ON TWO CONJECTURES OF CHOWLA
Kenneth S. Williams

(received February 7, 1968)

1. Introduction. Let p denote a prime and n a positive in-
teger > 2. Let Nn(p) denote the number of polynomials X"+ x + a,
a=1,2,..,p-1, which are irreducible (mod p). Chowla [5] has made

the following two conjectures:

CONJECTURE 1. There is a prime (n), depending only on n,
Po

such that for all primes p 3.po(n)

(1.1) N () > 1.
(po(n) denotes the least such prime.)
CONJECTURE 2.
N'P i
(1.2) Nn(p) =S fixed, p -=.
Clearly the truth of conjecture 2 implies the truth of conjecture
Let us begin by noting that both conjectures are true for n = 2

and n = 3. When n = 2 we have

1 s pP=2,
(1.3) N, (p) =
%(P‘l) E) P is )
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so that we can take pO(Z) = 2. When n = 3 we have [6]

(1.4) No(p) ={0 . p=3,

so that pO(S) = 5.
In this paper I begin by proving that conjecture 2 (and so con-
jecture 1) is true when n = 4, i.e., N4(p) ~ %y as p »x. In fact I

prove more, naucly,

1
(1.5) N -2 <8 pPr12,  p>3.

This is of course a trivial inequality for small values of p, but it
does show that N4(p) > 1 for p > 457, so that p0(4) < 457. It is
very unlikely that there is a simple formula for N4(p) (not involving
character sums) as there is for Nz(p) and N3(p). In proving (1.5)

I use some results of Skolem [9] on the factorization of quartics (mod p)
and deep estimates of Perel' muter [8] for certain character sums. The
method is not applicable for the estimation of Nn(p) for n > 5.

It is of interest to estimate the least value of a (1 < a < p-1)
which makes x" + x + a irreducible (mod p). We denote this least va-
lue by an(p). az(p) exists for all p , as(p) exists for all p # 3
and a4(p) exists for all p > 457 (and for other smaller values of p).
The existence of an(p), for all n and all sufficiently large p, would
follow from the truth of conjecture 1.

I conjecture that for each positive integer n there is an infini-

ty of primes p for which x" + x + 1 1is irreducible (mod p). This
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is equivalent to
CONJECTURE 3.  For all n > 2

(1.6) liminf an(p) = 1.

p—>°0
This is easily seen to be true when n = 2 (Theorem 3.1) and I also
prove that it is true when n = 3 (Theorem 3.2). The proof of Theorem
3.2 involves the prime ideal theorem. As regards upper bounds for aﬁ(p),
it is shown that az(p) = O(p% log p) (Theorem 4.1) follows from a re-
sult of Burgess [3], that as(p) = O(p%) (Theorem 4.2) using a method
of Tietdvidinen [10], and that a4(p) = 0(p% * ) (Theorem 4.3) using
Skolem's results [9] on quartics. Probably the true order of magnitude
of these is much smaller, perhaps even O(pa), for all ¢ > 0.

Finally I conjecture Chowla's conjecture 2 in the stronger form:

CONJECTURE 4. Let € >0 and let hp denote an integer satis-
fying
(1.7) P +1<h <p.

Let Nn(hp) denote the number of polynomials o+ x+a, a=1,2,...,

hp—l, which are irreducible (mod p). Then

(1.8) Nn(hp) ~ h n fixed, p .

p/™?

Conjecture 2 is the special case hp = p. I prove conjecture 4

when n = 2,3 and 4.

2. Estimation of N4(p). As T am only interested in estimating
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N4(p) for large values of p, I assume throughout that p > 3. The
factorization of x4 +x+a (mod p), for p > 3, depends upon that

of y3 - 4ay -1 (mod p). These two polynomials have the same discri-

minant, namely,
_ 3
(2.1) D(a) = 256a” - 27 .

