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1. Introduction. In this paper we consider the value distribution of a 
meromorphic function whose behaviour is prescribed along a spiral. The 
existence of extremely wild holomorphic functions is established. Indeed a 
very weak form of one of our results would be that there are holomorphic 
functions (in the unit disc or the plane) for which every curve ''tending to the 
boundary" is a Julia curve. 

The theorems in this paper generalize results of Gavrilov [7], Lange [9], 
and Seidel [11]. 

I wish to express my thanks to Professor W. Seidel for his guidance and 
encouragement. 

2. Preliminaries. For the most part we will be dealing with the metric 
space (D, p) where D is the unit disc, \z\ < 1, and p is the non-Euclidean 
hyperbolic metric on D. The chordal metric on the Riemann sphere will be 
denoted by %. For a subset A C D and a non-negative number r, we write 

A(A,r) = {ze D: p(A,z) ^ r}. 

If the set A is a singleton A = {JS0}, we write A(z0, r) instead of A({s0}, r) 
and refer to A(z0, r) as a disc. 

Definition. Let w = f(z) be a meromorphic function in D. A sequence of 
points {zn}, zn Ç D, is called a sequence of p-points for the function f(z) if 
there are sequences {Ln} and {rn}, where 

(A) Li > L2 > . . . > Ln > . . . , Ln -> 0, for n -> oo, 
(B) ri > r2 > . . . > rn > . . . , rn —> 0, for n —> oo, 

such that the sequence {An} of discs, An = A(zni rn), in D has the following 
property: 

(C) in each disc Aw, n = 1, 2, . . . , the function f(z) assumes all values of 
the Riemann sphere with the possible exception of two sets of values E(n) 
and G(n) whose chordal diameters do not exceed Ln. 

If {zn) is a sequence of p-points for / (s) , then the associated sequence of 
discs {An} is called a sequence of p-cercles de remplissage for f(z). 
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THEOREM 1. A sequence of points {zn}, zn Ç D, is a sequence of p~points for a 
function f(z) meromorphic in D if and only if the family 

is not normal at z = 0. 

Proof. If {zn} is a sequence of p-points, then the family (1) is not normal at 
z = 0 since it is not even equicontinuous there. 

The sufficiency follows from [5, Corollary 2]. 
It follows from Theorem 1 (see also [4, Theorem 3]) that a meromorphic 

function is normal in D if and only if it possesses no sequence of p-points. 
For a subset A C D and a value Wo of the Riemann sphere, we say that a 

function/(s) defined in D tends to w0 in (or on) A if f(zn) -^w0 for each se­
quence {zn}, zn Ç A, for which \zn\ —> 1. A boundary path a is a continuous 
curve a(t), 0 ^ t < 1, in D, for which \a(t)\ —> 1 as t —> 1. The end of a is the 
set of all points of the circumference \z\ = 1 which are in the closure of a. 

3. Meromorphic functions with asymptotic values. 

THEOREM 2. Let w = f(z) be a non-constant meromorphic function which 
tends to a value along a boundary path a whose end contains more than one point. 
Then for each point ZQ in the end of a, there is a sequence of p-points whose limit 
is z0. 

Proof. Suppose that z0 is in the end of a and s0 is not the limit of a sequence 
of p-points. It will suffice to show that in this case/(s) is identically constant. 

There is a number r > 0 such that f(z) has no sequence of p-points in 
G = {z G D: \z — ZQ\ < r] ; for otherwise, by a diagonalization process, one 
could construct a sequence of p-points with limit z0. Let z = h(£) map the 
unit disc |£| < 1 conformally onto G. It follows from Pick's inequality [8, p. 239] 
that/(/£(£)) has no sequence of p-points in |£| < 1 since f(z) has no sequence 
of p-points in G. Hence f(h(£)) is a normal function in |£| < 1 which tends to a 
limit along a Koebe sequence of arcs. Bagemihl and Seidel [1] have shown 
that such a function is identically constant. This completes the proof. 

Let a: be a boundary path in D. We define p!a by the equation 

n'a = inf{sup{p(a, z): r < \z\ < 1} : 0 < r < 1}. 

It turns out that if a meromorphic function tends to a value along a boundary 
path a for which \xa = 0, then for any boundary sequence {zn}, there are 
only two possibilities. Either the function is extremely well behaved near 
{zn} or extremely wildly behaved near {zn}. Indeed we have the following 
result. 

THEOREM 3. Let w = f(z) be a meromorphic function in D which tends to a 
value Wo along a boundary path a for which p!a = 0. Then for any boundary 
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sequence {zn} in D, either {zn} is a sequence of p-points or for some r > 0, f(z) 
tends to w0 in Un=i A(z»> r). 

