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s~CONTINUOUS SELECTIONS OF SMALL
MULTIFUNCTIONS

HELGA SCHIRMER

1. Introduction. A multifunction ¢ : X — ¥ from a topological space X
into a topological space Y is a correspondence such that ¢(x) is a non-empty
subset of ¥ for every x € X. A single-valued function f: X — V is called a
selection of ¢ if f(x) € ¢(x) for all x € X; it is called a continuous selection if f
is continuous. It is well-known that not every semi-continuous or even con-
tinuous multifunction has a continuous selection (see e.g. [4] for a survey on
selection theory).

We investigate here some connections between multifunctions which are
‘‘almost single-valued” and selections which are ‘“‘almost continuous’’. More
precisely, let ¥ be a metric space with metric d, and define that the multi-
function ¢ is 6-small for some 6 > 0 if the diameter diam(¢(x)) =< 6 for all
x € X. We further use the terminology of Muenzenberger [5] and Smithson [6]
and say that f: X — Y is 8-continuous if for every x € X there exists an open
neighbourhood U (x) such that f(U(x)) C Ss(f(x)), where

Ss(f(x)) = {y € Y|d(y, f(x)) < 8}.

(This definition is related to, but not identical with, the definition of §-con-
tinuity originally introduced by Klee [3].) The function f is continuous if it
is 8-continuous for every § > 0 [6], and clearly ¢ is single-valued if it is §-small
for all § > 0. Hence we can think of f as almost continuous and of ¢ as almost
single-valued if § is small.

We prove in Theorem 2.1 that every selection of an upper or lower semi-
continuous §-small multifunction is 26-continuous, and in Theorem 2.2 that
for every é-continuous function f on a compact Hausdorff space X, there exist
28-small and either upper or lower semi-continuous multifunctions for which f
is a selection. We further show that the multifunctions ¢ constructed in
Theorem 2.2 have ‘‘nice” properties for certain spaces. They are convex-
valued if ¥V is a normed linear space, and continuum-valued if ¥ is a dendrite.
Klee’s [3] and Smithson’s [6] results that compact convex subsets of finite-
dimensional normed linear spaces and dendrites have the proximate fixed
point property are obtained as corollaries.

2. s-continuous selections of small multifunctions. Let X and Y be
topological spaces. A multifunction ¢ : X — ¥V is called usc (upper semi-
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continuous) if for every open set V C ¥ with ¢(x) C V there exists an open
neighbourhood U of x such that ¢ (U) C V. It is called Isc (lower semi-con-
tinuous) if for every x € X and for every openset V C V with o(x) NV = @
there exists an open neighbourhood U of x such that ¢(x’) N\ V = @ for all
x’ € U. If ¢ is both usc and lsc it is called continuous. A point-closed (point-
open) multifunction is a multifunction for which ¢(x) is closed (open) for
eachx € X.

We assume from now on that Y is a metric space with a metric d. Let

Ss(d) = {y € Y|d@y, 4) < &}
and
Si(4) = {y € Yld(y, 4) = ¢}
The first theorem is an easy consequence of the definitions.

TarOREM 2.1. If the multifunction ¢ : X — Y is §-small and either usc or Isc,
then every selection of ¢ is 28-continuous.

Proof. Let f : X — ¥ be a selection of ¢.

(i) ¢isusc: Take V(x) = Sss(f(x)). As ¢ is 8-small we have o(x) C V(x),
and as ¢ is usc, there exists an open neighbourhood U(x) such that
¢(Ux)) C V(x). Hence f(U(x)) C S25(f(x)), so that f is 26-con-
tinuous.

(ii) ¢ is lIsc: This time take V(x) = S;(f(x)). As ¢ is Isc and
e(x) M V(x) = @, there exists an open neighbourhood U (x) such that
e(x') N Vx) = @ for all ¥ € U(x). As ¢ is é-small we have
d(f(x), f(x")) < 28 forall ¥’ € U(x), hence f(U(x)) C S2(f(x)) and

f is 28-continuous.

Note that the constant 26 in the conclusion of the theorem cannot be
replaced by §. As an example we can take the multifunction ¢ : [0, 1] — [0, 1]
defined by

ex) =% for 0=x<i,
{

ox) =% for t<x=1

which has no %-continuous selection although it is a 1-small usc multifunction.
But the constant 2§ can be replaced by 6 + ¢, for any ¢ > 0.

We now show that on the other hand every §-continuous function can be a
selection of a suitable small usc or Isc multifunction, at least if X is compact
Hausdorft. The proof is more complicated, but constructive.

THEOREM 2.2. Let X be compact Hausdorff and f: X — Y be d-continuous.
Then there exist both a point-closed usc and a point-open Isc 26-small multi-
Sfunction for which f is a selection.
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Proof. (i) Construction of a point-closed usc multifunction. Choose for every
x € X an open neighbourhood U(x) such that f(U(x)) C Ss(f(x)). As X is
compact, the cover {U(x)|x € X} has a finite subcover

{U(x:)|¢ € I and I finite}.

