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Long Sets of Lengths With
Maximal Elasticity

Alfred Geroldinger and Qinghai Zhong

Abstract. 'We introduce a new invariant describing the structure of sets of lengths in atomic monoids
and domains. For an atomic monoid H, let A, (H) be the set of all positive integers d that occur as
differences of arbitrarily long arithmetical progressions contained in sets of lengths having maximal
elasticity p(H). We study A, (H) for transfer Krull monoids of finite type (including commutative
Krull domains with finite class group) with methods from additive combinatorics, and also for a
class of weakly Krull domains (including orders in algebraic number fields) for which we use ideal
theoretic methods.

1 Introduction

Let H be a monoid or domain such that every non-zero and non-unit element can
be written as a finite product of atoms. If a = u;--- uy is a factorization into atoms
uy,...,uy, then k is called the length of this factorization and the set L(a) c N of
all possible factorization lengths is called the set of lengths of a. The system L(H) =
{L(a) | a € H} of all sets of lengths is a well-studied means of describing the non-
uniqueness of factorizations of H. If there is some a € H such that |[L(a)| > 1, then
L(a") o L(a)+---+L(a), whence L(a") has more than n elements for every n € N.
Weak-ideal theoretic conditions on H guarantee that all sets of lengths are finite. Then
apart from the trivial case where all sets of lengths are singletons, £(H) is a family
of finite subsets of the integers containing arbitrarily long sets. Only in a couple of
very special cases can the system £ (H) be written down explicitly. In general, £L(H)
is described by parameters such as the set of distances A(H), the elasticity p(H), and
others. We recall the definition of the elasticity p(H). If L € L(H), then p(L) =
sup(L)/ min L is the elasticity of L (thus p(L) =1if and only if |L| = 1). The elasticity
p(H) of H is the supremum of all p(L) overall L € £(H), and we say that it is accepted
if there is some L € £L(H) such that p(H) = p(L) < oo.

The goal of the present paper is to study the possible differences of arbitrarily long
arithmetical progressions contained in sets of lengths having maximal possible elas-
ticity. More precisely, suppose that H has accepted elasticity with 1 < p(H) < co. Then
let A,(H) denote the set of all d € N with the following property: for every k € N,
there is some Ly € L(H) with p(Lg) = p(H) and

Lk :}/k+(L;<U{0,d,...,€kd}UL;C/ Cyk+dZ,
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where yi € Z, max L} < 0, min L} > €xd, and €, > k. We study A,(H) for transfer
Krull monoids of finite type and for classes of weakly Krull monoids.

A transfer Krull monoid of finite type is a monoid having a weak transfer homo-
morphism to a monoid of zero-sum sequences over a finite subset of an abelian group.
Transfer homomorphisms preserve factorization lengths, which implies that the sys-
tems of sets of lengths of the two monoids coincide. This setting includes commuta-
tive Krull domains with finite class group, but also classes of not necessarily integrally
closed noetherian domains, and classes of non-commutative Dedekind prime rings
(for a detailed discussion see the beginning of Section 3).

Let H be a transfer Krull monoid over a finite abelian group G such that |G| > 3.
Then L(H) = L(B(G)) =: L(G), whence sets of lengths of H can be studied in the
monoid B(G) of zero-sum sequences over G and methods from additive combina-
torics can be applied. This setting has found wide interest in the literature [8,17,34].
Our main results on A, ( - ) for transfer Krull monoids are summarized after Conjec-
ture 3.20. In a discussion preceding Lemma 3.2 we review the tools from zero-sum
theory required for studying A, (- ) and their state of the art. A central question in all
studies of systems of sets of lengths is the so-called Characterization Problem, which
asks whether for two non-isomorphic finite abelian groups G and G’ (with Davenport
constant D(G) > 4), the systems of sets of lengths £(G) and £(G’) can coincide. The
standing conjecture is that this is not possible (see [15, §6] for a survey, and [20,25,37]
for recent progress), and the new invariant A, ( - ) turns out to be a further useful tool
in these investigations (Corollary 3.19).

Within factorization theory the case of (transfer) Krull monoids and domains is
by far the best-understood case. Much less is known in the non-Krull case. The most
investigated class is Mori domains R with non-zero conductor f, finite v-class group,
and a finiteness condition on the factor ring R/f (see [13,31]). However, in the over-
whelming number of situations only abstract arithmetical finiteness results are known
but no precise results (such as in the Krull case). Mori domains, which are weakly
Krull, have a defining family of one-dimensional local Mori domains, which provides
a strategy for obtaining precise results. In Section 4 we study A, (- ) for such weakly
Krull Mori domains and for their monoids of v-invertible v-ideals, under natural al-
gebraic finiteness assumptions that are satisfied, among others, by orders in algebraic
number fields (Theorem 4.4). This is done by studying the local case first and then
the local results are glued together with the help of the associated T-block monoid.
Our results on A, ( - ) allow us to reveal further classes of weakly Krull monoids that
are not transfer Krull (Corollary 4.6).

2 Background on Sets of Lengths

For integers a and b, we denote by [a,b] = {x € Z | a < x < b} the discrete interval
between a and b. Let L c Z be a subset. If d € N and ¢, M € N, then L is called
an almost arithmetical progression (AAP for short) with difference d, length ¢, and
bound M if

(2.1) L=y+(L'u{0,d,....,ed}uLl") cy+dZ,
where y € Z, L' c [-M,-1],and L” c ¢d + [1, M]. If L' c Z, then
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L+L ={a+blaecLbel’}

denotes the sumset. If L = {my, ..., my} c Z is finite with k € Ny and m; < -+ < my,
then A(L) = {m; —m;_; | i € [2,k]} c N denotes the set of distances of L. If L c N is
a subset of the positive integers, then p(L) = sup L/ min L denotes its elasticity, and
for convenience we set p({0}) =1.

Let G be a finite abelian group. Let r € Nand (ey, .. ., e,) be an r-tuple of elements
of G. Then (e, ..., e,) is said to be independent if ¢; # 0 for all i € [1, 7] and if for
all (my,...,m,) € Z" an equation mye; + --- + me, = 0 implies that m;e; = 0 for all

€ [1,r]. Furthermore, (ey,...,e,) is said to be a basis of G if it is independent and
G = (e;) ®--- @ (e,). For every n € N, we denote by C, an additive cyclic group of
order n.

By a monoid, we mean an associative semigroup with unit element, and, if not
stated otherwise, we use multiplicative notation. Let H be a monoid with unit-element
1 = 1y € H. We denote by H* the group of invertible elements and say that H is
reduced if H* = {1}. Let S ¢ H be a subset and a € S. Then [S] c H denotes
the submonoid generated by S, and [a] = [{a}] = {a* | k € Ny} is the submonoid
generated by a. We say that the subset S is divisor-closed if a, b € H and ab € S implies
that a, b € S. We denote by [[ S]] the smallest divisor-closed submonoid containing S,
and [[a]] = [[{a}]] is the smallest divisor-closed submonoid of H containing a. The
monoid H is said to be unit-cancellative if for each two elements a, u € H any of the
equations au = a or ua = a implies that u € H*. Clearly, every cancellative monoid is
unit-cancellative.

Suppose that H is unit-cancellative. An element u € H is said to be irreducible (or
an atom) if u ¢ H* and any equation of the form u = ab, with a, b € H, implies that
a € H or b € H*. Let A(H) denote the set of atoms, and we say that H is atomic if
every non-unit is a finite product of atoms. If H satisfies the ascending chain condition
on principal left ideals and on principal right ideals, then H is atomic [11, Theorem
26).fae HNH*and a = u; - uy, where k e Nand uy, ..., u; € A(H), then k is a
factorization length of g, and

Lu(a) = L(a) = {k| k is a factorization length of a} ¢ N
denotes the set of lengths of a. It is convenient to set L(a) = {0} for all a € H* (note
that every divisor of an invertible element is again invertible). The family
L(H)={L(a)|acH}
is called the system of sets of lengths of H, and
p(H) =sup{p(L) | L € L(H)} € Ry U {oo}

denotes the elasticity of H. We say that a monoid H has accepted elasticity if it is
atomic unit-cancellative with elasticity p(H) < oo and there is an L € L£(H) such
that p(L) = p(H). Let H be a monoid with accepted elasticity. Then supL < oo
for every L € £L(H) and for a subset S ¢ H, Ag(S) = Uses A(Lu(a)) c N denotes
the set of distances of S. Let S ¢ H be a divisor-closed submonoid and a € S. Then
§* = H*, A(S) = A(H)n S, Ls(a) = Ly(a), and £(S) c L(H). Furthermore, we
have Ag(S) = Ag(S) and we set A(S) = As(S) and A(H) = Ay(H). By definition
we have A(H) = @ ifand only if p(H) = 1.
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For any set P, we denote by F(P) the free abelian monoid with basis P. If
a= Hpvp(ﬂ) e F(P),

peP
where v,: F(P) — Ny is the p-adic exponent, then |a| = ¥ cpvjy(a) € Ny is the
length of a. Let D be a monoid. A submonoid H c D is said to be saturated if a € D,
b € H, and either ab € H or ba € H implies that a € H. A commutative monoid H
is Krull if its associated reduced monoid is a saturated submonoid of a free abelian
monoid [17, Theorem 2.4.8]. A commutative domain is Krull if and only if its monoid
of non-zero elements is a Krull monoid. The theory of commutative Krull monoids
and domains is presented in [17,28].
Let G be an additive abelian group and Gy ¢ G a nonempty subset. An element

S=g-ge=1]] ng(S) € F(Go)
g€Go

is said to be a zero-sum sequence if its sum o/(S) = g1+ + ge = ¥ peq, V¢ (S) g equals
zero. Then the set B(Gy) of all zero-sum sequences over Gy is a submonoid, and since
B(Go) c F(Gy) is saturated, it is a commutative Krull monoid. If S is as above, then
|S| = € € Ny is the length of S and supp(S) = {g1,. .., ge} ¢ G denotes its support. The
monoid B(Gy) plays a crucial role in Section 3. It is usual to set £L(Gy) := L(B(Go)),
A(Go) = A(B(Gy)), p(Go) := p(B(Gp)), and A(Gy) := A(B(Gy)) (although this
is an abuse of notation, it will never lead to confusion). If Gy is finite, then A(Gy) is
finite and D(Gy) = max{|U| | U € A(Gy)} € N denotes the Davenport constant of
Go.

Now we introduce the new arithmetical invariant, A,(-), to be studied in the
present paper. For convenience we repeat the definition of the well-studied invari-
ant A;(-).

Definition 2.1 Let H be an atomic unit-cancellative monoid.

(i) [17, Definition 4.3.12] Let A;(H) denote the set of all d € N having the follow-
ing property. For every k € N, there is some Ly € £(H) that is an AAP with
difference d and length at least k.

(i) Let A,(H) denote the set of all d € N having the following property. For every
k € N, there is some Ly € £L(H) that is an AAP with difference d, length at least
k, and with p(Ly) = p(H).

(iii) Weset Aj(H) = {minAy([a]) | a € Hwith p(L(a)) = p(H)}.

By definition, we have
(2.2) A,(H) c A((H) c A(H),

and A, (H) = @ if H does not have accepted elasticity.

The set A;(H) is studied with the help of the set A*(H), which is defined as the set
of all d € N having the following property ([17, Definition 4.3.12]): there is a divisor-
closed submonoid S ¢ H with A(S) # @ and d = min A(S). If H is a commutative
cancellative BF-monoid, then, by [17, Proposition 4.3.14],

(2.3) A*(H) = {min A([[a]]) | a € H with A([[a]]) # 2}
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The sets A*(H), called the set of minimal distances of H, and A;(H) have found
wide attention, so far mainly for transfer Krull monoids over finite abelian groups
[20,24,25,32,37).

In the present paper we study A, (H), and the set A7 (H) is a technical tool to do so.
The relationship between the two sets is the topic of Lemma 2.4. In particular, we have
@ # A5 (H) c A,(H) (provided that H has accepted elasticity p(H) > 1). Equations
(2.3) and (2.4) reveal the formal correspondence between A*(H) and A7 (H) in the
case of commutative monoids. However, there exist commutative monoids H and
divisor-closed submonoids S ¢ H with p(S) = p(H) > 1such that min A(S) ¢ A, (H)
(use Theorem 3.5 with S = H € {B(Cy4),B(Cs), B(Cio}). Thus, in contrast to (2.3),
in (2.4) we cannot replace [[a]] by an arbitrary divisor-closed submonoid.

In contrast to the formal similarity in the definitions, the invariants A,(H) and
A1 (H) show a very different behavior (in particular for transfer Krull monoids over
finite abelian groups, see Section 3). Thus the additional requirement on the elasticity
is a very strong one.

We start with a technical lemma analysing the set A7 (H).