D(a)

x4 + x+a and y3 - 4 ay - 1 to have squared factors (mod p). Let

n

0 (mod p) 1is a necessary and sufficient condition for both

np denote the number of integers a, 0 < a<p-l, such that D(a) =

(mod p). We have

0 , if p=1 (mod 3), 2P"D/3 41 (nod p)

>

(2.2) n

i
—
.
H

g=]

1

= 2 (mod 3),

«w
e
H
]
n

=1 (mod 3), 2(p—1)/3 =1 (mod p).

Let M(p) denote the number of integers a with 1 <a < p-1
and D(a) # 0 (mod p) such that x4 +x+az0 (modp) has exactly
two distinct solutions, and L(p) the number of integers a with
1< a<p-1 and D(a) # 0 (mod p) such that y3 -4ay -1:=0 (mod p)

has exactly one root. By results of Skolem [9] we have
(2.3) N,(p) + M(P) = L(p)
LEMMA 2.1.
; 1
|L(p) - 3(p-1)] <p? + 1.

Proof. It is well-known that y3 -4ay -1

(mod p) has

exactly one unrepeated solution y if and only if Hence
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L) = pil {1 ] (DTEQ)}

Now the monic cubic polynomial 2_8 D(a) 1is square free (mod p) so

(see for example lemma 1 in [2]) we have

p—l D(a) 1
7 () <t
L5

giving
1 !
[Lp) - 5(p-1)] <p* + 1.
Py 182, 2
LEMMA 2.2. M(p) - al <7 PPt
Proof. x4 +x+a =0 (mod p) has exactly two unrepeated

distinct solutions (mod p) if and only if y3 - 4ay -1 =0 (mod p)
y
has exactly one solution, Yy say, such that (51 ): +1 . Now y3 -

4ay - 1 = 0 (mod p) has exactly one unrepeated root if and only if

(g}g_ag) = -1 . Hence if (D—Iga—)) = -1 then

1, 1if the unique root of y3—4ay—1 =0

1 pl y
5 Y {1 + (ﬁ) = is a quadratic-residue,
3 =1 0, if the unique root of y3-4ay—1 =0
y -4ay-1 = 0 is a quadratic non-residue.
Hence
549
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Sl =

o z (o -(Egﬂ)}{l +(g)}
az(y-1)/4y

D(a) £ 0

(el g

3
y £ 1

D((y>-1)/4y) # 0

_ 1Py {]__ (y4D((y3-1)/4y) L (2
y=0 P Py

p-1.
where [A] < 8 . Now as ! (g) =0,

FNUES

1
Sl

y=0
pil o ((y3-1)/49)

Yy y - Y y _
(RIS T N
where
(2.4) S. = pil Y4+iD((y3-l)/ﬂxﬂ L i= 0.1

1 Y:O p 3 b
SO
(2.5) M(p) = (p-S_-S)*A .

Suppose that
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-2.4 3 9 6 -2 3 2
250/ = 07w asy = {f0)} R0) (od b
where f(y) is a polynomial of degree d (0 <d <5) and g(y) is a

square-free polynomial of degree e (0 < e < 10). Clearly 2d + e = 10.

As yl{f(y)} e, yz)r{f(y)] ? g(y) we have y 4 £(y) , y|g()

so that e # 0. Hence e = 2,4,6,8 or 10.

Now
s -7 ({f(y)lz g(y))
o - p
y=0
L) ()
y=0 P y:() P
f(y) =0
Clearly

y=0
f(y) = 0

and by Perel' muter's results [8]

p-1 1 1
{02\ (e-2)p% + 1 < 8p2 + 1 .
= < dp
y=0 \ P
Hence
3
(2.6) ISOI <8 +5
Similarly
1
(2.7) Is;| < 7p* +5
551
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Putting (2.5), (2.6) and (2.7) together we obtain

153 21
M(p) - p/4| <7 + 5 .

