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Abstract

In this article, we define the concept of a Malcev ideal in an alternative ring in a manner
analogous to Lie ideals in associative rings. By using a result of Kleinfield's we show that a
nonassociative alternative ring of characteristic not 2 or 3 is a ring sum of Malcev ideals Z and
[R,R] where Z is the center of R and [R, R] is a simple non-Lie Malcev ideal of R. If R is a
Cayley algebra over a field F of characteristic 3 then [R, R ] is a simple 7 dimensional Lie algebra.
A similar result is obtained if R is a simple associative ring.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 17EO5, 16A68, secondary 17B20.

1. Introduction

Jacobson and Rickart (1950) defined a Lie ideal in an associative ring.
I. N. Herstein developed the abstract structure theory of Lie ideals in
associative rings in the early 1950's. These results can be found in Herstein
(1969). In section 2 we show how a simple associative ring may be decom-
posed into a sum of Lie ideals.

The concept of a Malcev ring goes back to A. I. Malcev (1955). A. A.
Sagle (1961) developed the basic structure theory of Malcev rings. In section 3
the concept of a Malcev ideal in an alternative ring is defined in a manner
analogous to a Lie ideal in an associative ring. Then we prove that: if R is a
simple alternative ring which is not associative and of characteristic not 2 or 3,
then R = Z + [R, R ] is a ring sum of Malcev ideals Z and [R, R ] where Z is
the center of R.

2. Decomposition of a simple ring into Lie ideals

Let A be an associative ring. We form a new ring A called a Lie ring by
introducing a new multiplication
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[x, y] = xy - yx for x, y in A.

Z will denote the center of the ring A and if B and C are subsets of A then
[B, C] will denote the subgroup of A generated by the set {be - cb | b G B,
c G C}. If A is also a vector space we define [B, C] to be the subspace
spanned by all commutators [b, c] for b in B and for c in C.

For completeness we collect the most essential results to be used below.
A subset U of an associative ring A is called a Lie ideal of A provided

(i) U is an additive subgroup of A
and

(ii) [x, y ] = xy - yx G U for x in U and y in A.

Hence U is a Lie ideal of A if and only if U is an ideal of the Lie ring A ~. If S
is a subset of A define

SL = {xGA |[x,u] = 0 for all u G 5}.

From this definition we see that if B and C are subsets of an associative ring
A and B CC, then CL CBL.

LEMMA 1. If U is a Lie ideal in A, then UL is a Lie ideal.

PROOF. If x is in UL, then xu = ux for u in U. Expanding commutators
and using xu = ux, we see that [ [x, y ], u ] = [x, [y, u ] ] for y in A. [y, u ] G U
implies [x, [y, u ] ] = 0. So [x, y ] G UL.

THEOREM 2. (Herstein) Let A be a simple associative ring of characteris-
tic not 2 and let U be a Lie ideal of A. Then either U CZ the center of A or
U = [A,A].

See Herstein (1969), Chapter 1 Theorem 1.12 for a proof of this result.

THEOREM 3. Let U be a non-zero Lie ideal of a simple associative ring A
which contains Z and suppose that if U D UL implies U = A. Then U = A or
U = Z.

PROOF. Since U is a Lie ideal, Theorem 2 implies that U C Z or
U = [A,A]. Hence we need only consider the case where U = [A, A] and
show that U = A. Since UL is a Lie ideal of A, UL = [A, A ] or UL C Z C U.
If UL C U then by our hypotheses we have that U = A.

For the case UL = [A,A] we see that UL = U using U = [A,A] . In
particular, UL C U and so by hypothesis, U = A, that is A = [A, A ].

THEOREM 4. Let A be a simple associative ring in which any Lie ideal U
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that has the property that U D UL implies U = A. Then one of the following
holds:

(i) A=[A,A] + Z
(ii) A=[A,A]
(iii) A = Z.

PROOF. Case 1. Assume that ZC[A,A]. Letting U = [A, A] which is a
Lie ideal of A, Theorem 3 implies conditions (ii) or (iii) holds.
Case 2. Suppose now that ZjZ![A, A] and let T = [A, A] + Z, a ring sum of
the ideals Z and [A, A]. T is a Lie ideal of A. Since TL is a Lie ideal, we have
TL=[A,A] or TLCZCT by Theorem 2. If TL C T, then T = A by
hypothesis. If TL = [A, A ], then since T = [A, A ] + Z we have TL C T. So in
this case we also have T = A.

EXAMPLE 5. Let A be the algebra of quaternions over a field F of
characteristic not 2. See Lam (1973), Chapter 3 for the properties of the
quaternion algebra. As an algebra A is a 4-dimensional vector space over F
with basis l,i,j,k. Lam (1973), Chapter 3 Proposition 1.1 gives that A is a
simple algebra and has F = F.I as its center Z. [A, A ] is a simple Lie ideal of
A which does not contain Z. Hence we see that A = Z + [A, A ] as a ring
direct sum of minimal Lie ideals Z and [A,A].

3. Malcev ideals in alternative rings

Max Zorn in 1930 defined an alternative ring as a ring in which the
associator (x, y,z)= (xy)z - x(yz) changes sign on the interchange of two of
its arguments. This is equivalent to the following identity (See Sagle (1971)):

x2y = x(xy); yx2 = (yx)x for x, y E A.