Lemma 2.2 Let S c H be a submonoid with Ay (S) # @.
(i) minAg(S) =gedAg(S).
(i) If H is commutative, then min A([[S]]) = min Ag([[S]]) = min Ay (S), whence

(2.4) A, (H) = {min A([[a]]) | @ € H with p(L(a)) = p(H)}.

(iii) Leta,b e Swithp(Ly(a)) = p(Lu(b)) = p(H). Then p(Ly(ab)) = p(H). In
particular, p(Ly(a*)) = p(H) for every k € N and p([[a]]) = p(H).

Proof (i) It is sufficient to prove that min Ay (S) |d’ for every d’ € Ay(S). Letd =
min Ay (S) and assume to the contrary that there exists d’ € Ay (S) such thatd + d’.

We set dy = ged(d,d’). Then dy < d and there exist x, y € N such that dy =
xd-yd'. Letay, a; € Sbesuch that {¢;,6;+d} c Ly(a;) and {£,-d’,¢,} c Ly(a,).
Thus

{x,xti+d,...,xt+xd} c Ly(ay), {yla—yd ytr-(y-1)d’,...,yt,} c Lu(a)).

Therefore {x¢; + y€2,x8; + yt; + xd — yd'} c Ly(afa}), which implies that d <
xd — yd' = dy, a contradiction.

(ii) Suppose that H is commutative. Since S ¢ [[S]] and [[S]] ¢ H is divisor-closed,
it follows that min A([[S]]) = minAg([[S]]) < minAg(S). To verify the reverse
inequality, let b € [[S]] with min A(Lg (b)) = min A([[S]]). Thereis a ¢ € H such that
be € S. Since Lg(b) + Ly (c) c Ly(bc), we infer that

min Ay (S) < min A(Lg(bc)) < min A(Lg(b)) = min A([[S])).

In particular, if S = [a], then min A([[a]]) = min Ay([a]) and hence the equation
for A7 (H) follows.
(iii) Since L(a) + L(b) c L(ab), it follows that

minL(ab) <minl(a) + minL(d) < maxL(a) + maxL(b) < maxL(ab),
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and hence
maxL(ab) _maxL(a)+ maxL(b)
H) > p(L(ab)) = >
p(H) 2 p(L(ab)) minlL(ab) ~ minL(a)+ minL(b)
. (maxL(a) maxL(b)
> , =p(H).
_mln{ minL(a) minL(b)} p(H)
The in particular statement follows by induction on k. ]

We continue with a simple observation on the structure of the sets Ly, which pop
up in the definition of A,(H), for all monoids H under consideration. To do so, we
need a further definition. Letd € N, M € Ny, and {0,d} ¢ D c [0,d]. Asubset L c Z
is called an almost arithmetical multiprogression (AAMP for short) with difference d,
period D, and bound M,if L=y+ (L' UL*UL") c y+D +dZ, where y € Z is a shift
parameter,

e L* is finite nonempty with min L* = 0 and L* = (D + dZ) n [0, max L*],
e L'c[-M,-1] and L” c maxL* +[1, M].

The following characterization of A, (H) follows from the very definitions.

Lemma 2.3 Let H be a monoid with accepted elasticity and with finite non-empty
set of distances, and let M € N. Suppose that every L € L(H) is an AAMP with some
difference d € A(H) and bound M. Then A,(H) is the set of all d € N with the following
property: for every k € N there is some ay € H such that p(L(ax)) = p(H) and

L(ak) = y+(L'u{0,d,....edyuL") c y + dZ,

wherey € Z, £ >k, L' c[-M,-1], and L" c &d + [1, M].

The assumption in Lemma 2.3, that all sets of lengths are AAMP with global
bounds, is a well-studied property in factorization theory. It holds true, among oth-
ers, for transfer Krull monoids of finite type (see §3) and for weakly Krull monoids
(Theorem 4.4). We refer to [17, Chapter 4.7] for a survey on settings where sets of
lengths are AAMP and also to [18]. Thus, under this assumption, the above lemma
shows that the sets L (in Definition 2.1 (ii) of A, (H)) have globally bounded begin-
ning and end parts L' and L”, and the goal is to study the set of possible distances in
the middle part, which can get arbitrarily long.

Lemma 2.4 Let H be a monoid with accepted elasticity.

(i) Ifp(H) > L then @ # Aj(H) c A,(H) and minA;(H) = minA,(H). In
particular, if p(H) > 1 and |A(H)| = 1, then Ay (H) = A,(H) = A(H).

(ii) IfS c H is a divisor-closed submonoid with p(S) = p(H), then A,(S) c A,(H).

(iii) If H is commutative and cancellative with finitely many atoms up to asso-
ciates, then Ap(H) c {d € N | d divides somed’ e Aj(H)}. In particular,
max A, (H) = maxA;(H).

(iv) Ap,(H) = @ if and only if A\(H) = @ if and only if A(H) = & if and only if
p(H) =1
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Proof (i) Suppose that p(H) > 1. Then, by definition, there is an a ¢ H with
p(L(a)) = p(H) > 1 whence Ay([a]) # @ and thus AZ(H) # @. To verify that
Aj(H) c A,(H), we set d = min Ay ([a]). Then there is an £ € N such that d €
A(L(a®)) and thus for every k € N the set L(a*¢) contains an arithmetical progres-
sion with difference d and length at least k. Since min Ag([a]) = ged An([a]) by
Lemma 2.2 (ii), L(a*¢) is an AAP with difference d and length at least k for every
k € N. By Lemma 2.2 (iii) , we have p(Lg(a**)) = p(H) and thus d € A, (H).

Since A7 (H) c A,(H), it follows that min A, (H) < min A7 (H). To verify the
reverse inequality, let d € A, (H) be given. Then thereisan a € H such that L(a) is an
AAP with difference d, length at least 1, and p(L(a)) = p(H). Thus min Ay ([a]) €
A, (H) by definition, and clearly we have min Ag([a]) < min A(L(a)) = d.

If p(H) > 1and [A(H)| = 1, then the inclusions given in (2.2) imply that A7 (H) =
A,(H) = A(H).

(ii) Suppose that S c H is divisor-closed with p(S) = p(H). Then for every a € S,
we have Lg(a) = Ly(a), and hence £(S) c L(H). If d € A,(S), then by definition,
for every k € N, there is some Ly € £(S) ¢ £L(H) that is an AAP with difference d,
length at least k, and with p(Lx) = p(S) = p(H), and thus d € A, (H).

(iii) Clearly, the in particular statement follows from the asserted inclusion and
from the fact that A7 (H) c A,(H) as shown in (i). Several times we will use the
fact that finitely generated commutative monoids are locally tame and have accepted
elasticity [17, Theorem 3.1.4].

Without restriction we may suppose that H is reduced, and we set

A(H) ={u,...,us}

with t € N. Let d € A,(H) be given. Then for every k € N, there is a by € H such that
p(L(bx)) = p(H) and L(by) is an AAP with difference d and length €, > k. Since
A(H) is finite, there are a nonempty subset A ¢ A(H), say A = {uy,...,u,} with
s € [1, ], a constant M; € Ny, and a subsequence (b, )ks1 Of (b ) k1> $aY b, = i
forall k € N, such that, again forall k € N, ¢, = [T;_, u; " where my,; > k for i € 1, 5]
and my,; < M; fori € [s+1,t]. By [17, Theorem 4.3.6] (applied to the monoid
[Tur---us]]), L = L(ITj u;™") is an AAP with difference d’ = min A([[u; -+~ u,]])
for every k € N. Since H is locally tame, [17, Proposition 4.3.4] implies that there is a
constant M, € Ny such that for every k e N

maxL(cy) <maxLy+ M, and minl(cx) > minLy — M,.

Since for every k € N there is a y; € N such that y; + Ly c L(cg), we infer that
d divides d’. Being a divisor-closed submonoid of a finitely generated monoid, the
monoid [[u; - - - u,]] is finitely generated by [17, Proposition 2.7.5]. Thus there is an

ae[[ur-ug]]

such that p(L(a)) = p([[u1---us]]). Since d divides d’ = min A([[u; -~ u,]]) and d’
divides min A([[a]]), it follows that d divides min A([[a]]).
Next we verify that p([Ju; -+ us]]) = p(H) from which it follows that

min A([[a]]) € A%(H)
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by Lemma 2.2 (ii). For k € N, we have
maxL(cy) maxLy+ M, max Ly,
H) = < < ug|l) < p(H).
p(H) minl(c;) = minL; — M, min L <p([lm---us])) < p(H)
If k - oo, then (max Ly + M;)/(min Ly — M,) — max L(cx)/min L(cg), which im-

plies that p([[u--- us]]) = p(H).
(iv) This follows from (i) and from the basic relation given in (2.2). [ |

Lemma 2.5 Let H be a monoid with accepted elasticity. Then for every nonempty
subset A c A, (H), thereisad € A,(H) such that d < gcd A.

Proof Let A = {d,...,d,} c A,(H) be a nonempty subset. For every i € [1,#]
and every k € N there is an a; ; € H such that L(a; ) is an AAP with difference d;,
length at least k, and with p(L(a; x)) = p(H). By Lemma 2.2 (iii), L(ay,x - - - @, ) has
elasticity p(H) for all k € N, and thus d = min Ag([a,k - ank]) € Ay (H) € Ay (H).
If k is sufficiently large, then ged(dy, ..., d,) occurs as a distance of the sumset

L(apx) +-+L(ani).

Since the sumset L(ay ;) + -+ -+ L(an k) c L(ayx - anx) and

d=gcdAy([aLk- ank])

by Lemma 2.2 (i), d divides any distance of A(L(ayx---a,x)) whence it divides
ged(dy, ..., dy). [ |

Lemma 2.6 LetH = Hy x---x H, wheren € N and Hy, ..., H, are atomic unit-
cancellative monoids.

(i) Then p(H) = sup{p(H1),...,p(Hy)}, and H has accepted elasticity if and only
if there is some i € [1, n] such that H; has accepted elasticity p(H;) = p(H).

(ii) Lets € [1,n] and suppose that H; has accepted elasticity p(H;) = p(H) for all
i € [L,s], and that H; either does not have accepted elasticity or p(H;) < p(H)
forallie[s+1,n]. Weset

A ={ged{diliel} | dieA,(H;) foralliel,@#1Ic[Ls]},
A" ={ged{dlieI}| d; e Ay(H;) forallie I, #1c [1,s]}.

Then A" < A,(H), A" ¢ AZ(H), and if |A(H;)| = 1for all i € [1,s], then A" =
A" = A%(H) = Ay (H).

Proof (i) The formula for p(H) follows from [17, Proposition 1.4.5], where a proof is
given for cancellative monoids but the proof of the general case runs along the same
lines. The formula for p(H) immediately implies the second assertion.

(ii) First we show that A’ ¢ A,(H). Let @ # I c [1,s], say I = [1,r], and choose
d; € A,(H;) for every i € [I,r]. For each i € [1,7] and every £ € N there is an
a;¢ € H; such that L(a; ) is an AAP with difference d;, length at least 2¢, and with
p(L(ai¢)) = p(H). Then p(L(aye---are)) = p(H) by Lemma 2.2 (iii). Thus, for all
sufficiently large ¢, the sumset L(ay¢) +--+ L(a,¢) = L(aye---ar¢) isan AAP with
difference gcd(dj, . .., d,) and length at least £.
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Second we show that A” c AZ(H). Let @ # I c [1,s], say I = [1, 7], and choose
di € Aj(H;) for every i € [1,7]. Thus there are a; € H; such that p(L(a;)) = p(H)
and min Ay, ([a;]) = minAg([a;]) = d; for all i € [1,r]. Therefore, again for all
i € [1,r], there is an ¢; € N such that d; € A(L(a‘")) and thus, for every k € N,
L(afkef) contains an arithmetical progression with difference d; and length at least
2k. Setting £ = max(#;, ..., ¢,) we infer that

L((ar---a,)™) = L(a*) + -+ + L(a}**)

is an AAP with difference ged(d;, . ..,d,;) and length at least k for all sufficiently
large k. Thus min Ay ([a;---a,]) = ged(dy,...,d,). Since p(L(a;---a,)) = p(H)
by Lemma 2.2 (iii), it follows that ged(dy, ..., d,) = minAy([a:---a,]) € A (H).
Now suppose that A(H;) = {d; } foralli € [1,s]. Then A7 (H;) = A, (H;) = A(H;)
by Lemma 2.4 (i), and hence A’ = A”. By the two previous assertions, it remains to
show that A,(H) c A’. Then all four sets are equal as asserted.
Letd € A,(H) and let k € N be sufficiently large. Then there are

ark EH],...,as)k EHS

such that L(ay - asx) is an AAP with difference d, elasticity p(H), and length at
least k. Since A(H;) = {d;} forall i € [1,s],

I_(al’k "'as,k) = L(ﬂl,k) + e+ L(as’k)

is a sumset of arithmetical progressions with differences dj, ..., d;. After renum-
bering if necessary there is an r € [1,s] such that |L(a; )| > 1 for all i € [1,7] and
IL(a; k)| =1foralli € [r+1,s]. Thus we clearly obtain that d > gcd(ds, ..., d,). Since
L(ayk---ask) is an AAP with difference d and length at least k with k being suffi-
ciently large, it follows that L(ay,x -+ as k) € y + dZ for some y € Z (see (2.1)), which
implies that d | d; for all i € [1,7]. Thus d = gcd(d;, ...,d,) and hence d € A'. |

3 Transfer Krull Monoids

An atomic unit-cancellative monoid H is said to be a transfer Krull monoid if either
of the following two equivalent properties is satisfied.

