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Abstract

We establish an extension of the Banach–Stone theorem to a class of isomorphisms more general than
isometries in a noncompact framework. Some applications are given. In particular, we give a canonical
representation of some (not necessarily linear) operators between products of function spaces. Our results
are established for an abstract class of function spaces included in the space of all continuous and bounded
functions defined on a complete metric space.
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isomorphisms, Fréchet and Gâteaux differentiability on Banach spaces, duality.

1. Introduction
Let K be a compact Hausdorff topological space and C(K) be the Banach space of all
continuous real functions on K endowed with the sup-norm

‖ϕ‖∞ := sup
k∈K
|ϕ(k)|.

The problem in what is known as the classical Banach–Stone theorem traces its
origin back to the book Théorie des Opérations Linéaires (1932) of Banach [9]. In
this book, Banach considered the problem of when two spaces of type C(K) are
isometric. He solved this problem for the case of compact metric spaces K, also giving
a description of such isometries. In 1937, Stone [26] extended this result to general
compact spaces K.

Theorem 1.1 (Banach (1932); Stone (1937)). Let K and L be compact spaces. Then
C(K) is isometrically isomorphic to C(L) if and only if K and L are homeomorphic.
More precisely, let T : C(K)→ C(L) be an isomorphism. Then (1)⇔ (2).

(1) The isomorphism T is isometric for the norm ‖ · ‖∞.
(2) There exist a homeomorphism π : L→ K and a continuous function ε : L→ {±1}

such that, for all k ∈ K and for all ϕ ∈ C(K), Tϕ(k) = ε(k)ϕ ◦ π(k).

c© 2017 Australian Mathematical Publishing Association Inc. 1446-7887/2017 $16.00

1

https://doi.org/10.1017/S1446788717000271 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000271


2 M. Bachir [2]

The Banach–Stone theorem was investigated by several authors in diverse directions
making way to several advances and publications. The list of contributions is long; we
go back to the article of Garrido and Jaramillo [19] for a history of contributions and
a complete list of references.

Throughout this paper, the space X is assumed to be a complete metric space.
The space (Cb(X), ‖ · ‖∞) denotes the Banach space of all bounded continuous real-
valued functions on X. The following property and axioms, which we shall use in our
hypotheses, are further discussed in Section 2. These axioms are verified for classical
and known function spaces (see Proposition 2.5) like the space Cb(X), the space Cu

b(X)
of all bounded and uniformly continuous functions or the space Lipαb (X), 0 < α ≤ 1, of
all α-Holder and bounded functions. All these spaces are endowed with their natural
norms of Banach spaces.

The property Pβ. Let (X, d) be a complete metric space and (A, ‖ · ‖) be a Banach space
included in Cb(X). We say that the space A has the property PF (respectively, PG) if,
for every sequence (xn)n ⊂ X, the following assertions are equivalent:

(i) the sequence (xn)n converges in (X, d);
(ii) the associated sequence of the Dirac masses (δxn )n converges in (A∗, ‖ · ‖∗)

(respectively, in (A∗,w∗)), where ‖ · ‖∗ denotes the dual norm and w∗ the weak-
star topology.

By the property Pβ, we mean PF if β = F or PG if β = G.

Axioms. Let (X, d) be a complete metric space and A be a class of function spaces
included in Cb(X). We say that the space A satisfies the axioms (A1)–(Aβ

4) if the space
A satisfies the following axioms:

(A1) the space (A, ‖ · ‖) is a Banach space such that ‖ · ‖ ≥ ‖ · ‖∞;
(A2) the space A contain the constants;
(A3) for each n ∈ N, the set of all natural numbers, there exists a positive constant Mn

such that for each x ∈ X there exists a function hn : X → [0, 1] such that hn ∈ A,
‖hn‖ ≤ Mn, hn(x) = 1 and diam(supp(hn)) < 1/(n + 1). This axiom implies in
particular that the space A separates the points of X;

(Aβ
4) the space A has the property Pβ (with β = F or β = G).

Let f : X→ R ∪ {+∞} be a lower semicontinuous and bounded from below function
with nonempty domain, that is,

dom( f ) := {x ∈ X : f (x) < +∞} , ∅.

We denote by dom( f ) the closure of dom( f ) in X.
The main result of this paper (Theorem 1.2 below) extends the classical Banach–

Stone theorem (in the case of a complete metric space X) in the following directions:

(i) the Banach–Stone theorem remains true for a class of isomorphisms more
general than isometries (see more details in Sections 4.1 and 4.2);
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(ii) the theorem is true for an abstract class of function spaces which includes
classical spaces;

(iii) the theorem remains true for complete metric spaces X that are not necessarily
compact.

