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Introduction. In his paper [3], Ky Fan asked whether if f is a convex univalent
function in the unit disk, with f(0)=0 and f'(0) =1, then is it true that the set of f(A) is a
convex set of operators, when A runs through all proper contractions on a Hilbert space?
We answer this question in the negative.

Let H be a complex Hilbert space. Let A be an operator (i.e. a bounded linear
transformation) on H and let 6(A) denote its spectrum. If f(z) is a function analytic in a
neighborhood G of o(A), then f(A) will denote the operator on H defined by the usual
Riesz-Dunford integral [2, p. 568]

1 -1
fa)=s L fz) (el - A dz,

where I stands for the identity operator on H, C is a suitable finite family of positively
oriented simple closed rectifiable contours.

As usual, an operator A is called a contraction or a proper contraction, if its norm
|All=1 or ||A]|<1 respectively.

Let A={z:|z| <1} be the unit disk and let K(A) be the class of all convex univalent
functions f normalized by f(0)=0 and f'(0)=1. Let M(A) be the class of all functions
analytic in A; then by a theorem of Brickman-MacGregor-Wilken [1], we know that the
extreme points of the set K(A) in the vector space M(A) are precisely the functions of the
form

e(2)=2z(1—e*z)"!, where 0=60<2m

In [3, Theorem 8], Ky Fan proved that the set of all ¢,(A) is a convex set of
operators, when A runs through all proper contractions on a Hilbert space H. He then
asked as to whether the same convexity is true for a function fe K(A) instead of the
extreme points. Furthermore, he proved that if f is a starlike function then its operator
range f(A) is also starlike [3, Theorem 7). From this, one might conjecture that the
operator range f(A) is convex if f is convex. This however is false as will be seen from the
following result. (For the definition of the Schwarz function, see [4, p. 385]).

THEOREM. The Schwarz function

z _ -1.3...2n-1)
= — -z =7+ E T 7 L An+]
s(2) L (1=t dt=z T 2"n!(4n+1) z

is convex and univalent in A. Its operator range s(A) is starlike but not convex.
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Proof. The Schwarz function s maps A conformally onto the square with vertices at
+s(1) and +is(1), so that it is convex and univalent in A. To prove that the operator range
s(A) is not convex, we let

01 0 1
A1=r[1 0] and A2=r[_1 O]’ where 0<r<1.

Then the norm ||A,||=||A,]l=r<1. By a simple computation, we find that

0 s 0 s(r)]
s(r) O —-s(r) 01

If the assertion were false, then there would be a proper contraction A such that

s(A1)=[ ] and s(A2)=[

S(A)=X(s(A)+5(A) = [g Sf)’)] _B

Since the function w=s(z) is univalent and s(0)=0, it follows that the inverse
z =s7'(w) is analytic at the origin and can be expanded as

z=s""(w)=w+). aw"
2

This yields A =s~'(B)=B, because B" =0 for n>1.

Clearly, the function s is continuous on the closure A and the value s(1)>1. By
choosing r sufficiently close to 1, we obtain the norm ||A|=|B| = s(r)>1, a contradiction.
This completes the proof.
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