(a) There is a commutative Krull monoid B and a weak transfer homomorphism

0:H — B.

(b) Thereisan abelian group G, asubset Gy c G, and a weak transfer homomorphism
In case (b) we say that H is a transfer Krull monoid over Gy, and if Gy is finite, then
H is said to be a transfer Krull monoid of finite type. We do not repeat the technical
definition of weak transfer homomorphisms (introduced by Baeth and Smertnig [3])
because we use only that they preserve sets of lengths. Therefore L(H) = £(Gp)
[15, Lemma 4.2], which, by definition, implies that

CAY A(H) = A(Go), Ay (H) = 8p(Go), p(H) = p(Go),

and H has accepted elasticity if and only if B(Gy) has accepted elasticity. Note that,
as with other invariants, we use the abbreviations

A(Gy) = A (B(Gy)), A;(GO):: A;(B(Go)), and  A,(Go) = A, (B(Gy)).
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Every commutative Krull monoid (and thus every commutative Krull domain) with
class group G is a transfer Krull monoid over the subset Gy ¢ G containing prime
divisors. In particular, if the class group G is finite and every class contains a prime
divisor (which holds true for holomorphy rings in global fields), then it is a transfer
Krull monoid over G. Deep results reveal large classes of bounded HNP (hereditary
noetherian prime) rings to be transfer Krull [3,35,36]. To mention one of these results
in detail, let O be a ring of integers of an algebraic number field K, A a central simple
algebra over K, and R a classical maximal O-order of A. Then the monoid of cancella-
tive elements of R is transfer Krull if and only if every stably free left R-ideal is free,
and if this holds, then it is a tranfer Krull monoid over a finite abelian group (namely
aray class group of O). We refer to [15] for a detailed discussion of commutative Krull
monoids with finite class group and of further transfer Krull monoids.

Let H be a transfer Krull monoid over a finite abelian group G. The system £(H) =
L(G), together with all parameters controlling it, is a central object of interest in
factorization theory (see [34] for a survey). By (2.2) and Lemma 2.4 (i), we have

A%(G) € Ay(G) € A(G) € A(G).

The set A(G) is an interval by [22], but A;(G) is far from being an interval [32]. A
characterization when A;(G) is an interval can be found in [37]. We have

max A;(G) = max{r(G) - L,exp(G) - 2}

for |G| > 3, by [24]. This section will reveal that A,(G) is quite different from A;(G).

We start with a result for transfer Krull monoids over arbitrary finite subsets. It
shows that in finitely generated commutative Krull monoids H with finite class group
(and without restriction on the classes containing prime divisors) a large variety of
finite sets can be realized as A,(H) sets (Lemma 2.5 shows that not every finite set
can be realized as a A,(-) set of some monoid; see also Lemmas 2.6 and 4.3). In
contrast to this we will see that the set A,(H) is extremely restricted if the set of
classes containing prime divisors is very large.

Theorem 3.1

(i) Let H be a transfer Krull monoid over a finite subset Go. Then H has accepted
elasticity p(H) = p(Go) < D(Gy)/2 and equality holds if Gy = —Go.

(ii) For every finite set A = {d,...,d,} c N there exists a finitely generated commu-
tative Krull monoid H with finite class group such that

{ged{di[iel}[@#Ic[ln]}= A (H)=Ay(H).

(iii) If H is a transfer Krull monoid over a subset G of a finite abelian group G with
p(H) = D(G)/2, then (Go) = G and A,(H) c A,(G).

Proof (i) By (3.1), we have L(H) = £(Gy) and hence p(H) = p(Gy). Since the
set Gy is finite, the monoid B(Gy) is finitely generated whence the elasticity p(Gy)
is accepted [17, Theorems 3.1.4 and 3.4.2]. The statements on p(Gy) follow from [17,
Theorem 3.4.11].

(ii) Let A = {d;, ..., d,} c N be a finite set. We start with the following assertion.
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Claim  For every i € [1,n], there is a finite abelian group G; and a subset G} c G;
such that A,(G}) = A(G}) = {d;} and p(G}) = 2.

Proof of Claim We do the construction for a given d € N and omit all indices. If
d=1thenG = Cg = {0,g,...,7¢} and G’ = {g,3g} have the required proper-
ties. Suppose that d > 2. Consider a finite abelian group G, independent elements

er,....eq_1 € Gwithord(e;) =--- =ord(eg_;) = 2d,and seteg = —(e1+---+eg4_;). It
is easy to check that G' = {eg, e1,..., e4-1} satisfies p(G') = 2 and A(G") = {d} (for
details of a more general construction see [17, Proposition 4.1.2]). [ |

Weset Gy =W/, GicG=G & ---®G,and H = B(Gy). Then H = B(G]) x--- x
B(G;,) is a finitely generated commutative Krull monoid with finite class group. By
Lemma 2.6 (i), H has accepted elasticity p(H) = 2 and

{ged{dill c [Ln]}| @ #1c[Ln]} = A5(H) = A (H).

(iii) Let H be a transfer Krull monoid over Gy such that p(H) = D(G)/2. Then (i)

shows that D(G)/2 = p(H) < D(Gy)/2 < D(G)/2. Thus
D(G) = D(Go) < D((Go)) < D(G),

and since proper subgroups of G have a strictly smaller Davenport constant [17, Pro-
position 5.1.11], it follows that (Gy) = G.

Since p(H) = p(Gyp) and p(G) = D(G)/2 by (i), we obtain that p(Gy) = p(G).
Since A,(H) = A,(Go) and B(G) c B(G) is a divisor-closed submonoid, the as-
sertion follows from Lemma 2.4 (ii). [ |

Let all notation be as in Theorem 3.1 (iii). Since A,(H) # @ and A,(G) will turn
out to be small (Conjecture 3.20), we have A,(H) = A,(G) in many situations (as it
holds true in the case Gy = G).

In the remainder of this section we study A, (G) for finite abelian groups G. Sup-

pose that

,
(3.2) G2Cpy @ ®Cy andset D*(G) =1+ ) (n; - 1),

i=1
where 1 < n| -+ | n,, n, = exp(G) is the exponent of G, and r = r(G) is the rank of
G. Thus r(G) = max{r,(G) | p € P} is the maximum of all p-ranks r,(G) over all
primes p € P.

Lemma 3.2 reveals that the study of A,(G) needs information on the Davenport
constant D(G) as well as (at least some basic) information on the structure of mini-
mal zero-sum sequences having length D(G). Although studied since the 1960s, the
precise value of the Davenport constant is known only in a very limited number of
cases. Clearly, we have D*(G) < D(G) and since the 1960s it is known that equality
holds if r(G) < 2 or if G is a p-group. Further classes of groups have been found
where equality holds and also where it does not hold, but a good understanding of
this phenomenon is still missing. Even less is known on the inverse problem, namely
on the structure of minimal zero-sum sequences having length D(G). The structure
of such sequences is clear for cyclic groups and for elementary 2-groups, and recently
the structure was determined for rank two groups. For general groups, even harmless
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looking questions (such as whether each minimal zero-sum sequence of length D(G)
does contain an element of order exp(G)) are open. In this section we study A,(G)
for all classes of groups where at least some information on the inverse problem is
available.

Recall that A(G) = @ if and only if |G| < 2, whence we will always assume that
|G| > 3.

Lemma 3.2 Let G be a finite abelian group with |G| > 3.
(i) For A e B(G) the following statements are equivalent.
(@) p(L(4)) = D(G)/2
(b) There are k,€ € N, and Uy,..., U, V,..., Vp € A(G) with |Uj| = -+ =
Ui = D(G), |Vi| = -+ = |Ve| = 2 such that A= Uy -+~ Uy = Vy - V.
(ii) For a subset Gy c G the following statements are equivalent:
(a) Go =supp(A) for some A € B(G) with p(L(A)) =D(G)/2.
(b) Go = -Gy and for every g € Gy there is some A € A(Gy) with g| A and

|A| = D(G).
(i) AZ(G) = {minA(Go) | Go = supp(A) for some A € B(G) with p(L(A)) =
D(G)/2}.
Remark 1fUi,...,U,, € A(G) with |[Uj| = --- = |U,| = D(G), then obviously we

obtain an equation of the form Uy(~U1) - Upn(=Up) = Vi--- Viup(g) with [Vj| = 2
for all i € [1,mD(G)]. But there are also equations U;--- Uy = V;--- Vp with all
properties as in (i) (b) and with k odd [12].

Proof (i) (a)=(b). We set L = L(A) and suppose that p(L) = D(G)/2. If A =0™C,
with m € Ny and C € B(G \ {0}), then
D(G) maxL m+maxL(C) < max L(C) < D(G)
2  minL m+minL(C) ~ minL(C) = 2

whence m = 0. Suppose that U;---Uy = A = V;---V, with k = minL(A), £ =
maxL(A),and Uy,..., Ui, Vi,..., Ve € A(G). Then p(L) = €/k = D(G)/2 and

>

[4 k
20< Y|Vl = |4 = 3 |Ui| < kD(G).
i=1 i=1

This implies that |A| = 2€ = kD(G), [V4| = -+- = |[Ve| =2,and |Uy| = - -- = |Ug| = D(G).

(b) = (a). Suppose that A = Uy--- Uy = V;--- Vo, where Uy, ..., Uy, Wi, ..., Vp are
as in (b). Then we infer that min L(A)D(G) < kD(G) = |A| = 2¢ < 2maxL(A) and
hence

D(G)

=p(L(4)) < S

D(G) _ Mmax L(A)
2 " minlL(A)
(ii) (a) = (b). This follows from (i).
(b) = (a). Weset Go = {g1,-g1--->8k>—gk - Forevery i€ [L k], let A; € A(Go)
with g;| A; and |A;| = D(G), and set A = [T%,(~A;)A;. Then supp(A) = G, and
p(L(4)) =D(G)/2.
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(iii) Since for every A € B(G) we have [[A]] = B(supp(A)), the assertion follows
from (2.4). [ |

Corollary 3.3  Let G be a finite abelian group with |G| > 3.
(i)  A(G) cAp(G) c {d eN|d divides some d’ € A} (G)}.
(ii)
max A, (G) = max A, (G) = max{min A(Go) | Go
=supp ((-U)U), U € A(G,) with |U| = D(G)}.
Proof (i) Since B(G) is finitely generated, this follows from Lemma 2.4.
(ii) The first equality follows from (i). Then Lemma 3.2 (iii) implies that
max A7 (G) = max{min A(Go) | Go = supp(A)
for some A € B(G) with p(L(A)) = D(G)/2}.
Let A € B(G) with Gy = supp(A) and p(L(A)) = D(G)/2. Then, by Lemma 3.2,

Go = _GO and A = Ul"'Uk with U],...,Uk € A(G) and|U1| == |Uk| = D(G)
Then G; = supp((-U;)U;) © G and min A(Gp) < min A(G;). Thus the assertion
follows. u

Let G be a finite abelian group and let ¢ € G with ord(g) = n > 2. For every
sequence S = (m1g) -+ (neg) € F({g)), where ¢ € Ny and ny,...,n, € [1,n], we
define its g-norm [[§g = M="¢. Note that, 0(S) = 0 implies that n; +--- + 1, = 0
mod n whence ||S|, € Nj.

Lemma 3.4 Let G be a finite abelian group with |G| > 3 and Gy c G be a subset.

(i) If-Go = Gy, then min A(Gy) divides gcd{|U| -2 | U € A(Gp)}.

(i) Ifr>2 (ey,...,e,) independent, ord(e;) = n; foralli € [1,r] where ny| -+ | n,,
ny>2e0=e+--+e,and Gy ={e,—er,...,e,—er e, —€}, then

min A(Gy) = 1.
(iii) If(Go) = (g) for some g € Gy and A(Gy) # @, then
min A(Gy) = ged{||V ], 1|V € A(Go)}.
Proof (i)IfU =g ---ge € A(Gy), then (-U)U = 1%, ( (—gi)g,-) whence {2, ¢} c
L((~U)U) and so ged A(Gy) divides € - 2.