Theorem 1.2. Let X and Y be two complete metric spaces and A ⊂ Cb(X) and B ⊂
Cb(Y) be two Banach spaces satisfying the axioms (A1)–(Aβ

4) with the same β. Let
T : A→ B be an isomorphism and let f : X → R ∪ {+∞} and g : Y → R ∪ {+∞} be
lower semicontinuous and bounded from below functions with nonempty domains.
Then (1)⇔ (2).

(1) For all ϕ ∈ A,
sup
y∈Y
{|Tϕ(y)| − g(y)} = sup

x∈X
{|ϕ(x)| − f (x)}.

(2) There exist a homeomorphism π : dom(g)→ dom( f ) and a continuous function
ε : dom(g)→ {±1} such that, for all y ∈ dom(g) and all ϕ ∈ A,

Tϕ(y) = ε(y)ϕ ◦ π(y)

and
g(y) = f ◦ π(y).

We obtain immediately (Corollary 1.3) the representation of the isometries for the
sup-norm ‖ · ‖∞ when we take f ≡ 0 on X and g ≡ 0 on Y , but the general case also has
some interest, as we will detail in Section 4.

Corollary 1.3. Let X and Y be two complete metric spaces. Then the space Cb(X)
is isometrically isomorphic to Cb(Y) if and only if X and Y are homeomorphic. More
generally, let A ⊂ Cb(X) and B ⊂ Cb(Y) be two Banach spaces satisfying the axioms
(A1)–(Aβ

4) with the same β. Let T : A→ B be an isomorphism. Then (1)⇔ (2).

(1) The isomorphism T is isometric for the norm ‖ · ‖∞.
(2) There exist a homeomorphism π : Y → X and a continuous function ε : Y → {±1}

such that, for all y ∈ Y and all ϕ ∈ A, we have Tϕ(y) = ε(y)ϕ ◦ π(y).

Let us mention here that one of the consequences of Theorem 1.2 is the study of
operators between product spaces A × A′ ⊂ Cb(X) × Cb(X, Z) and B × B′ ⊂ Cb(Y) ×
Cb(Y,W) for the norm ‖ · ‖∞,1 (where Cb(X, Z) denotes the space of all bounded and
continuous functions from X into a Banach space Z). The norm ‖ · ‖∞,1 is defined on
Cb(X) ×Cb(X,Z) by

‖(ϕ, ψ)‖∞,1 := sup
x∈X
{|ϕ(x)| + ‖ψ(x)‖Z}.

A nontrivial class of operators H : A × A′ → B × B′, not necessarily linear, which
preserve the norm ‖ · ‖∞,1, will be characterized by a canonical form in Theorem 4.9
and these corollaries (see Section 4.4).
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The proof of Theorem 1.2 will be given in Section 3. It is based on the
differentiability of some convex functions generalizing the norm ‖ · ‖∞ and a
duality result introduced in [6] together with the Deville–Godefroy–Zizler variational
principle (see [14, 16]). Note that the original proof of the Banach–Stone theorem
in the compact metric case, given by Banach in [9], is based on the Gâteaux
differentiability of the norm ‖ · ‖∞.

This paper is organized as follow. In Section 2 we introduce the axioms which we
shall use in this article and we give examples satisfying them. We also give some
preliminary results which will permit us to give the proof of our main theorem. In
Section 3 we give the proof of the main result (Theorem 1.2). In Section 4 we give
various applications of Theorem 1.2.

2. Preliminary results

To prove our main result, we need to introduce some notions and to establish certain
lemmas.

2.1. The Dirac masses and the property Pβ. Let (X, d) be a complete metric space
and (A, ‖ · ‖) be a Banach space included in Cb(X). By A∗, we denote the topological
dual of A. By δ, we denote the Dirac map and by δx the Dirac mass associated to the
point x ∈ X:

δ : X→ A∗

x 7→ [δx : ϕ 7→ ϕ(x)].