From (2.3) and lemmas 2.1 and 2.2 we have
19 1

P
THEOREM 2.3. N, ) - B < Fp% 12

3. Calculation of 1liminf an(p) for n = 2 and 3.

p o
THEOREM 3.1. liminf az(p) = 1.
p-)oo
Proof. x2 + x + 1 1is irreducible (mod p) 1if and only if
(éé) = -1, that is, for all primes = 2(mod 3)
THEOREM 3.2. liminf as(p) =1.
p-)oo

Proof. We suppose that liminf ag(p) # 1 . Hence

there are only a finite number of primes such that x3 + x4+ 1 is
irreducible (mod p). Thus there is a prime P, such that for all
primes p > P, » x3 + x + 1 is reducible (mod p). The discriminant
of x3 +x+1 1is -31, so x3 + x + 1 has a squared factor (mod p)
if and only if p = 31. Hence for all p > Py = max(p0,31), x3 + x+ 1
is reducible (mod p) into distinct factors. Let v(p) denote the
number of incongruent solutions x (mod p) of x3 +x+1:z0 (mod p).

Then

(3.1) v(p) =1 or 3 for all p > Py -
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Let

5.2 p ={p e <psx, e i) (=1 or )
so that
PLO NP (x) =

and

1

PO UP(x) = {p | py <P < x/
Let n (Pi(x)) (i =1 or 3) denote the number of primes in Pi(x) so
(3.3) n (P +n (P()) = w(x) - wlpy)
where w(t) denotes the number of primes < t. Hence

(3.4) lim 1

X >

= (n 1)) +n P5())) =1,

by the prime number theorem. Now

n (Pl(x)) + 3n (Ps(x))

so that

=]

. In x
(3.5) lim = {

X >

(Py(0) + 3n (P50}
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. 1
- 1im —X E v(p)
X Py <P X
= lim 22X T y(p)
X > P <X
=1,
3

by the prime ideal theorem, as x  + x + 1 1is irreducible over the

integers. Hence from (3.4) and (3.5) we have

In x

(3.6) lim —

X >

1l
—

n () ()

Now x3 + x+1=0 (mod p) has exactly one distinct root if and only

if (lél) = -1 so
p

=]
—~
o
—
—
=
[\
—
1"
holin g
—

1 -31
3L (3
Py <P <X
1 1 -31
+ 2%dx) —n(pI% *5 ) (——)
pp<p<x\P
giving
(3.7) . 1n x 1
ilfm = n(Pl(x)) =5
554
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as

X<:§l) = o(x/1nx)

(3.6) and (3.7) give the required contradiction.

4. Upper bounds for an(p), n=2,3,4.

We now obtain upper bounds for az(p), aS(p) and a4(p)‘

1
THEOREM 4.1. a,(p) = 0(p*1n p)

Proof. x2 + x + a 1is irreducible (mod p) if and only if

(l:ﬁﬁ) = -1. Hence, as az(p) is the least such positive a, (l-ga) =
+1, for a=1,2,..., az(p) - 1, except if smallest positive solu-
tion b of 4b =1 (mod p) satisfies 1 <b < az(p), in which case

the Legendre symbol corresponding to a = b is zero. We consider two

cases, according as b z_az(p) or 1 <b«< az(p). If b z_az(p)
wy (259 (705 (3 & -GIED -5

for a=1,2,..., az(p) - 1 so that

(4.2) {-b +1, -b+2,..., b+ a,(p) -1}

is a sequence of az(p) - 1 consecutive quadratic residues (mod p)

if p =1 (mod 4) and a sequence of az(p) - 1 quadratic non-residues
if p = 3 (mod 4). Burgess [3] has proved that the maximum number

1
of consecutive quadratic residues or non-residues (mod p) is O(p*ln p).

1 1
Hence a,(p) - 1= 0(p*ln p), that is, a,(p) = 0(p®ln p), as required.
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If 1<b«< az(p), we consider in place of (4.2) the longer of

the two sequences  -b+l, -b+2,...,-1 and 1,2,...,—b+a2(p)—1 ;

a,(p)
it contains at least 5 -1 terms.
1
THEOREM 4.2. ag(p) = 0(p*)
Proof. Let N(a) denote the number of solutions x of the con-
gruence
3

x* +x+a=0 (mod p)
Clearly N(a) = 0,1,2 or 3. Set
(4.3) 2(a) = 3 {1 - N(aﬁ{s - N(a)}

Now N(a) = 2 if and only if —4-27a2 = 0 (mod p) hence

1, if x>+ x +a is irreducible (mod p) ,

(4.4) o(a) = { 0, if x>+ x +a is reducible (mod p), -4-27a° # 0,

—% , if x3 + x + a 1is reducible (mod p), —4—27a2 = 0.