(ii) Since eg = e; + -+ + ey, we have ord(eg) = n, > 2. We distinguish two cases.
First, suppose that n; > 2. Then W = eg'_lel ~er1(—e,)" 1 e A(Gy), and

W2=eyr (en)™ - (eg e+ ef 1 (—er)"?)

is a product of three atoms, whence min A(Gy) = 1.
Now we suppose that n; = 2, and let ¢ € [1,r — 1] such that n; = --- = n; = 2 and
n¢e > 2. Then

Si=eper -e(—ep1) - (—e,) e A(Gy) and S, = eg*_lel---e, e A(Gy).
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S0 82 = (e2(—ers1)* -+ (—ey)?)e? - e? isa product of ¢ + 1 atoms and

2_ n ne—2 2 2 2 2
Sz—eoy'(eo' et+1"'er)'e1"'et

is a product of ¢ + 2 atoms. Thus min A(Gy) | ged(t+1-2, t+2-2) =1, which implies
that min A(Gy) = L.
(iii) See [17, Lemma 6.8.5]. n

Theorem 3.5 Let H be a transfer Krull monoid over a finite abelian group G with
|G| > 3. Then 1€ A,(H) if and only if G is not cyclic of order 4, 6, or 10.

Proof By (3.1), it is sufficient to prove the assertion for B(G) instead of H. We
distinguish two cases.

Case I: r(G) 2 2. By Corollary 3.3 (i), it is sufficient to prove that 1€ A7(G). For each
prime p dividing |G|, we denote by G, the Sylow p-subgroup of G. Since r(G) > 2,
there exists a Sylow-p subgroup G, such that r(G,) > 2. We distinguish two subcases.

Subcase 1.1: there exists a Sylow p-subgroup G, such thatr(G,) > 2 and exp(G,) > 3.
Then there exists a subgroup H of G with p + |H| such that G = G, ® H (clearly,
we may have H = {0}). Let A be an atom of B(G) with length |A| = D(G). Thus
for every g dividing A, there exists a unique pair (fg, hg) with f; € G, and hy € H
such that ¢ = f, + h,. Since (supp(A)) = G, there must exist g € supp(A) such
that ord(f;) = exp(G,). Therefore we can find e, ..., e,(c,) such that G, = (f;) @
(e2) ® --- ® (ey(g,)). There are group isomorphisms ¢:G — G given by ¢(fg) =
fetex¢(ei) =eiforeachie[2,r(Gy)]and ¢(h) = hforeachh e Hyandy:G — G
given by y(f,) = fg — €2, ¥(e;) = e; for each i € [2,r(G,)] and y(h) = h for each
h € H. It follows that ¢(A) and y(A) are atoms of length D(G). We consider the set

Go = supp ((=A)A$((-A)A) y((-4)4)).

Obviously, we have Gy = —Gy and for every a € Gy there is some A’ € A(Gy) with
a|A" and |A’| = D(G). Thus, by Lemma 3.2, it is sufficient to prove min A(Gy) = 1.
Since {g,~g$(g),¥(g)} = {88 & + &2, — €2} < Go and L (g9 (—g)r()) =
{2,0rd(g)} and L(g°"4®)2(g+ ¢,)(g - e2)(~g)°"4(®)) = {2, 0rd(g) - 1}, it follows
that min A(Go) | ged{ord(g)-2,ord(g)-3}. Since ord(g) > exp(G,) > 3, we obtain
that min A(Gy) = L.

Subcase 1.2: there is no Sylow p-subgroup G, such that r(G,) > 2 and exp(G,) > 3.
Let G, be the Sylow p-subgroup with r(G,) > 2. Then p = 2, G, is an elementary

2-group, and G = C;(G) ® H, where H is a cyclic subgroup of odd order.

Let A be an atom of B(G) with length |A| = D(G). There exists an element g, €
supp(A) such that ord(go) is even and hence gy = fo + ho, where fy € G, ~ {0} and
ho € H. We can find e, ..., e, () with ord(e;) = 2 for each i € [2,r(G)] such that
G2 2 (fo) ® (e2) ® - @ (er(g)). Then we can construct two group isomorphisms
$:G > Gby ¢(fy) = ez, d(e2) = fo, ¢(e;) = e; foreach i € [3,r(G)],and ¢(h) = h
foreachh € H,and y: G - Gby y(fo) = fo+ez, w(e;) = e; foreachi € [2,r(G)], and
y(h) = h for each h € H. It follows that ¢(A) and y(A) are atoms of length D(G).

https://doi.org/10.4153/CJM-2017-043-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-043-4

1298 A. Geroldinger and Q. Zhong

We consider the set

Go = supp ((-A)A$((-A)A) y((-4)4)).

Obviously, we have Gy = —Gy and for every a € Gy there is some A’ € A(Gy) with
a|A"and |A'| = D(G). Thus it is sufficient to prove min A(Gp) = L

Note that {go, -0, $(g0), ¥(g0)} = {go> —Lo> e2+ho, go+e2} © Go. Iford(gy) =2,
then hy = 0 and L(g3e5(go + €2)?) = {2,3} imply that min A(Gy) = 1. Suppose that
ord(go) > 4. Since

L5 (~g0)™4(®)) = {2,0rd(g0)},
L(g5™ %7 (g0 + 2)° (-g0)*"8”)) = {2,0d(g0) - 1},
it follows that min A(G, ) divides gcd{ord(go) — 2, 0ord(go) -3} = L

Case 2: r(G) = 1. Let |G| = n and g € G with ord(g) = n. First, we suppose
that n is odd. Then g" and (2g)" are atoms of length D(G) = n, and we set Gy =
{g,-g.2¢,-2¢}. Then Gy = -Gy, and for every h € Gy there is some A € A(Gy) with
h|A and |A| = D(G). It is sufficient to prove that min A(Gy) = 1. In fact, by Lemma
3.4 (i), we obtain that min A(G,) divides gcd{|g"| - 2,|¢g"2(2¢)| -2} = L

Now we suppose that 7 is even and we distinguish two subcases.

Subcase 2.1: n ¢ {4,6,10}. It is sufficient to show that 1 € A7(G). We distinguish two
cases.

First, suppose that there exists an odd positive divisor m of 7 + 1 such that m > 5.
Then ged(m,n) = 1. Let n = m(t +1) — 2, where t > 1. Then A; = (mg)'g™ 2,
A, = (mg)g™™™, As = (mg)**1 g™ %, and A, = g" are atoms. Since A7A; = A3Ay,
we obtain that 1 € A({g, —g, mg, ~mg}). By the definition of A7(G) and Lemma 3.2,
we have that 1€ A7(G) c A,(G).

Second, suppose that for every odd positive divisor m of 5 +1, we have m < 3. Then
241=2%0r 2+1=3-2%", wherea € N. Thus n+4 € {2(2* +1),2(3-2* 7" +1) }.. Since
n ¢ {4,6,10}, we obtain that « > 3. Let g € G with ord(g) = n,and n+4 = 2k, where k
is odd with k > 9. It follows that gcd(k, n) = 1and As = (kg)g" ¥, A¢ = (kg)>g*" 3k,
A7 = g" are atoms. Since A2 = AgA;, we have that1 € A({g,-g, kg, —kg}).

Subcase 2.2: n € {4,6,10}. We must show that1 ¢ A,(G). If n € {4, 6}, it is easy to
check A, (G) = {n - 2}. Suppose that n = 10. Let

Go = U supp(A)= U {mg}={g - 38 -3¢}
AcA(G) with |Al=n me[1,9]
ged(m,10)=1

Then Lemma 3.2 implies that min A(Gy) = min A7(G).
By Lemma 2.4(i), we infer that min A7(G) = minA,(G). By Lemma 3.4 (iii),
min A(Gy) = ged{||V]y -1| V € A(Go)} = 2, which implies that 1 ¢ A,(G). [ |

Lemma 3.6 LetG =C,, ®C,,, withn >1and m > 2. A sequence S over G of length

D(G) = m + mn — 1 is a minimal zero-sum sequence if and only if it has one of the
following two forms.
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i S= efrd(el)_l ]'I?:li(EZ)(x,-el +ey), where

(@) {e,es} isa basis of G,

(b) x1,... Xord(e,) € [0,0rd(er) —1] and x; + -+ + Xorg(e,) =1 mod ord(er).

In this case, we say that S is of type I(a) or I(b) according to whether ord(e,) = m
orord(ey) = mn > m.
(i) S= fym i ImE I (<xi fy + fo), where
(@) {fi, f»} is a generating set for G with ord(f,) = mn and ord(f;) > m,
(b) ee[l,m—1]andse[l,n-1],
(©) Xt5-e s Xme €[Lm=1]withx; +- +xp_c=m-1,
(d) either s =1or mf, = mf,, with both holding when n = 2, and
(d) eithere >2 or mfy # mf,.

In this case, we say that S is of type IL.

Proof The characterization of minimal zero-sum sequences of maximal length over
groups of rank two was done in a series of papers by Gao, Geroldinger, Grynkiewicz,
Reiher, and Schmid. We refer to [16, Main Proposition 7] for the formulation used
above. ]

Theorem 3.7  Let H be a transfer Krull monoid over a finite abelian group G. If G has
rank two, then A, (H) = {1}.

Proof By (3.1), we may consider B(G) instead of H. Let G = C,, ® C,,,, with n €
N, m > 2 and let S be a minimal zero-sum sequence of length D(G) over G. By
Corollary 3.3 (ii), it suffices to prove that 1 € A(supp((-S)S)). We distinguish two
cases depending on Lemma 3.6.

ord(ez)

Casel: S = efrd(e‘)_l 1,

basis of G.
If X1 = -+ = Xord(e,)> then ord(e;)x; =1 (mod ord(e;)) and hence

gcd(ord(e;), ord(e;)) =1,

(xie1 +ey) is of type I in Lemma 3.6, where (e, e,) isa

a contradiction. Suppose that [{xi, ..., Xord(e,) }| > 2. Then there exists a subsequence
Y =y Yord(es) Of X = xfn-xf)rd(ez) such that 6(Y) # 1 (mod ord(e;)). Let
o(Y) =ord(e;) —a (mod ord(e;)), where a € [0, ord(e;) — 2]. Then
ord(ey) d 5 ord(ez)
Ti=ef [] (yier+e2) and To=e¢" (en)- [T (xier +e2)* T

i=1 i=1
.. . 2 ord(e)
are two minimal zero-sum sequences with §° = e, - T; - T, whence

1€ A(supp((-S)S)).

Case 2: S = ff’”’lfz("_s)m“ [17°(=xifi + f2) is of type II in Lemma 3.6, where
(f{, f2) is a basis with ord(f{) = m, ord(f;) = mn,and f; = f{ + af5, a € [l mn —1].

Sincesm—1+(n-s)m+e=nm+e—1>nm,wehavethat2((n—s)m+e¢) > mn
or 2(sm —1) > mn. We distinguish two subcases.
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Subcase 2.1: 2((n — s)m + €) > mn. Then

SZ — an ) 125711—2'f-211rr1—25m+26 nﬁe(_xifl +f2)2-
i=1

It suffices to prove that

m—e
W = ]cIZSm—Zonm—Zsm+2€ H (_xifl +f2)2
i=1

2m—2e

— (fll + afz)lsm—Zonm—25m+26 U (_yifl/ + (1 _ ‘xyi)fZ):

where y1++ yam-2e = X%+ x2_, is a product of two atoms since this implies that

1 € A(supp((-S)S)). Note that ¥cr1om-2e] Vi = 2(Zie[m-e] Xi) = 2m — 2 and
|[W|=mn+2m-2>D(G), whence W is not an atom.
Suppose that s = 1. Then

2m—2e

W= (fi +afe)™ - T] (yifi + A= ayi) o) - 7202
i=1
Let T be an atom dividing W, say
T=(fl+af)" [I(-yifi + Q-ayi)fo) - f
i€l

where I ¢ [L,2m - 2¢],r = Yy (mod m), and a(r — X, v:) + 1| +7 =0
(mod nm). If r = ¥ ,; yi, then |I| + " > mn, which implies that I = [1,2m — 2¢] and
' = nm — 2m + 2¢. Therefore WT ™| (] + af,)*" *"", a contradiction to ord(f;) =
ord(f] + afy) > m. Thus |[r = ¥, yi| = m.

Now we assume to the contrary that there exist three atoms Tj, T3, and T3 such
that T] T2 T3 | W, say

Ti=(fl +af)" - [1(-yifi + 1= ayi) f) i

To= (ff + af) [1(pifl + (- ay) ) S
To= (ff + af)” - T1(yafl + (=)o) i

Then |11~ Y icr, il = [r2=Xier, yil = 13— Xicr, yil = m, a contradiction to ry+r,+73 <
2m —2and Yie, Vit Yien, Vit Xier, Yi $2m—2.