Suppose that X and Y are complete metric spaces, A ⊂ Cb(X) and B ⊂ Cb(Y) are
Banach spaces, T : A→ B is an isomorphism and T ∗ its adjoint. With the aim of
proving the Banach–Stone theorem, it is classical to look for a way to correspond the
set of the Dirac masses δ(X) to the set δ(Y) via a homeomorphism h:

δ(Y) h−1
//

� _

i
��

δ(X)� _
i
��

B∗
T ∗

// A∗

In the compact framework (that is, when X = K and Y = L are compact) and when T is
isometric, the classical idea to correspond δ(X) to δ(Y) consists in the fact that the set of
all extreme points of the dual unit ball of C(K)∗ is exactly the set ±δ(K) := {±δk : k ∈ K}
(that is, the Arens–Kelley theorem (1947); see [19, Theorem 4]) and the fact that an
isometry (here the isometry is T ∗) sends necessarily extreme points to extreme points.
Unfortunately, the Arens–Kelley theorem is not true if X is not compact or if A is
an abstract class of functions. Indeed, on one hand, the set of extreme points of the
unit ball of the dual space (Cb(X))∗ is ±δ(βX) (where βX denotes the Stone–Cech
compactification of X), which contains strictly the set ±δ(X) when X is not compact.
On the other hand, we do not know explicitly the extreme points of the dual unit ball of
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A∗ in the abstract cases. So, our purpose in this paper is to characterize the set ±δ(X)
in another way. We shall use the fact that the Dirac masses δx for x ∈ X are in general
the derivative of some conjugate function f × (of a lower semicontinuous function f )
defined on the space A. This class of conjugate functions generalizes the norm ‖ · ‖∞
(see [6, Theorem 2.8] and Section 3).

Once the correspondence between δ(X) and δ(Y) via a homeomorphism h has been
determined, we try then to establish a homeomorphism between X and Y . The classical
scheme of the correspondence would be the following one:

X
δ
−→ δ(X)

h
−→ δ(Y)

δ−1

−→ Y.

It is well known that the Dirac map δ gives a homeomorphism between a compact
space K and its image δ(K) ⊂ BC(K)∗ (the dual unit ball of C(K)∗) when (δ(K),w∗) is
endowed with the weak-star topology. If (X, d) is a metric space, it is also possible
in certain spaces like the space Cb(X) or the space Cu

b(X) to obtain that δ is a
sequential homeomorphism from (X, d) onto (δ(X),w∗). There also exist spaces such
as Lipαb (X), 0 < α ≤ 1, for which the map δ is a homeomorphism from (X, d) onto
(δ(X), ‖ · ‖∗) (where ‖ · ‖∗ denotes the dual norm of Lipαb (X)). Note that δ cannot be a
homeomorphism from (X,d) onto (δ(X), ‖ · ‖∗∞) in the dual spaces (Cb(X))∗ or (Cu

b(X))∗,
since we always have ‖δx − δx′‖

∗
∞ = 2 if x , x′. Thus, the map δ enjoys certain

properties which are connected to the nature of the function spaces A in question.
This motivates the Definition 2.1 already mentioned in the Introduction, as well as the
equivalent proposition which follows it. Some examples are given in Proposition 2.5.

A bornology on a Banach space A, denoted by β, will be any nonempty family
of bounded sets whose union is all of A. If β is a bornology on A and χ is a real-
valued function on A, we say that χ is β-differentiable at a ∈ A with β-derivative,
χ′(a) = p ∈ A∗, if

lim
t−→0+

t−1(χ(a + th) − χ(a) − 〈p, th〉) = 0

uniformly for h in the elements of β. We denote by τβ the topology on A∗ of
uniform convergence on the elements of β. When β is the class of all bounded
subsets (respectively, all singletons) of A, the β-differentiability coincides with the
usual Fréchet differentiability (respectively, Gâteaux differentiability) and τβ coincides
with the norm (respectively, weak∗) topology on A∗. By G, we denote the Gâteaux
bornology consisting of all singletons and by F we denote the Fréchet bornology
consisting of all bounded sets.

Definition 2.1. (The property Pβ) Let (X, d) be a complete metric space and (A, ‖ · ‖)
be a Banach space included in Cb(X). We say that A has the property PF (respectively,
PG) if, for each sequence (xn)n ⊂ X, the following two assertions are equivalent:

(i) the sequence (xn)n converges in (X, d);
(ii) the associated sequence of the Dirac masses (δxn )n converges in (A∗, ‖ · ‖∗)

(respectively, in (A∗,w∗)), where ‖ · ‖∗ denotes the dual norm and w∗ the weak-
star topology.
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The crucial property Pβ (β = F or G) is related to the geometry of the Banach space
A and is connected to the β-differentiability of the sup-norm ‖ · ‖∞; for more details,
see [6]. In this paper we deal only with the Gâteaux bornology β = G or the Fréchet
bornology β = F. In this case, the above definition can be formulated easily as follows.

Proposition 2.2. Let (X, d) be a complete metric space and (A, ‖ · ‖) be a Banach space
included in Cb(X) which separates the points of X.