Let h denote an integer such that 1 < h 5_% (p+1l), so that
0 < h-1 5.% (p-1). Set H = {0,1,2,...,h-1} and write H(a), (a = 0,

1,2,...,p-1), for the number of solutions of

x +y = a (mod p) , xeH, yeH.

We set
p-1
(4.5) A(p) = ) ¢(a)H(a)
a=0
-4-27a2£0
556
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Now
p-1

p-1 p-1
(4.6) pH(a) = ] ] ] elt(xty-a)}
t=0 x=0 y=0

where e(v) = exp(2miv/p). Hence

p-1 p-1 h-1
(4.7) pA(p) = Z z ¢(a)e(—at9{ z e(tx)‘}2 s
t=0 a=0 x=0
—4—27a25 0

which gives, on picking out the term with t= 0 ,

p-1
(4.8) pA() - hY ] e(a)
a=0
-4-27a%# 0
p-1 p-1 h-1 2
= Z [ Z ¢(a)e(—at9{ Z e(txﬁ
t=1 a=0 x=0
4-27a%% 0
p-1 p-1 h-1 2
< ) s(a)e(-at)| | T e(tx)
t=1 a=0 x=0
-4-272%¢ 0
We note that from (4.4) and (1.4) we have
Pl 1 -3
(4.9) 0@ = 500 = 3fp - (3 }
aZo 3 3 (p )
—4-27a2£ 0

Now
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p-1 p-1 p-1
N ¢(a)e(-at) ) ¢(a)e(-at) - ) ¢(a)e(-at)

a=0 a=0 a=0
2 2_
-4-27a"¢2 0 -4-27a"= 0
p_l 2
< Z d(a)e(-at)| + 3 -
a=0

1 p

- -1
] e(a)e(-at) = J % {l-N(a)}{S—N(aﬂ e(-at)
a=0 a=0
p-1 p-1 p-1
= ) e(-at) - g 7 N(a)e(—at)+% ) {N(a)}ze(-at)
a=0 a=0 a=0
p Pl 2 g P21
=z N(a)}“e(-at) - = N(a)e(-at) ,
5 aZO { ] 3 aZO
p-1
as Z e(-at) = 0, when t #Z 0 (mod p). Now
a=0
p-1 p-1 p-l
J N(a)e(-at)| = | | {} 1 e(u(x3+x+a»} e(-at)
a=0 a=0 P x,u = 0
p-1 p-1
= é ) e(u‘x3+x” ) e(a(u-t))'
x,u =0 a=0
= i e (t(x3+x))
x=0
1
< 2p*,
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by a result of Carlitz and Uchiyama [4]. Similarly

p_l 3
N e(tly’+y))
x,y = 0

pgl {N(a)}ze(—at)

a=0

x3+x—y3—y =0

p-1 p-1 3
< | ] e(t(x7#x)) | + I ele(y +y)
x=0 x,y=0
x £ty

x2+xy+y2+1 =0

1 p-1 p-1 3
< 2p® + Toe(tly ) | + | T eltiy +y)
X,y=0 y=0
x2+xy+y2+1 =0 3y2+1 =0

By a result of Bombieri and Davenport [1] the middle term is less than
1
or equal to 18p? + 9 and the last tsrm is clearly less than or equal

to 2. Putting these estimates togetier we have

p_1 1 1
) ¢(a)e(-at)| < 3(28p® + 13)
a=0

-4-27a2£ 0
Hence from (4.8) and (4.9) we have

h2
PAG) - T (- (-3/0)) |

1 1 p—l 2
3(28p2 +13) §
t=1

h-1
L e(tx)
x=0

I A

1
= (28p° + 13)h(p-h)
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giving
2 1
h -3 1 :
PA(P) > 3= (p(p—)) - 5(28p® + 13)h(p-h)
2
> EEE - 14hp3/2

_ph{ H
-E—lh-84p).