Suppose that s > 2. Then mf; = mf, whence am = m (mod mn). Let T be
an atom dividing W, say T = (f{ + afs)" - [Li(=yiff + (1= ayi)fa) - £, where
Ic[L,2m-2€],

r=>yi (modm), and a(r-> y;)+[I|+r" =0 (mod nm).
iel iel
Ifr =Y, yi-then nm < |I| + ' < 2m — 2 + nm — 2sm + 2¢ < nm — 2sm + 2m which
implies that s = 1, a contradiction.

We claim that r — 5y, yi € {(25 — 1)m, —mi}. 167 < 5yep s then Sy i — 7 = m.

We assume that r > ¥,y ;. Thenr = ;. yi € {m,...,(2s —1)m}. Since |I| + ' <
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2m—2e+nm—2sm+2¢ = nm-2sm+2mand am = m (mod mn),wehaver—Y ;. y; €
{(2s=2)m, (2s-1)m}. Ifr=3 ;. yi = (2s—2)m, then |I|+r' = 2m—2e+nm—2sm+2¢
whence T = W, a contradiction. Therefore r — Y ;; y; € {(2s - 1)m, —m}.

Now we assume to the contrary that there exist three atoms Tj, T3, and T3 such
that T] T2 T3 | W, say

T=(fl +af)" - [1-yifl + A-ay) fo) - fil,

To= (v af)™ TTCnfi + (- ey fo) £
To= (s af)™ TIoifl + Q- ay) f) i

Then there exist two distinct i, j € [1,3], say i = 1,j = 2, such that r; — ¥, yi =
2= Yier, ¥i = (25 =1)m. Thus 2sm — 2 > ry + r, > 2(2s — 1)m, a contradiction.

Subcase 2.2: 2(sm —1) > mn. Then 2s > n + 1. Therefore mf; = mf,, which implies
that am = m (mod mn) and ord(f;) = mn. Since

82 — 1nm 'f125m—nm—2f22nm—25m+26 rﬁe(_xifl +f2)2r
i=1

it suffices to prove that

W = f12$m—nm—2f22nm—2sm+26 ’ﬁe(_xifl + f2)2
i=1

2m—2e

— (fll + “fz)Zsm—nm72f22nm—2$m+2€ Ij! (_yifll + (1 _ “yi)f2)>

where y; -+ yam_2e = x%---x%_, is a product of two atoms since this implies that
1€ A(supp((-S)S)). Note that

>oooyi=2( ), xi)=2m-2,

ie[1,2m—2¢] ie[l,m—e]

2sm — nm —2 < mn, and |W| = mn + 2m — 2 > D(G) whence W is not an atom.
Let T be an atom dividing W, say

T=(f+af) TI(-rifi + Q- ay)fo) - fy .

i€l
where I c [1,2m — 2¢],

=Yy (modm) and a(r—Y y)+lll+r =0 (mod nm).

iel iel

Suppose that 2s = n + 1. Then

2m—2e
W= (ff + afy) " 202 T (—yifl + (- ayi) o),
i-1
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and we assume to the contrary that there exist three atoms T;, T, and T3 such that
T1 T2 T3 ‘ W, say

Ti=(ff +af)" - [I(-yifi + A=ayi)fo) o

iely

T=(ff +afa)? [[(-yifi + Q= ayi) f2) 'fzr;,

iel,

T3=(fi +afa)” - [[(-yifi + Q—ayi)fa) - f°.
iels
Then there exist two distinct i, j € [1,3], say i = 1,j = 2, such that r; — ¥, yi =
2= Yier, ¥i = 0. Thus 2nm < |L| + 1{ + || + 75 < (n —1)m + 2 + 2m — 2 = nm + m,
a contradiction.

Suppose that 2s > n + 2. Consider the atom T. If r = ;; y;, then nm < |I] + 7' <
2m —2¢ +2nm — 2sm + 2¢ < (2n — 2s + 2)m < nm. Therefore I = [1,2m — 2¢] and
r' = 2nm — 2sm + 2¢, which implies that T = W, a contradiction.

We claimthatr — Y, y; € {(2s—n—-1)m,-m}. fr< Y, yi,then ¥, yi —r =
m. We assume thatr > 3,.; y;. Thenr— Y,y € {m,...,(2s —n—1)m}. Since
[I| + 7' < 2m —2e+2nm —2sm+2¢ < (2n—2s+2)m and am = m (mod mn), we
haver—Y ;g vie{(2s-=n-2)ym,(2s—n-1)m}. Ifr= %, yi = (25— n—2)m, then
I=[1,2m-2¢]and r’ = 2nm — 2sm + 2¢, which implies that T = W, a contradiction.
Therefore r — ;e yi € {(2s —n —1)m, -m}.

Again assume to the contrary that there exist three atoms Tj, T, and T3 such that
T1 T2 T3 ‘ W, say

Ti= (ff + afe) - T1(-yifl + A -ay)fo) - il

iely

T=(f{ +af)? [[(-yifi + Q- ayi) f2) - zr;,

iel,

Ts=(fi +af)” - J1pifl + Q=ayi) fo) - /-
iels
Then there exist two distinct i, j € [1,3], say i = 1,j = 2, such that r; — ¥, yi =
2= Yier, ¥i = (2s—n—1)m. Thus 2sm —nm —2 > r; +r, > 2(2s — n—1)m and hence
(n+2)m-222sm > (n+2)m,a contradiction. [ |

The characterization of all minimal zero-sum sequences over groups C; & C,® Cy,,
as given in the next lemma, is due to Schmid [33, Theorem 3.13].

Lemma 3.8 LetG=C,® C, ® Cy, withn > 2. Then A € F(G) is a minimal zero-

sum sequence of length D(G) if and only if there exists a basis (fi, f2, f3) of G, where

ord(fi) = ord(f,) = 2 and ord(f3) = 2n, such that A is equal to one of the following

sequences:

(i) V(s + L)+ A1) (—f3 + fa+ fi) withvi,va,vs € Nodd, v3 > v, > vy, and
v3+vy+v=2n+1

(i) f;*(fs+fo)(afs+fi)(—afs+ fa+ fi) withvy,vs € Nodd, v3 > v, vy +v3 = 2n,
andace[2,n-1].
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(il) fF"'(afs+ f2)(bfs+ A)(cfs+ fat+ fi) witha+b+c=2n+1wherea<b<c
anda,be[2,n-1],ce[2,2n-3]~{n,n+1}.

(iv) 32”‘[1_2"(f3]+ £)? frafs +f1)((1 —a)fs+ fo+ fl) with v € [0,n — 1] and
ac|2,n-1|.

W 7 afs+H)(A-a) s+ £)(bfs+ ) (A-b)fs+ fi) witha,be[2,n—1]

and a > b.

(vi) (Hffl(f3 +d;)) ffi where S = l'[ffl di e F((f1, ) witha(S) = fi + fo.

Theorem 3.9 Let H be a transfer Krull monoid over a group G, where G =
C,®C,® Cyy withn >2. Then A,(H) = {1}.

Proof By (3.1), we may consider B(G) instead of H. Let S be a minimal zero-
sum sequence of length D(G) over G. By Corollary 3.3 (ii), it suffices to prove that
1€ A(supp((-S)S)). We distinguish five cases induced by the structural description
given by Lemma 3.8, and use Lemma 3.4 (i) without further mention.

CaseI: S = f;* (fs+ f2)"(afs + fi)(—afs + o+ fi) witha € [1, n—1] as in Lemma 3.8
(i) or (ii).
Since
W= " (fs+ f2)(afs + fi)(=afs + fo + fi) € A(supp((=S5)S))
W2=f"- " (s + £ (afs + i) (mafs + fo+ )7
we obtain that 1 € A(supp((-S)S)).

Case 2: S = f2" Yafs + f2)(bfs + fi)(cfs + f» + fi) as in Lemma 3.8 (iii). Suppose

that ¢ > n+2. Then % = f7" - 2" 2% (afs + f)* f2272(bfs + L)*(cfs + o + f1)2
where f7"72%(afs + f2)* and f2*°2(bfs + fi)*(cfs + f» + f1)? are atoms, and hence

le A( supp((-$)S)).
Suppose that ¢ < n — 1. Then
Wi = (=fs)*(afs + )%
Wy = (=£2)°" (bfs + /i),
Ws=(=f)*(cfs+ o+ 1))
W=(-fs)(afs+ )(bfs+ fi)(cfs+ 2+ fr)
are atoms with Wy W, W3 = W2 - ((-f3)2")* whence 1 € A(supp((-S)S)).
Case3: S = ff" "2 (fs+ f,)* fr(afs + A)((1-a)f3+ f + f1) as in Lemma 3.8 (iv).
Then {f3,—f3, frafs + i, (1—a) f3+ fo + fi} c supp((=S)S). Since
W= (-fs)fa(afs + f))((1-a)fs + fa+ f1)

is an atom of length 4, we have that min A(supp((-S)S))|2.

Setting Wi = (afs + fi)*(=f3)**and Wy = (1-a) fs + fi + f2)*f# "2, we observe
that WyWa(£2)? = W2(f3(=f3))?*"2. Therefore min A(supp((-S)S))|2a - 3, which
implies that min A(supp((-S)S)) = 1.
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Case4: S = f}"2(afs+£2)((1-a) f5+£2)(bfs+£i)((1-b) f3+ f) asin Lemma 3.8 (v).
Since (=f3)(afs + f2)((1-a)fs + f>) is an atom of length 3 over supp((-S)S), we
have that 1 € A(supp((-S)S)).

Case 5: S = ([I7"(fs + d;)) fofy with T = [[2",d; and o(T) = f, + f as in Lem-
ma 3.8 (vi). Since o (T) # 0, we have |supp(T)| > 2, say d; # dp. If di + dy € { f1, 2},
then (f3 + d1)(—f3 + d2)(d; + d;) is an atom of length 3 over supp((-S)S), which
implies that 1 € A(supp((=S)S)). If dy +dz = fi+ fo, then Wy = (f5 +d1)(—f3 +
dy) fifa and Wy = (fs + d1)*(~f3 + dy)? are atoms with W2 = W - 2 - f} whence
1€ A(supp((-S)S)). [ |

Lemma 3.10 Let G be a finite abelian group with rank r(G) > 2 and exp(G) > 3,
and let U € A(G) with |U| = D(G). If there exist independent elements ey, ..., e; with
t > 2 and an element g such that {e,, ..., e;, g} c supp(U) and ag = kye; + -+ + ke,
for some a € [L,ord(g) - 1] ~ {%@)} and with k; € [1,ord(e;) —1] forall i € [1,¢],
then min A(supp((-U)U)) = 1. In particular, if supp(U) contains a basis of G, then
min A(supp((-U)U)) =1.

Proof Let (ey,...,e;)beindependent with # > 2 and let g € G be such that

{el’ Y etag} c Supp(U)

and ag = kije; + --- + kye; for some a € [1,ord(g) — 1] {&;g)} and with k; €
[1,ord(e;) — 1] for every i € [1, £].

Now we assume that a € [1,ord(g) - 1] ~ {%@} is minimal such that ag «
(e1, ..., e:), which implies that a | ord(g) and hence a € [1, [%@J —1]. For every
i € [1,t], we replace e; by —e;, if necessary, in order to obtain k; < ord(e;)/2. Thus
we obtain that {ej,...,e;} ¢ supp((-U)U) such that ag = kje; + --- + ke; with
k; € [1,|ord(e;)/2]] for every i € [1,¢]. Since a # %@), there exists i € [1, t], say
i =1, such that k; # ord(e;)/2. Now we distinguish two cases.

Case I For all i € [1, t], we have k; # ord(e;)/2. Then, by the minimality of a,

W ga ord(er)—k; ord(ez) k2 H (_ei)k;’

i€[3,t]

d -2k d -2k :
W, = gZaefr (e1) 1e§r (e2)—2k> H (_ei)zk,
i€[3,t]

ord(e;) ord(ez)
1 )

are atoms over supp((-U)U). Since W2 = W, - e , we infer that 1 €

A(supp((-U)U)), which implies that min A(supp((-U)U)) =1

Case 2: There exists i € [2,t] such that k; = ord(e;)/2. After renumbering, if nec-
essary, there exists to € [1,¢ — 1] such that k; # ord(e;)/2 for every i € [1,] and
k; = ord(e;)/2 for every i € [ty + 1, t]. Then

=¢" [T (-e)® and Vo =ge™™ [T (-en)"

ie[1,£] i€[2,t]
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are atoms over supp((-U)U). Since

V12 :gZa H (_ei)zki . H (_ei)ord(e,-))

i€[1,to] i€[to+1,t]
a ord(e))-2k; i ord(e; ord(e;
Vy =g (=2 [1 (—ei)™ [I (e a )'el @,
i€[2,t0] i€[to+1,t]

2a

and g** Hie[l,to](_ei)Zki> g efrd(e‘)_Zk‘ Hie[2,t0](_ei)2ki are atoms, we infer that

min A(supp((-U)U)) | ged(1+t -t — 2,1+t -ty +1-2)
whence min A( supp((-U)U)) =1

To show the in particular part, let {e;, ..., e;} c supp(U) be a basis of G, and note
that ¢ > r(G) by [17, Lemma A.6]. For each i € [1, t], we set

I ={gesupp(U) | g€ (e;)}

and T; = [T,y %W ThenU = Ty --- T, T, where1# T = Mgesupp(U) Uy I g%V,
Therefore for every g € supp(T), there exists a subset J c [1, ] with |J| > 2 such that
g = Yjekjej, where k; € [1,ord(e;) — 1] for each j € J. If ord(g) # 2 for some
g € supp(T), then the assumptions of the main case hold whence

min A(supp((-U)U)) = 1.