(1) The space A has the property PF if and only if the map

δ : (X, d)→ (δ(X), ‖ · ‖∗)
x 7→ δx

is a homeomorphism.
(2) The space A has the property PG if and only if the map

δ : (X, d)→ (δ(X),w∗)
x 7→ δx

is a sequential homeomorphism.

Remark 2.3. The map δ : X → A∗ is a nonlinear analogue of the canonical embedding
i : Z → Z∗∗, where Z is a Banach space and Z∗∗ its bidual. This map permits us to
linearize the metric space X in A∗. For more information in this direction, we refer to
the paper of Godefroy and Kalton [20] when A is the set of all Lipschitz maps on X
that vanish at some fixed point.

2.2. Axioms and examples. We give now the general axioms that the space A has
to satisfy in our results. These axioms are satisfied by various and classical spaces of
functions. We give below some examples. Let us mention here that the axioms (A1)
and (A3) are related to the variational principle of Deville et al. [14] and Deville and
Revalski [16] (see Theorem 2.7 below) and the axiom (Aβ

4) was introduced and studied
in [6] and is a part of the hypothesis of [6, Theorem 2.8]. The theorems [6, Theorem
2.8] and Theorem 2.7 will be used in a crucial way in the proof of our main result
(Theorem 1.2).

Axioms 2.4. Let (X, d) be a complete metric space and A be a class of function spaces
included in Cb(X). We say that the space A satisfies the axioms (A1)–(Aβ

4) if A satisfies
the following axioms.

(A1) The space (A, ‖ · ‖) is a Banach space such that ‖ · ‖ ≥ ‖ · ‖∞.
(A2) The space A contains the constants.
(A3) For each n ∈ N∗, there exists a positive constant Mn such that for each x ∈ X

there exists a function hn : X → [0, 1] such that hn ∈ A, ‖hn‖ ≤ Mn, hn(x) = 1 and
diam(supp(hn)) < 1/n. This axiom implies in particular that the space A separates
the points of X.

(Aβ
4) The space A has the property Pβ (β = F or β = G).
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Recall that by the space Cu
b(X) we denote the Banach space of all bounded uniformly

continuous functions on X and by Lipαb (X) the Banach space of all α-Hölder and
bounded functions on X (0 < α ≤ 1). When X is a Banach space, we denote by Ck

b(X)
the Banach space of all k-times continuously Fréchet differentiable functions f such
that f , f ′, . . . , f (k) are uniformly bounded and by C1,α

b (X) (0 < α ≤ 1) the Banach space
of all Fréchet differentiable functions f on X such that f and f ′ are uniformly bounded
on X and f ′ is α-Hölder. Finally, by C1,u

b (X) we denote the Banach space of all Fréchet
differentiable functions f on X such that f and f ′ are uniformly bounded on X and
f ′ is uniformly continuous. All these spaces are provided with their natural norm
‖ · ‖ of Banach spaces that satisfy ‖ · ‖ ≥ ‖ · ‖∞ (see [6] for more information and other
examples).

Proposition 2.5. The following assertions hold.

(1) For every complete metric space X, the spaces Cb(X), Cu
b(X) satisfy the axioms

(A1)–(AG
4 ) and the space Lipαb (X) (0 < α ≤ 1) satisfies the axioms (A1)–(AF

4 ).
(2) If X is a Banach space having a bump function (that is, a function with nonempty

and bounded support) in A = Ck
b(X) with k ∈ N∗ (respectively, in A = C1,α

b (X)
with 0 < α ≤ 1 or A = C1,u

b (X)), then A satisfies the axioms (A1)–(AF
4 ).

Proof. The axiom (A1) follows from the definitions of the spaces and their norms
(see [6]). The axiom (A2) is clear. The axiom (A3) is easy and can be found
in [16, Remark 2.5] (see also [16, Proposition 1.4]). The axiom (Aβ

4) follows from
[6, Proposition 2.5] and [6, Proposition 2.6]. �

Note that the existence of a bump function in Cb(X), Cu
b(X) or in Lipαb (X) with

0 < α ≤ 1 is always true by using the metric d on X. This is not always the case
when X is a Banach space for the spaces of smooth functions A = Ck

b(X) (k ∈ N∗,
C1,α

b (X) (0 < α ≤ 1) or C1,u
b (X). In the last examples the existence of a bump function

is connected to the geometry of the Banach space X. For more information on the
existence of a bump function in Ck

b(X) (k ∈ N∗), C1,α
b (X) (0 < α ≤ 1) or C1,u

b (X), we
refer to the book of Deville et al. [15].