Sagle (1971) defines a Malcev ring A by the following identities:

(i) x2 = 0 for each x in A
and

(ii) (xy)(xz)= {(xy)z)x + ((yz)x)x + ((zx)x)y

for all x, y, z in A. In an alternative ring A we form a new ring A" by
introducing a new multiplication:

[x,y] = xy- yx for x, y in A.

THEOREM 6. (Malcev) If A is an alternative ring, then A is a Malcev
ring.

THEOREM 7. (Sagle) Any Lie ring A is a Malcev ring.
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THEOREM 8. Let A be an alternative ring of characteristic 2 or 3. Then the
Malcev ring A ' obtained from A is a Lie ring.

THEOREM 9. (Kleinfield) A simple alternative ring R which is not of
characteristic 3 is either a Cay ley-Dickson algebra over its center or
associative.

The proofs of Theorem 6 and 8 may be found in Davenport (1971),
Chapter 1 Theorem 2.5 and 2.6 respectively. Theorem 7 is given in Sagle
(1961), p. 429 and Theorem 9 is the main result of Kleinfield (1957), p. 399.

DEFINITION 10. A subset A of a ring R is a Malcev subring of R if A is
an additive subgroup of R such that [x, y]G A for each x, y in R.

DEFINITION 11. A subset U of a Malcev subring A of a ring R is called a
Malcev ideal of A provided U is an additive subgroup of A and [u, x] G U
for u in U and x in A.

Hence we see that U is a Malcev ideal of a ring R if and only if U is a
Malcev ideal of the Malcev subring R .

Schafer (1966), Chapter 1 gives a multiplication table for a Cayley
algebra C over a field F of characteristic unequal to 2. We introduce a new
multiplication in C by the commutator [x, y] = xy - yx for each x,yGC.
Define Vi = M, and D, = wf/2 for i = 2, • • -,8. Thus we obtain the following
multiplication table.

Multiplication table for the Malcev ring C
when C is a Cayley algebra

Note: The remainder of the table may be computed by using [v,Vj] ~ — [u,i;,] for

v2

v,

Vi

0

v2

0

0

v,

0

- V 4

0

0

-av,

/3t),

0

- » .

— v7

6

0

— oti s

- Vg

v7

0

Vg

-Pv,

0

a C 7

- / 3 t > 6

— Vg — aVy / 3 D 6 otfivs

V 7

0 yt>4 a y o 3

0
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THEOREM 12. / / R is a Cay ley algebra over a field F of characteristic not
equal to 2 or 3, then [R, R] is a simple non-Lie Malcev ring, and for
characteristic equal to 3 [R,R] is a simple Lie algebra.

PROOF. Clearly v,£[R,R]. Let 1/(0) be an ideal in [R,R]. Suppose
x G / where x = Xf=2XiU,, and some x,^ 0.

If x 2 / 0 , a simple calculation shows the following:

8

XV2= 2 x> (ViV2)
i = l

= X3V4 + x4au3 + x5v6 + x6av5 - x7i>8 - x8av7

(xVi)Vi = x2av2 + x3av3 + x4av4 + x5av5 + x6av6 + x7av7.

Thus, x2av2 = ax — (xv2)v2 G /, since / is an ideal. Hence v2 G J. In a similar
manner, the following equations can be shown:

/3x3t>3 = /3x - (xv3)v3, if x3 / 0;

a/3x4i>4 = (xv^Vt + 4a/3x, i f x 4 / O ;

yx5v5 = yx - (xvs)v5, if x5 / 0;

ayx6v6 = (xv6)v6 + ayx, if x6 / 0;

fiyx7v7 = (xu7)u7 + /3yx, i f x 7 ^ 0 ;

and /3yx8u8 = a/3yx - (xvs)vs, if x8 / 0.

In either case, x{/ 0 implies u, G /. Thus 1/ (0) implies u , £ / for some i. A
simple calculation gives that vt G / for i G {2, • • •, 8} implies v2, v3, • • •, v» G /.
Therefore, / = [R, R ], and it follows that [R, R ] is a simple Malcev ring. If the
characteristic of F is 3, then [R, R] is a Lie algebra by Theorem 8.

A brief calculation gives that

J(v2, v4, v5) = (v2 v4)v5 + (v4 v5)v2 + (v5 v2)v4 = 3av7.

Thus J(v2, v4, v5)/0 and it follows that [R, R] is a non-Lie ideal of R.

THEOREM 13. Let R be a simple alternative ring of characteristic not equal
to 2 or 3 which is not associative. Then R = Z + [R, R] as a ring sum of
Malcev ideals Z, the center of R, and [R, R] is a simple non-Lie Malcev ideal
ofR.

PROOF. Theorem 9 implies that R is a Cayley-Dickson algebra over its
center. Clearly the center Z of R is a Malcev ideal of R. The center and the
nucleus of a Cayley algebra are the same. [R, R] is a simple non-Lie Malcev
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ring by Theorem 7. So [R,R] is a minimal Malcev ideal of R. Thus
R =Z + [R,R].

The author would like to thank the referee for corrections and simplifica-
tions of some proofs.
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