Now suppose that ord(g) = 2 for each g € supp(T). Then o(T;)---a(T)o(T) is
an atom, ord(o(T)) = 2, and o(T;) € (e;) for each i € [1, ¢]. It follows that o (T;) =
i) e, for each i € [1,t], =1,and o = W 4. X8 Since
ordz(e ) f h T d T d2( ) d2( ) S
|Ul=D(G) >D*(G) 21+ Z;Zl(ord(ej) —1) by [17, Proposition 5.1.7], we have | T}| =
ord(e;) —1for each i € [1, t]. Since exp(G) > 3, we may assume that ord(e;) > 3 after
renumbering if necessary. Since e; € supp(7T;) and Tj is a zero-sum free sequence over
(e1) of length ord(e;) — 1, we obtain 0 (T;) = —e; = %(e‘)el by [17, Theorem 5.1.10],
a contradiction to ord(e;) > 3. ]
Theorem 3.11 Let H be a transfer Krull monoid over a group G where G = C;k with
k,reN,r>2, and p € P such that p* > 3. Then A,(H) = {1}.

Proof By (3.1), it is sufficient to consider B(G) instead of H. By Corollary 3.3 (ii),
we only need to show that min A(supp((-U)U)) = 1 for every atom U € A(G)
of length D(G). Let U be an atom of length D(G). Then (supp(U)) = G by [17,
Proposition 5.1.4], and hence supp(U) contains a basis of G by [17, Lemma A.7]. Now
Lemma 3.10 implies that min A(supp((-U)U)) =L [ |

If G is an elementary 2-group of rank r > 3, then the hypothesis of Lemma 3.10
never holds true. Thus elementary 2-groups need a different approach.

Lemma 3.12  Let G be an elementary 2-group of rank r > 3 and let U, V € A(G) be
distinct atoms of length D(G). Then 1€ A(L(UV?)).

Proof Since U and V are distinct, there exists an element g € supp(U) ~ supp(V),
and clearly supp(U) \ {g} is a basis of G. We set supp(U) ~ {g} = {e1,....er},
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g=ey=e + - +e,andthen U = eye;---e,. Since {e;,...,e,} isabasisof G, V
can be written in the form V' = e, ---ey,,,, where @ # I; c [1,r] and ef; = ¥, e; for
every j € [1,7 + 1]. We continue with the following assertion.

Claim  There exist two distinct k;, ky € [1, 7+1] such that Iy NI, # &, Iy, NIy, # @,
and Iy, \ Iy, # @.

Proof of Claim  First, we choose I, say I = I, to be maximal in {I; | j € [L,7 +1]}.
Note that eg ¢ supp(V) and hence I; # [1,r] for every j € [1,r +1]. Since I; c
Uje[2,r+1] Ij» we can choose K c [2, 7 + 1] to be minimal such that I; ¢ Uje I;. Then
Inly # @and I\ Iy # @ for all k € K. If there exists k € K such that I, \ [, # &,
then we are done. Otherwise, I} c I for all k € K. By the maximality of I;, we know
that |[K| > 2 and by the minimality of K, we have that I, \ Iy, # @ and Iy, \ Iy, # @
for every two distinct k; and k,. Assume to the contrary that I, n Iy, = & for every
distinct ky and k,. Thus ey, [Tjex er, is an atom, a contradictionto [V|=D(G). ®

After renumbering if necessary, we suppose that [ NI, # @, [ N\ I, # @, and
I, NI} # @. We define

Wi = eper, I1 e, Wy =epeper, I1 ei
ie(LulL)N(Iinly) i¢(LuL)N(Iinly)

and observe that W, W, are atoms. Since

2 _ 2 2 2 _ 2
UV =U-ef e - [] e;, = Wi- W, [ €1,
je[3,r+1] je[3,r+1]

we obtain that 1 € A(L(UV?)). [

Theorem 3.13 Let H be a transfer Krull monoid over an elementary 2-group G of
rank r > 2. Then Ay (H) = A, (H) = {1, r - 1}.

Proof By (3.1), it is sufficient to consider B(G) instead of H. Let (ej,...,e,) bea
basis of G and S = ege; -+ e, € A(G), where eg = e; + -+ + e,. Then

A(supp(S)) = {r -1}

and hence r -1 € A7(G). By Theorem 3.5, we have that A,(G) 2 AZ(G) o {1,r - 1}.
Thus it remains to prove that A,(G) c {1, —1}.

Since max A, (G) < max A(G) = r —1by [17, Theorem 6.7.1], we may suppose that
r > 4. Assume to the contrary that there exists d € A,(G) \ {1,r — 1}. Then for every
k € N there is a B € B(G) such that p(L(B)) = D(G)/2 and L(By) is an AAP
with difference d and length ¢ > k. Lemma 3.2 (i) implies that By is a product of
atoms having length D(G). We fix k = |[{A € A(G) | |A| = D(G)}| + 1. If By = U*
with ¢ € N for some U € A(G) with |U| = D(G), then r — 1 = min A(supp(U)) =
min A(supp(Bx)) | d, a contradiction. Otherwise, the choice of k implies that there
are distinct atoms U, V € A(G) with |U| = |V| = D(G) such that U*V | By. By Lem-
ma 3.12,1€ A(L(U?V)) ¢ A(L(Bx)) and hence d | 1, a contradiction. ]
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Theorem 3.14 Let H be a transfer Krull monoid over a finite cyclic group G of order
n>3 Thenn-2¢€A7(H) = Ap(H).

Proof By (3.1), it is sufficient to consider B(G) instead of H. Since n -2 € A7(G) c
A, (G), it remains to verify that A,(G) < A7 (G).

Let d € A,(G). Then for every k € N there is a By € B(G) such that p(L(Bx)) =
D(G)/2 and L(By) is an AAP with difference d and length ¢ > k. Thus

gcd A(L(Bg)) =d.
We set k = n(n—1) +1, Gy = supp(Bx ), and claim that min A(Gy) = gcd A(L(By)),
which implies that d = min A(Gy) € A7 (G).

Clearly, min A(Gy) | d, and hence it remains to prove that d | min A(Gy). By Lem-
ma 3.2, By is a product of atoms having length D(G) = n. Note that |supp(U)| = 1
for all atoms of length n and |{U € A(G) | |[U|=n}|<n-1 Thusk = n(n-1) +1
implies that By is a product of the form By = U/"*'U,--- U,, where r € N, Uy, ..., U,
are atoms of length #, and U; = ¢", where g € G with ord(g) = n.

Then for every atom V € A(Gy), we have V | U; --- U, and

{n+1,|V|g+n}cL(U'V).
Therefore d | | V|, —1forall V € A(Go) whence d divides
ged{|V]g-1] V € A(Go)}.

Since min A(Go) = gcd{||V|¢—1|V € A(Go)} by Lemma 3.4 (iii), the claim follows.
|

Corollary 3.15 Wehave A,(Cs) = {2}, A,(Cs) = {L,3}, A,(Cs) = {4}, A,(C7) =
{15}, 8p(Cs) = {1,6}, A,(Co) = {17}, Ap(Cro) = {2,8} A,(Cu) = {19},
A, (Crz) = {1,10}.

Proof Let G be a cyclic group of order |G| = n € [4,12]. By Theorem 3.14, we infer
that n -2 € A7(G) = A,(G). By Theorem 3.5, we have 1 € A,(G) if and only if
n ¢ {4,6,10}. Lemma 3.2 shows that

AL(G) = {min A(Gy) | Go = -G and ord(g) = n for every g € GO}.

Now we use Lemma 3.4 (iii). If n € {4, 6}, then for some g € G with ord(g) = n we get
AL (G) = {minA({g,-g}) = {n -2} .If n =10, then for some g € G with ord(g) = n
we get

A,(G) = {minA({g, ~¢g}), min A({3g, -3¢}), min A({g, -¢,3¢,-3¢})} = {2.8}.
Suppose that n € [4,12] \ {4,6,10]. Let Gy c G be a subset consisting of elements
of order n and with Gy = —=Gy. If |G| = 2, then min A(Gy) = n — 2. Suppose that
|Go| > 2. Then there is some g € Gy and some k € N with ged(k, n) = 1 such that
{g,-g.kg,—kg} c Go. Then min A(Gy) divides min A({g,—g¢, kg, -kg}) and, by
going through all cases and using Lemma 3.4 (iii), we obtain that

min A({g, -g, kg, —kg}) = 1.

Thus the assertion follows. |
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In the next lemma we need some basics from the theory of continued fractions
(see [29] for some background; in particular, we use [29, Theorems 2.1.3, 2.1.7]).

Lemma 3.16 Let G be a cyclic group with order n > 3, g € G with ord(g) = n, and
a€[2,n-2]withged(a,n) =1 Let [ag, ..., an] be the continued fraction expansion
of n/a with odd length, i.e., m is even.

(i) minA({g ag}) =gcd(a1,a3,...,am1) <n—-2andmin A({g,—g,ag,—ag}) €
AL(G).

(i) Ifa < n/2, then min A({g, ag,—ag,-g}) = gcd(ao - L, ay,...,am-1,am — 1).
Note that this also holds for the continued fraction expansion of n/a with even
length and hence this holds for the regular continued fraction expansion of n/a,
ie,a, >

Proof (i) For the first part, see [7, Theorem 2.1] or [14, Theorem 1]. For the second
part, since ¢" and (ag)" are two atoms of length D(G), we obtain

p(L(g"(-8)"(ag)"(-ag)")) = D(G)/2,
which implies min A({g, -¢, ag, —ag}) € A7(G) by Lemma 3.2 (iii).
(ii) Suppose that a < n/2. By Lemma 3.4 (iii), we have

min A({g, ag, —ag,—g}) = ged{ |V, - 1| V e A({g, ag, ~ag. ~g})}
ged{[|V]g-1| Ve A({g, ag}) uA({g,—ag})

UA({-g ag}) UA({-g -ag})}
ged{|V]g-1]| Ve A({g, ag}) v A({g,~ag})}
= gcd{min A({g, ag}), min A({g,—ag})}.

Since the continued fraction of ™ with odd length is

[Lap—Lay,....,am—-1L1] ifa,>1,
[Lag—Lay,...,am+1] ifay=1

(i) implies that min A({g, ag}) = ged(ay, a3, ..., a,-1) and

d -lLa,ag,....a, -1 ifa, >1,
min A({g, ~ag}) = | S0 712 @a s = 1) il >
ged(ag—1,a2,a4, ..., am—2) ifa,, =1.
Therefore, we obtain
min A({g, ag, —ag,-g}) = gcd(min A({g, -ag}),
minA({g,ag})) =gcd(ap —Lay, ..., am-1,am —1). [ |

Theorem 3.17  Let H be a transfer Krull monoid over a finite cyclic group G of order
n > 3. Then the following statements are equivalent.

O A (H)N{Ln-2} @
(i) Thereisan a € [2,|n/2]] with gcd(n, a) =1 such that

ged(ag —Loay,...,am-1,dm —1) > 1,
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where [ag, ai, ...,y ] is the regular continued fraction expansion of n/a, i.e.,
am, > 1

Proof By (3.1), it is sufficient to prove the equivalence for B(G) instead of H.
(i) = (ii). Note that for any distinct atoms U, V of length n with U # -V, we have

min A(supp((-U)U(-V)V)) <n-2
by Lemma 3.16 (i). Since A7(H) \ {1,n — 2} # @, there must exist distinct atoms
U, V of length n such that min A( supp((-U)U(-V)V)) € A (G)~{Ln -2} Let
U=g"and V = (ag)", where g € G and a € [2,n - 2] with gcd(n,a) = 1. Then

let Go = {g,ag,~g,—ag}. Ifa > 7, then n — a < 7. Thus we assume that a < 7.