Proof. Let {zn) be an arbitrary boundary sequence, and let fn(z) be the 
function given by formula (1), n = 1, 2, . . . . If for some r > 0, the family 
{/nOs)} is normal in A(0, r), then familiar arguments on normal families show 
tha t / (z) tends to w0 in U»=i A(sw, r). 

If on the other hand the family {fn(z)} is not normal at z = 0, then we 
invoke Theorem 1. This completes the proof. 

We define a spiral a in D to be a boundary path a(t), 0 ^ / < 1, for which 
arga(t) tends to + oo (or — oo ) as t tends to 1. Seidel [11] has introduced a 
non-negative number (possibly + oo), denoted by Jla, which indicates the 
"tightness" of a spiral a. It is easily seen that p!a = 0 whenever Jla = 0 and 
so we have the following corollary. 

COROLLARY 1. Let w = f(z) be a meromorphic function in D which tends to a 
value Wo along a spiral a for which Jla = 0. Then the conclusion of Theorem 3 
holds. 

Consider now the class V(a) of unbounded holomorphic functions in the 
disc D which are bounded on a spiral a. It is well known, [2, Lemma 1; 12], 
that if w = f(z) is in the class V(a), then there is a spiral a' along which/(s) 
tends to the value oo. Since Jla! cannot exceed jla, we have the following 
result. 

COROLLARY 2. If w = f{z) is a holomorphic function in the class V(a) with 
Jla = 0, then each boundary sequence is a sequence of p-points. 

All the classes of functions which are considered in this paper are non­
empty [3, Theorem 1]. In particular, Corollary 2 establishes the existence of 
holomorphic functions whose behaviour is extremely wild. 

4. Examples. So as not to interrupt the main line of thought, we have 
postponed giving examples until the present section. 

For many questions, the tightness of a spiral a as measured by Jla is of 
great use. We wish to justify our introduction in § 3 of a further tightness 
measure p!a. First of all Jla is defined only for spirals, yet there are boundary 
paths a which are not spirals and for which p!a = 0. Moreover, our first 
example shows that there is a spiral a for which Jla = + oo but ixra\= 0. 
Hence Theorem 3 is truly more general than its Corollary 1. 

Example 1. Let {xn} be a sequence of points in D for which 

0 < xi < x2 < . . . < xn < . . . < 1 and p(xn, xn+i) —> + oo. 

Let In = (—xni Xn), n = 1, 2, . . . . Let Kx = (—xi, Xi), and let C\ be the 
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boundary of A(Kiy 1). Having denned Ku K2, . . . , Kn and Ci, C2, . . . , Cn, 
we now define Kn+i and Cn+\. Let i£n+i = A(Kn, 1/n) U 7w+i, and let Cw+i be 
the boundary of A(Kn+i, l/(n + 1)). {Cn} is a sequence of simple closed 
curves which tend uniformly to the circumference \z\ = 1. Hence one can 
construct a spiral a by appropriately joining subarcs of these closed curves. 
Moreover, a may be so constructed that \xa — 0 and pa = + oo. 

The second example shows that we cannot relax the tightness of the spiral 
in Corollary 2 and still hope to retain the same conclusion. 

Example 2. Let a, be a spiral in D with monotonie argument and modulus 
and such that 0 < fia = jla < + oo (see [11] for a definition of fia). Choose 
r > 0 such that 4r < pa. Schneider has shown [10] that there is an unbounded 
holomorphic function w = f(z) which is bounded on A(a, r). There is of course 
no sequence of p-points on a. 

We remark that Theorem 3 and its corollaries hold in the plane as wTell as 
in the disc. It suffices to replace the non-Euclidean metric by the Euclidean 
metric wherever the former occurs and to replace formula (1) by 

/(* + zn), n = 1, 2, . . . . 

The Bagemihl-Seidel existence theorem which we invoked also holds in the 
plane. Indeed, it follows that there exists an entire function w = f(z) with the 
following property. For every sequence {zn} of points tending to oo, there are 
sequences {Ln} and \rn) tending to zero such that in each disc (\z — zn\ < rn), 
f(z) assumes every value of the Riemann sphere with the possible exception of 
two sets of values E(n) and G in) whose chordal diameters do not exceed Ln. 
A very weak consequence is that every path tending to oo is a Julia path 
iorf(z). 

In the present investigation we have concerned ourselves with the "shape" 
of asymptotic paths. In a forthcoming paper [6] we will consider how the 
speed of asymptotic approach affects the distribution of values of a function. 
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