n(xi-', _xm) = Bi-'n(xi-', xm), 
Bmn(xi-', _xm) = -Bmn(xi-', xm). (4.73) 

In other words, when we have k compact directions, the T-dual spacetime 
is the torus T 25 - k moded by a 2::2 reflection in the compact directions. 
So we are instructed to perform an orbifold construction, modified by the 
extra sign. In the case of a single periodic dimension, for example, the 
dual spacetime is the line segment 0 ::; x 25 ::; TIR'. The reader should 
remind themselves of the orbifold construction in section 4.8. At the ends 
of the interval, there are fixed 'points', which are in fact spatially 24-
dimensional planes. Looking at the projections (4.73) in this case, we 
see that on these fixed planes, the projection is just like we did for the 
D-projection of the 25+1 dimensional theory in section 2.6: the theory 
is unoriented there, and half the states are removed. These orientifold 
fixed planes are called 'a-planes' for short. For this case, we have two 
024-planes. (For k directions we have 2k 0(25 - k)-planes arranged on 
the vertices of a hypercube.) In particular, we can usefully think of the 
original case of k = 0 as being on an 025-plane. 

While the theory is unoriented on the a-plane, away from the orientifold 
fixed planes, the local physics is that of the oriented string theory. The 
projection relates the physics of a string at some point xm to the string 
at the image point _xm. 

In string perturbation theory, orientifold planes are not dynamical. Un­
like the case of D-branes, there are no string modes tied to the orientifold 
plane to represent fluctuations in its shape. Our heuristic argument in 
the previous subsection that gravitational fluctuations force a D-brane to 
move dynamically does not apply to the orientifold fixed plane. This is 
because the identifications (4.73) become boundary conditions at the fixed 
plane, such that the incident and reflected gravitational waves cancel. For 
the D-brane, the reflected wave is higher order in the string coupling. 

The orientifold construction was discovered via T -duality8 and inde­
pendently from other approaches27, 10. One can of course consider more 
general orientifolds which are not simply T-duals of toroidal compactifica­
tions. The idea is simply to combine a group of discrete symmetries with D 
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such that the resulting group of operations (the 'orientifold group', Go) is 
itself a symmetry of some string theory. One then has the right to ask what 
the nature of the projected theory obtained by dividing by Go might be. 
This is a fruitful way of construction interesting and useful string vacua28 . 

We shall have more to say about this later, since in superstring theory 
we shall find that O-planes, like D-branes , are sources of various closed 
string sector fields. Therefore there will be additional consistency condi­
tions to be satisfied in constructing an orientifold, amounting to making 
sure that the field equations are satisfied. 

So far our discussion of orientifolds was just for the closed string sector. 
Let us see how things are changed in the presence of open strings. In 
fact, the situation is similar. Again, let us focus for simplicity on a single 
compact dimension. Again there is one orientifold fixed plane at 0 and 
another at TIR'. Introducing SO(N) Chan-Paton factors, a Wilson line 
can be brought to the form 

(4.74) 

Thus in the dual picture there are ~N D-branes on the line segment 
o ::; X,25 < TIR', and ~N at their image points under the orientifold 
identification. 

Strings can stretch between D-branes and their images, as shown in 
figure 4.4. The generic gauge group is U(1)N/2, where all branes are sep­
arated. As in the oriented case, if m D-branes are coincident there is a 
U(m) gauge group. However, now if the m D-branes in addition lie at one 
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Fig. 4.4. Orientifold planes at 0 and TIR'. There are D-branes at B1R' and 
B2R', and their images at -B1R' and -B2R'. [2 acts on any string by a 
combination of a spacetime reflection through the planes and reversing 
the orientation arrow. 
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of the fixed planes, then strings stretching between one of these branes 
and one of the image branes also become massless and we have the right 
spectrum of additional states to fill out SO(2m). The maximal SO(N) 
is restored if all of the branes are coincident at a single orientifold plane. 
Note that this maximally symmetric case is asymmetric between the two 
fixed planes. Similar considerations apply to U Sp( N). As we saw before, 
the difference between the appearance of the two groups is in a sign on 
the matrix M as it acts on the string wavefunction. Later, we shall see 
that this sign is correlated with the sign of the charge and tension of the 
orientifold plane. 

We should emphasise that there are ~N dynamical D-branes but an N­
valued Chan-Paton index. An interesting case is when k + ~ D-branes lie 
on a fixed plane, which makes sense because the number 2k + 1 of indices 
is integer. A brane plus image can move away from the fixed plane, but 
the number of branes remaining is always half-integer. This anticipates 
a discussion which we shall have about fractional branes much later, m 
section 13.2, even outside the context of orientifolds. 
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