2 2
Therefore Lemma 3.16 (ii) implies that ged(ag — 1, a1, ..., am-1,am — 1) > 1, where
[ao, a1, ..., am] is the regular continued fraction expansion of n/a.

(i) = (i). We set Gy = {g,ag,-g,—ag}, where ¢ € G with ord(g) = n. Then
min A(Gp) < n — 2, and Lemma 3.16 (ii) implies that min A(Gy) > 1. It follows that
As(H) N {Ln-2} £ @. [

Corollary 3.18 Let G be a cyclic group of order n > 4, and let g € G with ord(g) = n.

(i) Ifnisevenand n—1isnot a prime, then thereis an evend € A7(G) ~ {1, n -2}

(i) Ifniseven, 3 + n, and n — 3 is not a prime, then there is an even d € A;(G) ~
{1,n-2}.

(iii) Ifniseven and n = 2q (mod q*) for some odd prime q with ¢* + 2q < n, then
thereis an evend € Aj(G) ~ {1,n - 2}.

(iv) Ifnisevenandn =q (mod 2q +1) for some odd q with 5q + 2 < n, then there is
anevend € A7(G) N {1,n -2}

(v) Ifniseven with n € [8,10°], then A} (G) = {1,n - 2} if and only if

ne { 8,12,14,18, 20, 30, 32,44, 48,54, 62,72, 74, 84, 90,
102,138,182, 230, 252, 270, 450, 462, 2844} .

(vi) Ifn>5isoddand n —1is a square, then there is an odd d € Ay (G) \ {1,n - 2}.

Proof Note thatifa € [2,n—2] with gcd(a,n) =1, then min A({g, ag,—g,—ag}) €
A7 (G) and min A({g, ag, g, —ag}) < n -2 by Lemma 3.16 (i).

(i) Let n = mt + 1 be even with m € [2,n — 2], and set Gy = {g, mg, -mg,—g}.
Then m, t are odd, gcd(m, n) = 1, and m < n/2. Since [t, m] is the regular contin-
ued fraction of n/m, we have that min A(Gy) = ged(m - 1,¢ — 1) is even and hence
minA(Go) € A7(G) ~ {L,n -2}

(i) If n =1 (mod 3), then n — 1is not a prime and hence (i) implies the assertion.
Suppose n =2 (mod 3) and let n — 3 = mym, with 1 < m; < n — 3. Then there exists
i€[1,2],sayi=1,suchthatm; =1 (mod 3). Set Gy = {g, m1g, —m1g, —g}. Since n is
even, we obtain that 1,, m, are odd and hence | 3! | is even. Since [m,, | 5* |, 3] is the
regular continued fraction of n/m, we have that min A(G) = ged(m, -1, 5 ],2) =2
by Lemma 3.16 (i) and hence min A(Gy) € A7 (G) \ {1,n - 2}.

(iii) Let n = gt + 2q be even with m = qt + 1, and set Gy = {g, mg, -mg, —g}.
Then n = gm + g and t > 11is even. Since [g, t,q] is the regular continued fraction
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of n/m, we have that min A(Gy) = gcd(g —1,t,q — 1) is even by Lemma 3.16 (i) and
hence min A(Gy) € A;(G) ~ {1,n - 2}.
(iv) Let n = (2q + 1)t + q be even with ¢ odd, and set

Go=1{g (29 +1)g.~(2q +1)g. ~g}-
Then ged(2q + 1, n) = 1and 5q + 2 < n implies that 2q + 1 < /2. Since [t,2, q] is the
regular continued fraction of n/(2q+1), we have that min A(Gp ) = ged(¢-1,2,9-1) =
2by Lemma 3.16 (i) and hence min A(Go ) € A7 (G) ~ {1, n - 2}.

(v) This was done by a computer program.

(vi) Let n = m? + 1 be odd, and set Gy = {g,mg,-mg,—g}. Then m is even.
Since [m, m] is the regular continued fraction of n/m, we have that min A(Gp) =
ged(m —1,m -1) = m -1 > 1is odd by Lemma 3.16 (i) and hence min A(Gy) «
AS(G) N {1l n -2} [

Next we discuss an application of Theorem 3.17 to the so-called Characterization
Problem that is at the center of all arithmetical investigations of transfer Krull mo-
noids. It asks whether two finite abelian groups G with D(G) > 4 and G’, whose
systems of sets of lengths £(G) and £(G") coincide, have to be isomorphic (see [15,
§6] for an overview on this topic). It is well known that for every n > 4, the systems
£(C,) and £(CF™") are distinct and that £L(C}™') ¢ £(C,) ([21, Theorem 3.5]). If
n € [4,5], then £(C,) c £L(CJ™) ([21, §4]), but for n > 6 there is no information
available so far. The results of the present section yield the following corollary.

Corollary 3.19 Let G be a cyclic group of order n > 6. If the equivalent statements in
Theorem 3.17 hold, then £L(C,) ¢ £L(Cy™).

Remark  Note that Corollary 3.18 shows that the equivalent statements in Theo-
rem 3.17 hold true for infinitely many n € N.

Proof Assume to the contrary that £(C,) c £(C5™'). Then A,(C,) c A,(Cy™).
Since A,(Cy™) = {1,n - 2} by Theorem 3.13, we obtain a contradiction to Theo-
rem 3.17. .

We end this section with the following conjecture (note, if G is cyclic of order three
or isomorphic to C; ® C, then A, (G) = {1}).

Conjecture 3.20 Let H be a transfer Krull monoid over a finite abelian group G with
|G| > 4. Then A,(H) = {1} ifand only if G is neither cyclic nor an elementary 2-group.

We summarize what follows so far from the results of the present section. Clearly,
one implication of Conjecture 3.20 holds true. Indeed, if G is cyclic or an elementary
2-group with |G| > 4, then A,(H) # {1} by Theorems 3.13 and 3.14. Conversely, for
groups of rank two, and for groups isomorphic either to C; ® C, & Cy, or to C7,,
where n,7 > 2, k > 1, and p is a prime with p* > 3, the conjecture holds true by
Theorems 3.7, 3.9, and 3.11 (consequently, the conjecture holds true for all groups G
with |G| € [5,47]). In view of our discussion preceding Lemma 3.2 on the state of
the art of the Davenport constant, Conjecture 3.20 might seem to be quite bold, but
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it is consistent with all that we know on the Davenport constant so far. Indeed, let
U € A(G) with |U| = D(G). The goal is to show that min A(supp((—U)U)) =1
By [17, Proposition 5.1.11], supp(U) contains a generating set of G. If it contains a
basis, then we are done by Lemma 3.10. Suppose G is as in (3.2) with D(G) = D*(G),
r(G) =r>1,and (e,..., e,) is a basis with ord(e;) = n; for all i € [1, r]. Then

U=e el e+ +ey)

is the canonical example of a minimal zero-sum sequence of length D*(G). Clearly,
there are minimal zero-sum sequences of different form (as Lemma 3.6 shows for
r = 2) but their support can only be greater than or equal to r(G) + 1 (recall that
r(G) = min{|Gy| | Go c G is a generating set} by [17, Lemma A.6]). Furthermore,
for subsets Gy ¢ Gj of G, we have min A(G;) < minA(Gy). The combination of
these two facts provides strong support for the above conjecture.

4 Weakly Krull Monoids

The main goal in this section is to study the set A, (-) for v-noetherian weakly Krull
monoids and for their monoids of v-invertible v-ideals. Our main result is given by
Theorem 4.4.

We start with the local case, namely with finitely primary monoids. A monoid
H is said to be finitely primary if there are s, € N and a factorial monoid F =
F*xF({p1,...,ps}) such that H c F with

(4.1) HN~H*cpy---psF and (py---ps)*FcH.

In this case s is called the rank of H and « is called an exponent of H. It is well known
[17, Theorems 2.9.2, 3.1.5] that F is the complete integral closure of H, that

(4.2) H has finite elasticity if and only if s = 1,
and that
(4.3) H/H™ is finitely generated if and only if s = 1 and (F*: H™) < oo.

To provide some examples of finitely primary monoids, we first recall that every
numerical monoid H ¢ (N, +) is finitely generated and finitely primary of rank one
with accepted elasticity p(H) > 1. Furthermore, if R is a one-dimensional local Mori
domain, R its complete integral closure, and (R:R) # {0}, then its multiplicative
monoid of non-zero elements is finitely primary [17, §2.9, 2.10, 3.1]. Note that a finitely
primary monoid H with p(H) > 1is not a transfer Krull monoid by [21, Theorem 5.5].

The following lemma is known for numerical monoids [9, Theorem 2.1], [6, Propo-
sition 2.9].

Lemma 4.1 LetH c F = F* x F({p}) be a finitely primary monoid of rank one

and exponent o, and let v = v,: H — Ny denote the homomorphism onto the value

semigroup of H. Suppose that {v(a) |a € A(H)} = {ny,...,ns} with1 < nj <--- < ng.

Then v(H) c Ny is a numerical monoid, and we have the following.

(i) p(H) = ng/ny, and if F* [H* is a torsion group, then the elasticity is accepted.

(i) Letd =gcd{n;—n;_1|ie€[2,s]}. Thend | gcd A(H) and if |F*[H*| = 1, then
d =gcd A(H).
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Proof If a € A(H), then p*F c H (see (4.1)) implies v(a) < 2a — 1, and hence
ns < 2a — 1. Since Ny, c v(H), it follows that v(H) c Ny is a numerical monoid.

(i) To show that p(H) < ns/ny, let a € H be given and suppose that a = u; -+ uy =
vy---ve where k,€ € Nand uy, ..., ug, v1,...,ve € A(H). Then

e k
e < ;v(vi) =v(a) = Zv(ui) < kng,

whence £/k < ng/n; and thus p(L(a)) < ns/n;.
To show that p(H) = ns/ny, letu; = e1p™, uy = e,p™ € A(H) with €1, ¢, € F*, and
let s € Ny such that snyn; > a. Then for every k > s we have

kny _ kny kmns _ ¢ kny —(k=s)ns _smn n\ (k—=s)n
uy" =M ptM ™ = (63"e P ) (ep™) )

_ ¢ kny —(k=s)ns _smn (k—s)n
= (6" P ) :

kny
Thus p(L(uk™)) = maxL(uy 1) o (k=) yonds to 1 /ny as k tends to infinity.

min L(u:"l) - kny
Now suppose that F*/H* is a torsion group, and let uy, u, be as above. Then there
is a ko € N such that (e)'e;™)* e H*. Then the above calculation with k = k, and
s = 0 shows that p(L(u5™)) = n,/n,.
(ii) For every i € [1,s] there are t; € Ny such that n; = n; + t;d. Since p*F c H, it
follows that gcd(n;, d) = 1. Let a € H and consider two factorizations

s ki s &
a=T1TTues - T vi
i=1 j= i=1 j=1

where all u; j,v; j are (not necessarily distinct) atoms with v(u; ;) = n; = v(v; ;) for
allie[Ls]. Thenv(a) = Y5 kin; = X5, &in; = Y5, €i(ny + t;d), whence

m Y (€ —ki)=d Y (ki - €)ti,
i=1 i=1

and this implies that d divides Yi_;(¢; — k;). Thus d divides gcd A(H) = min A(H).
Now suppose that F* = H*. We show that gcd A(H) divides n; — n;_; for every
i € [2,s], which implies that gcd A(H) divides d and equality follows. Let i € [2,s].
Then there are atoms u;_; = €;1p""~' and u; = €;p"* with¢;_;,¢; € F* = H*. Then
i = (eap™) T = (eimap™?) (el ) = uitm,
where 1 = €/"7'¢; "} € H*. Thus gcd A(H) divides n; — n;_;. [

We continue with simple examples showing that the elasticity need not be accepted
if F*/H* fails to be a torsion group, and that d need not be equal to min A(H).

Example 4.2
(1) Let H c F be a finitely primary monoid as in (4.1), and generated by

{e1p*, e2p*,ep’ e € F*},

where €1,¢e, € F* with ord(e;) = oo and ord(e;) < oo. We assert that p(H) is not
accepted.
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First, we observe that A(H) = {e;p* e2p*,ep® | € € F*}. Thus Lemma 4.1 (i)
implies that p(H) = 2. For every b € H, we have v(b) < 4minL(b) and v(b) >
2max L(b), which imply that p(L(b)) < 2. Assume to the contrary that p(L(b)) = 2.
Then v(b) = 4minL(b) = 2maxL(b), which implies that b = (e;p?)™int(®) =
(e1p?)™**L(®) | Tt follows that e (") = 2™(") 4 contradiction to our assump-
tion on ord(e;) and ord(e,). Therefore p(L(b)) < 2 for all b € H, whence p(H) is
not accepted.