For every x € X, denote by J(x) the subset of I given by 7 € J(x) if and only if
x € Ul(x;). Define a correspondence ¢ : X — Y by

1) o) = N [S(flx))li € J(@)].

We show that ¢ has the desired properties.
For all x € X we have x € N [U(x,)|¢ € J(x)], and hence

f@) € fIN Ukoli € T@N] C N FUE)IE € T@)]
CNIS(fr)li € T@)] = ¢(x).

So ¢(x) 5 @, and f is a selection of the multifunction ¢.

To show that ¢ is usc, choose any x € X, and let IV be an open set with
e(x) C V. As J(x) is finite, the set N(x) = N [U(x,)|? € J(x)] is an open
neighbourhood of x. If x* € N(x), then the definition (1) of ¢ implies that
o(x') C ¢(x). Therefore we have ¢ (N (x)) C ¢(x) C V. As ¢(x) is closed and
diam ¢ (x) = 26 by construction, ¢ is the desired point-closed usc and 2§-small
multifunction.

(i1) Construction of a point-open Isc multifunction. For every x € X there
exists an open neighbourhood U’(x) with f(U’(x)) C Ss(f(x)), and as X is
regular, we can select an open neighbourhood U (x) with

Ulx) CCl(UK)) C U (x),

where Cl denotes the closure. Let { U(x;)|¢ € I} again be a finite subcover of
the cover {U(x)|x € X} of the compact space X. For any x € X let this time
J(x) be the subset of I given by z € J(x) if and only if x € CI(U(x;)) and
definey : X — Y by

(2) ¥) = NISi(flx)le € J(x)].

In a similar way as in (i) we see that f(x) € y(x) for every x € X, so that f is
a selection of the multifunction ¥.

To show that ¢ is Isc, choose for any x € X an open set IV with
VN y(x) # 0. As I\J (x) is finite, the set U [C1(U(x,)|¢ € I\J (x)] is closed,
and we can find an open neighbourhood N (x) such that

N@) N (U [CLU @) € INT@)]] = 0.

Therefore Y (x’) 2 ¢ (x) for all ' € N(x), and hence ¢ (x') N\ V = @. So ¢ is
Isc, and it is point-open and 2§-small by construction.
This completes the proof of Theorem 2.2.
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We notice that in general ¢(x) # ¥ (x) and that ¢ is usually not Isc and ¢
not usc. It would be interesting to know whether one can also construct a
continuous 28-small multifunction for which f is a selection.

3. Application to the proximate fixed point property. The space X
with metric d has the p.f.p.p. (proximate fixed point property) if for every
e > 0 there exists a § > 0 such that for every é-continuous function f : X — X
there is a point x € X with d(x, f(x)) < e. (The concept of the p.f.p.p. was
introduced by Klee [3], but we use the slightly different definitions of Smith-
son [6] and Muenzenberger [5].) Theorem 2.2 can be used to obtain results on
the p.f.p.p. The method consists in showing that for suitable spaces the
function ¢ defined in (1) has additional properties which ensure a fixed point
of ¢.

PropositioN 3.1. If YV is a convex subset of a normed linear space, then the
multifunction ¢ defined in (1) is convex-valued.

Proof. The set S;(f(x;)) is convex, and the intersection of convex sets is
convex also.

COROLLARY 3.2. A compact convex subset C of a finite-dimensional normed
linear space has the p.f.p.p. (See Klee [3, Theorem 3].)

Proof. For any € > 0, take 6 = ¢/3, and let f : C — C be §-continuous. The
function ¢ : C — C defined in (1) is usc and convex-valued, and hence has a
fixed point x,; i.e. a point with xy € ¢(x0) [1, p. 251]. As ¢ is 2§-small and
fxo) € ¢(x0), we have d (xo, f(x0)) = 26 < ¢ so that C has the p.f.p.p.

A dendrite is a metrizable continuum in which every pair of points can be
separated by a third one. It has a convex metric [2].

ProrositioN 3.3. If YV is a dendrite with a convex metric, then the multi-
Sfunction ¢ defined in (1) is continuum-valued.

Proof. Each set S;(f(x;)) used in the definition of ¢ is arc-connected, as it
contains with every point z # f(x;) also the unique arc from z to f(x;). Hence
it is a continuum, and the intersection of finitely many continua in a dendrite
is a continuum [8, p. 88].

COROLLARY 3.4. 4 dendrite has the p.f.p.p. (See Smithson [6].)

Proof. The proof is analogous to that of Corollary 3.2, as dendrites have the
fixed point property for usc and continuum-valued multifunctions [7].
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