1
Choose h = [84p*] + 1, so that A(p) > 0 i.e.,

p-1
l  ¢(a)H(a) > 0 .
a=0

-4-27a%¢ 0

Hence there exists a, 0 < a < p-1, for which
2
-4-27a" £ 0, ¢(a) >0, H(a) >0,
i.e., for which x3+x+a is irreducible (mod p) and moreover
a=X+Y’X,Y€H,
so that
1
0 < a < 2(h-1) = 2[84p°] .
Hence
1
a (p) < 168p*

as required.
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1
THEOREM 5.1. If p* = €« hy <

1
(5.1) Nz(hp) ~ 3 hy , as p oo .

Proof. x2+x+a is irreducible (mod p) 1if and only if

() -

Hence
h -1
N(h):g 1
2P a=1
k1-4a) 1
P
h -1 )
1 E { (1—43) 12
=3 1-{— =5 P
2 5 p/f 2
where
’ 1, if there exists a such that 1 < a i.hp"l’ 4a = 1 (mod p),
P 0, otherwise.
Thus
hp—l
1 1 1-4a
Loon ) vy - 1] =2 2( )
hp 2% p ) hp az0 p
1
As hp) p* * €, by a result of Burgess [2], for any & > 0 there

exists po(é,g) such that for all p > P, Wwe have

giving
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1
THEOREM 4.3. a,(p) = 0(° e

Proof. Let M(hp) denote the number of integers a with

1
1l <a f.hp'l: where p?® te i-hn <p and D(a) # 0 (mod p), such that
x4+x+a = 0 (mod p) has exactly two distinct solutions; let L(hp) the
number of integers a with 1 < a i.hp'l and D(a) # 0 (mod p) such

that y3—4ay—1 = 0 (mod p) has exactly one root. We have [9]
4.10 N, (h + M(h = L(h
(4.10) a(h) M) = L(h)

Similarly to lemmas 2.1 and 2.2, using incomplete character sums in

B
place of complete ones, we can show that

_1 3
(4.11) L(hp) =5 hp + 0(p°1n p)
and
(4.12) M(h ) = ! h_ + O(péln )
P 4 p

(The method is illustrated in [7]). Hence

1

_ 1 2
(4.13) N4(hp) = 3 hp + 0(p%1n p)

1
I+
As hp i_pz E, for some ¢ > 0, the term hp/4 in (4.13) dominates

1
the error term O0(p®ln p) for p Z.po(g). Hence for p Z_po(e),

N4(hp) >0 1i.e., N4(hp) > 1, and so

I+
a,(p) <p* °©

S. Asymptotic estimates for Ni(hp) (i=2,3,4)
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lim % (@Ny(h) + 7)) = 1.

p > P P
ite
As 2 =0 or 1 and h_>p we have
P P
2
lim FB =0,
p o= P
so
2N, (h_)
lim 2 p =1,
p o P

establishing (5.1).

THEOREM 5.2. Let e > 0 and let hp denote an integer satis-

fying

;

2 t e

< h_ < ;
p =% =P
then
hp
(5.2) Ns(hp) ~ 3
and
"p

(5.3) N4(hp) ~ 3 , as p -,

Proof. (5.2) 1is established in my paper [6], as I showed there

(in different notation) that
3
Ng(h)) = h /3 + 0(p*In p)

(5.3) 1is contained in the proof of theorem 4.3.
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ADDENDUM:  After this paper was written, Professor Philip A. Leonard

of Arizona State University kindly informed me that he had proved my
theorem 2.3 in the form N4(p) = g + 0 (p%) , in Norske Vid. Selsk.
Forh. 40 (1967), 96-97. His paper on factoring quartics (mod p),

J. Number Theory 1 (1969), 113-115 contains a simple proof of the results

of Skolem [9] which I use in this paper.
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