(2) Let F* = {e} with € = 1, and H = (ep®,p°) ¢ F = F*xF({p}). Then
minA(H) =4 > 2 =d, where d as in Lemma 4.1 (ii).

Lemma 4.3 (i) Let H be a finitely primary monoid with accepted elasticity p(H) >
L Then Aj(H) = A, (H) = A((H) = {min A(H)}.

(ii) Let H=H; x---x Hy,, where n € N and H; is a finitely primary monoid with ac-
cepted elasticity and min A(H;) = d; for all i € [1, n]. Suppose that p(H;) = -+ =
p(Hs) = p(H) > p(H;) forall i € [s +1,n]. Then minA,(H) = minA7(H) =
ged(dy, ..., ds), max A, (H) = max A7 (H), and

{ecd{di|icD)|@f1cLs])
= A,(H) c Ay(H) c {d e N|d divides some d’ € Ay (H)}.

Proof (i) By Lemmas 2.2 and 2.4, we have
{minA([[a]]) [ @ € Hwith p(L(a)) = p(H)} = A;(H) < A, (H) ¢ Ay(H).

If a € H with p(L(a)) = p(H) > 1, then a € H\ H* and hence [[a]] = H. Thus it
remains to show that A;(H) = {min A(H)}, which follows from [17, Theorem 4.3.6].

(ii) Without restriction we may suppose that H is reduced. Then also Hj, ..., H,
are reduced. We use Lemma 2.6. Note that Hj, . . ., H, need not be finitely generated,
whence Lemma 2.4 (iii) cannot be applied to the present setting.

Leta=a;---a, € Hwith a; € H; foralli € [I,n]. If p(L(a)) = p(H), then a,;
-+ =a, =1land [[a]] = [Tj[1,s],a,1 Hi- For every i € [1,s], (i) implies that A, (H;)
{d;}. f@ # I c [1,s], then [17, Proposition 1.4.5] implies that gcd A(TT;¢; H,-)
gcdU;er A(H;), and clearly

gcd U A(H;) = ged{gcdA(H;) |iel} =ged{d;|iel}.
iel

Thus we obtain that (the first equality follows from Lemma 2.2 (ii))
A5(H) = {ged A([[a])) | @ € H with p(L(a)) = p(H)}
= {gch(I_IIHi) |@#1cLs]}
={ged{d;|iel}|@#Ic[Ls]}.

Since A,(H) = A,(Hy x -+ x Hy), min A(Hy x --- x Hy) = ged(dy,...,ds), and
min Aj(H) = ged(dy, ..., ds), it follows that min A, (H) = ged(dy, . . ., ds).

Lemma 2.4 (i) implies that A7 (H) c A, (H), and it remains to show that A, (H) c
{d € N | d divides some d" € A7(H)}. If this holds, then we immediately get that
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maxA,(H) = maxA7(H). Now let d € A,(H) be given. We claim that d divides
some element from A7 (H).

For every k € N there is some a(¥) € H such that L(a(¥)) is an AAP with difference
d, length at least k, and with p(L(a‘®))) = p(H). Let k € N. Then a(¥) = afk) cea®
with agk) € H; and p(L(afk))) = p(H;) = p(H) for all i € [1,s]. Then there is a
subsequence b(©) = a(*¢) of (%), a nonempty subset I c [1,s], say I = [1,7], and a
constant M such that the following holds for every k € N.

* Foreveryie|[l,r], L(bgk)) is an AAP with difference d;, length at least k, and with

p(L(B{)) = p(H).
» Foreveryie[r+1,s], |L(b§k))| <M.

Thus L(bl(k) ~~-b$k)) = L(bl(k)) o L(bﬁk)) is an AAP with difference
ged(d,....d,) € A (H)

and length growing with k. Since L(b(¥)) is an AAP with difference d, it follows that
d divides gcd(dy, . .., d;). [ |

For our discussion of weakly Krull monoids we put together some notation and
gather their main properties. For any undefined notion we refer to [17,28]. In the
remainder of this sections all monoids are commutative and cancellative and by a
domain we always mean a commutative integral domain. If R is a domain, then its
semigroup R® = R \ {0} of non-zero elements is a monoid.

Let H be a monoid. Then q(H) denotes its quotient group,

H-= {x € q(H) | thereisa c € H such that cx™ € H for all n EN} cq(H),

its complete integral closure, and (H:H) = {x € q(H) | xH c H} the conductor
of H. Furthermore, Hyeq = {aH* | a € H} is the associated reduced monoid of
H and X(H) is the set of minimal non-empty prime s-ideals of H. Let I (H) de-
note the monoid of v-invertible v-ideals of H (together with v-multiplication). Then
F,(H)* = q(J3(H)) is the quotient group of fractional v-invertible v-ideals, and
Cy(H) =F,(H)*/{xH | x € q(H)} is the v-class group of H.

The monoid H is said to be weakly Krull [28, Corollary 22.5] if H = Nyex(#) Hp and
{peX(H)|aep}isfinite for all a € H. If H is v-noetherian, then H is weakly Krull
if and only if v-max(H) = X(H) ([28, Theorem 24.5]). A domain R is weakly Krull if
R® is a weakly Krull monoid. Weakly Krull domains were introduced by Anderson,
Anderson, Mott, and Zafrullah [1,2], and weakly Krull monoids by Halter-Koch [26].
The monoid H is Krull if and only if H is weakly Krull and H,, is a discrete valuation
monoid for each p € X(H).

Every saturated submonoid H of a monoid D = F(P) x D;--+ x D,,, where P is a
set of primes and Dy, ..., D, are primary monoids, is weakly Krull if the class group
q(D)/(D*q(H)) is a torsion group [19, Lemma 5.2]. We mention a few key examples
of v-noetherian weakly Krull monoids and domains and refer to [19, Examples 5.7]
for a detailed discussion. Suppose that H is as in Theorem 4.4. Then, by the previous
remark, its monoid of v-invertible v-ideals T (H) is a weakly Krull monoid. Further-
more, all one-dimensional noetherian domains are v-noetherian weakly Krull. If R is
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a v-noetherian weakly Krull domain with non-zero conductor (R:R) and p € X(R),
then R}, is finitely primary, and thus the assumption made in Theorem 4.4 holds. Or-
ders in algebraic number fields are one-dimensional noetherian and hence they are v-
noetherian weakly Krull domains. If R is an order, then its v-class group C, (R) (which
coincides with the Picard group) as well as the index of the unit groups (R*: R*) are fi-
nite and every class contains a minimal prime ideal p € P. Thus all assumptions made
in Theorem 4.4 (iv) are satisfied. It was first proved by Halter-Koch [27, Corollary 4]
that the elasticity of orders in number fields is accepted whenever it is finite.

Theorem 4.4  Let H be a v-noetherian weakly Krull monoid with conductor @ # f =
(H:H) ¢ H such that Hy is finitely primary for each p € X(H). Let

Pr={peX(H)[p>f}

P = X(H)\P*, and let m: X(H) — X(H) be the natural map defined by n(f) = BnH

for all B € X(H).

(i)  J%(H) has finite elasticity if and only if m is bijective.

(i) If m is bijective and H';/H; are torsion groups for all p € P*, then I3 (H) has
accepted elasticity.

(iii) Suppose that I, (H) has accepted elasticity, and let py, . .., ps € P* be the minimal
prime ideals with p( Hy, ) = p( 95 (H)) foralli € [1,s], and set d; = min A(Hy,).
Then

{ged{di |iel} [@#1c[Ls]} =A5(05(H)) c Ap(35(H))
c {d eN|d divides some d’ € A;(J;‘(H))}.

(iv) Let Gp c C,(H) denote the set of classes containing a minimal prime ideal from
P. Suppose that 7 is bijective, and that C,(H) and H*|H* are both finite. Then
H has accepted elasticity and if p(H) = p(Gyp), then A, (Gp) c A, (H).

Proof By [19, §5]), we infer that H is Krull, P* is finite, and that

(4.4) Jy(H) — F(P)xT, where T= [] (Hyp)rea-
peP*

(i) This follows from (4.2), from (4.4), and from Lemma 2.6 (i).

(ii) This follows from Lemma 2.6 (i) and from Lemma 4.1 (i).

(iii) This follows from (4.4) and from Lemma 4.3 (ii).

(iv) There is a transfer homomorphism B: H - B(H), where B(H) = F(Gp)x T
is the T-block monoid of H and the inclusion is saturated and cofinal [17, Defini-
tion 3.4.9]. Thus £L(B(H)) = L(H), whence it suffices to prove all the statements for
B(H) instead of proving them for H.

Since @, (H) and H*/H* are finite, the exact sequence [19, Proposition 5.4]

1— H/H* — 11 ﬁ;/H; — C,(H) — C,(H) -0,
peX(H)
implies that (FI; :Hy) < oo for all p € P*. Thus, by (4.3), all factors of T are finitely
generated and hence T is finitely generated. Therefore B(H) is finitely generated (as
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a saturated submonoid of a finitely generated monoid) and hence B(H) has accepted
elasticity [17, Theorem 3.1.4].

Since B(Gp) c B(H) is a divisor-closed submonoid, the remaining statement
follows from Lemma 2.4 (ii). |

Remarks 4.5 (1) Let H be as in Theorem 4.4. If 7 is bijective and H is seminor-
mal, then I} (H) is half-factorial [19, Theorem 5.8.1.(a)] and hence A(T}(H)) = @.

(2) Let R be a noetherian weakly Krull domain such that its integral closure R is a
finitely generated R-module. Then, for p € P*, the index (ﬁ: :R};) is finite if and only
if R/p is finite [30, Theorem 2.1].

(3) Lemma 4.1 shows that the elasticity of a finitely primary monoid of rank one is
completely determined by its value semigroup. The interplay of algebraic and arith-
metical properties of one-dimensional local Mori domains with properties of their
value semigroup has received wide attention in the literature [4, 5,10].

(4) For every d € N, there is a v-noetherian finitely primary monoid H with
min A(H) = d. However, even for orders R in algebraic number fields the precise
value of min A(Ry), p € P*, is known only for some explicit examples (as discussed
in [17, Examples 3.7.3]).

To consider the global case, let H be as in Theorem 4.4 with finite v-class group
C,(H), and suppose further that every class contains a minimal prime ideal from P.
If H is seminormal or |G| > 3, then min A(H) =1 ([23, Theorem 1.1]).

It is a central but still open problem in factorization theory to characterize when a
weakly Krull monoid H and when its monoid J; (H) of v-invertible v-ideals are trans-
fer Krull monoids, respectively, transfer Krull monoids of finite type. To begin with
the local case, finitely primary monoids are not transfer Krull and the same is true for
finite direct products of finitely primary monoids [21, Theorem 5.6]. These are one of
the spare results available thus far that indicate that weakly Krull monoids (with the
properties of Theorem 4.4) are transfer Krull only in exceptional cases. Clearly, com-
bining results from Section 3 with Theorem 4.4 (iii), we obtain examples of when the
system of sets of lengths of I (H) does not coincide with £(G) for any, respectively,
some, finite abelian groups G. Clearly, if £(J%(H)) # £(G) for an abelian group G,
then J3 (H) is not transfer Krull over G.

We formulate one such result (others would be possible) as a corollary. But, of
course, we are far from a characterization of when H and the monoid J;; (H) are trans-
fer Krull, respectively, of when £ (H) or £(J; (H)) coincide with £(G) for some finite
abelian group G [21, §5, Problem 5.9].

Corollary 4.6  Let H be a v-noetherian weakly Krull monoid with conductor @ # § =

(H:H) ¢ H such that H, is finitely primary for eachp € X(H) and 3% (H) has accepted

elasticity. Let py, ..., ps be the minimal prime ideals with p(H,,) = p(J5(H)) > 1.

(1) Ifged(minA(Hy,),...,minA(Hy,)) > 1 and G is a finite abelian group with
L(I%(H)) = L(G), then G is cyclic of order 4, 6, or 10.

(ii) Ifthereisani € [1,s] withmin A(Hy,) > 1and G is a finite abelian group with
L(T:(H)) = L(G), then G does not have rank two and is not of the form C;k
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with k,r € N, r > 2, and p prime with p* > 3. Moreover, if Conjecture 3.20 holds
true, then G is either cyclic or isomorphic to C;rmm AlHy, ).

Proof (i) We set d = gcd(min A(Hy,),...,min A(H,,)). Then Theorem 4.4 (iii)
and Lemma 4.3 (ii) imply that min A, (J; (H)) = d. Thus the assertion follows from
Theorem 3.5.

(ii) We set p = p;, minA(H,) = d, and let G be a finite abelian group such
that £(G) = £(J7(H)). Then Theorem 4.4 (iii) implies that d € AZ(J7(H)) <
A, (T5(H)) = Ap(G). Thus the assertion follows from Theorems 3.7, 3.1, 3.13, and
Conjecture 3.20. |
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