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PERIODIC POINTS AND CHAOS FOR
EXPANDING SELF-MAPS OF THE INTERVAL

ZHANG ZHENHUA

It is shown that expanding self-maps of the interval with a
finite number of turning points must have periodic points whose

periods are not integral power of 2 and therefore are chaotic.

Introduction

Let I be the unit interval ([0, 1] of the real line. A continuous
map f from I to itself is piecewise monotonic if I can be subdivided

into finite number of subintervals Il’ I2, ey IZ on which f is

either strictly increasing or strictly decreasing. Each such maximal
interval on which f is monotonic is called a lap of f , and L = I(f)

is the lap number of f . The separating points at

Cis Cps sevs €7 4

which f has a local minimum or maximum are called the turning points of

f . The limit S(f) = limit Z(fn)l/n is a real number in the interval

b e
[1, 2(f)] called the growth number of f . A piecewise monotonic map f
from I to itself is expanding if there exists a constant A > 1 such
that |f(x)-f(y)| = Alx-y| whenever both x and y belong to the same

lap. Call X an expansion constant for f .

In recent years there has been considerable interest in the dynamical
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properties of difference equations defined by self-maps of the unit
interval. The complicated asymptotic behaviour which often arises has been
emphasized by the use of the term "chaotic" to characterize certain
dynamical properties of a large class of such equations [1], (3], [5]1, [6],
[8], [9]). This complexity can be dealt with statistically if the
transformation admits an invariant measure [4] especially one which is
absolutely continuous with respect to Lebesgue measure. Thus there has

been much interest in proving the existence of such measures [7].

However, the connection between these two ideas has not yet been
clarified. It is known that transformations with a periodic point whose
period is not an integral power of 2 must exhibit chaotic behaviour [1],

{31, [17]. On the other hand, if there exists some natural number m such

that the map fm is expanding then f admits an absolutely continuous

invariant measure [10]. In [2], Byers has shown that expanding maps with a

unique turning point must have a periodic point of period o . 3 and

therefore are chaotic. 1In this paper we generalize the result and show

that if there exists some natural number m such that the map fm is
expanding then f admits a periodic point whose period is not an integral

power of 2 and therefore is chaotic.

Discussion
LEMMA 1. If f : I > I 1is a continuous expanding map with
expansion constant A then, for any natural number n , fn is an
expanding map with expansion constant z

Proof. Let cl, Chs +ves 7y be the turning points of f . Set

n-1 [1-1 .
E= U |U ()
g=0 (=1
We shall first show that F 1is exactly the set of all turning points of

fn . For any x, € E , there must exist 1 =<7, =171, 0 =< jo £n-1,

0

i .
such that f ﬂro) =ec;, - Hence, for any natural number J = jo +1, fJ
0
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has a local extreme value at <&

0 in particular, so does fn . Thus z,

is a turning point of fn . Now let us assume that x* is a turning point
of fn . If z* f E , then, for any J which satisfies the condition
that 0 <j <=n-1 , fJ(x*) is not a turning point of f ; that is f is

monotonic at fJ(x*) , in particular at fn_l(x*) . Hence fn is mono-

tonic at «* and this contradicts the assumption that «* is a turning

point of fn . Therefore x* € E .

Finally we shall show that fn is an expanding map with expansion

constant An . Let us take an arbitrary lap I - of fn For any &
(n)

and y Dbelonging to Ik ,» Wwe may assume that 2z <y without loss of

generality. Then for each fixed j§ =0, 1, ..., n-1 , fJ(x) " and fJ(y)
belong to the same lap of f . Otherwise from the continuity of f there

must exist xo which belongs to (=x, y) and ci such that
0

fJLxO) =e; that is, z, € E and this contradicts the assumption
0

that x, y € I(n) Therefore

k

172 - )| 2 A @) | 2 .. 2 ey

That is |F (z2)-F (y)| 2 |x-y| . N

LEMMA 2 ([10]. Suppose the continuous map f : I + I is piecewise
monotonie. If S(f) > 1, then f admits a periodic point whose period is

not an integral power of 2 .

THEOREM. If f : I » I is a continuous expanding map with a finite
number of turning points, then §f admits a periodic point whose period is

not an integral power of 2 and therefore is chaotic.

Proof. For an arbitrary natural number = , we may take any lap

I(n) - | .(n)

A ck—l’ cén{] of fn . Let X Dbe an expansion constant of f ,

fn[ (n)]_fn[ (n)]| N cin)_cifi

then we have by Lemma 1. Hence
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]cin)_ciil < 2" since lfn[cin)]'fn[cifi] <1 , that is, the length of

I;n) is equal to or less than A" . Thus the lap number Z(fn) of fn

is equal to or larger than l/kan = \" , that is Z(fn)l/n > X ; hence
S(f) =2 X >1. By Lemma 2, f admits a periodic point whose period is not

an integral power of 2 and therefore is chaotic. )
COROLLARY. Suppose the continuous map f : I - I 1is piecewise

rionotonic. If there exists a natural number m such that fm is
expanding, then f admits a periodic point whose period is not an integral

power of 2 and therefore is chaotic.

Proof. Let g = fm . Then g satisfies the conditions of the
theorem; hence g admits a periodic point whose period is not an integral

power of 2 . So f possesses a periodic point of period not equal to 2"

for any natural number »n and therefore is chaotic. O
We give the following example to illustrate the corollary.

EXAMPLE. f : I - I 1is defined in the following way:

-3x/2 +1 , x € [0, 2/3] ,
flx) =
Bx/h - 1/2 > x E [2/33 l] .

Hence

—9x/8 + :I-/)4 E] X G [0: 2/9] s
Ple) = {9z/h - 1/2 , =z € [2/9, 2/3] ,
-9z/8 + 7/4 , x € [2/3, 1] .

It is obvious that f 1is not expanding, but f2 is an expanding map.
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