2.3. Some useful lemmas. We need the following lemmas in the proof of
Theorem 1.2. We begin by Lemma 2.8 that is a consequence of the variational principle
of Deville et al. [14] (see also Deville and Revalski [16]).

Definition 2.6. Let (X, d) be a metric space and f : X −→ R ∪ {+∞} be a function with
nonempty domain. We say that f has a strong minimum at x ∈ X if infX f = f (x) and
d(xn, x)→ 0 whenever f (xn)→ f (x).

Theorem 2.7 (Deville et al. [14]; Deville and Revalski [16]). Let (X, d) be a complete
metric space and A ⊂ Cb(X) be a space satisfying the axioms (A1) and (A3). Let f be a
lower semicontinuous and bounded from below function with nonempty domain. Then

σ( f ) := {ϕ ∈ A/ f − ϕ does not attain a strong minimum on X}

is σ-porous; in particular, it is of the first Baire category and so A \ σ( f ) is a dense
subset of A.
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Lemma 2.8. Under the hypothesis of Theorem 2.7, we have that for every lower
semicontinuous and bounded from below function with nonempty domain f : X →
R ∪ {+∞}, the set

D( f ) := {x ∈ X/∃ϕx ∈ A : f − ϕx has a strong minimum at x}

is dense in dom( f ).

Proof. Let x ∈ dom( f ) and n ∈ N∗. Thanks to the axiom (A3), there exist a positive
constant Mn and a function hn : X → [0, 1] such that hn ∈ A, ‖hn‖ ≤ Mn, hn(x) =

1 and diam(supp(hn)) < 1/n. Let us set λn
x := f (x) − infX( f ) + 3/n and, applying

Theorem 2.7 to the function f − λn
xhn, there exist xn ∈ X and ϕ ∈ A such that ‖ϕ‖ < 1/n

and f − λn
xhn − ϕ has a strong minimum at xn. Suppose that d(x, xn) ≥ 1/n. Since

diam(supp(hn)) < 1/n and x ∈ supp(hn), hn(xn) = 0. Thus,

inf
X

( f ) − ϕ(xn)≤ f (xn) − ϕ(xn)

= f (xn) − λn
xhn(xn) − ϕ(xn)

< f (x) − λn
xhn(x) − ϕ(x)

= f (x) − λn
x − ϕ(x).

We deduce that λn
x < f (x) − infX( f ) + 2/n, which is a contradiction with the choice of

λn
x. So, d(x, xn) < 1/n and xn ∈ D( f ). It follows that D( f ) is dense in dom( f ). �

Lemma 2.9. Let Z be a Banach space and h, k : Z → R be two continuous and convex
functions. Suppose that the function z→ l(z) := max(h(z), k(z)) is Fréchet (respectively,
Gâteaux) differentiable at some point z0 ∈ Z. Then either h or k (maybe both h and k) is
Fréchet (respectively, Gâteaux) differentiable at z0 and l′(z0) = h′(z0) or l′(z0) = k′(z0).

Proof. We give the proof for the Fréchet differentiability; the Gâteaux differentiability
is similar. Suppose without loss of generality that l(z0) = h(z0); let us prove that h is
Fréchet differentiable at z0 and that l′(z0) = h′(z0). For each z , 0,

0 ≤
h(z0 + z) + h(z0 − z) − 2h(z0)

‖z‖
≤

l(z0 + z) + l(z0 − z) − 2l(z0)
‖z‖

.

Since l is convex and Fréchet differentiable at z0, the right-hand side in the above
inequalities tends to 0 when z tends to 0. This implies that h is Fréchet differentiable at
z0 by the convexity of h. Now, if we denote f = h − l, then f (z0) = 0, f ≤ 0 and f ′(z0)
exists. Thus, for all z ∈ Z,

f ′(z0)(z) = lim
t−→0+

1
t

( f (z0 + tz) − f (z0)) ≤ 0.

This implies that ‖ f ′(z0)‖ = 0. Thus, h′(z0) = l′(z0). �
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Lemma 2.10. Let (X, d) be a complete metric space and A ⊂ Cb(X) satisfy the axioms
(A1), (A2) and (Aβ

4). Let (λn)n ⊂ R be such that |λn| = 1 for all n ∈ N and let (xn)n ⊂ X.
Suppose that λnδxn converges for the topology τβ (the norm topology or the weak-star
topology) to some point Q ∈ A∗. Then (λn)n converges in R to some real number λ
such that |λ| = 1, the sequence (xn)n converges to some point x in (X, d) and we have
Q = λδx.

Proof. Since λnδxn converges for the topology τβ to some point Q ∈ A∗, λnδxn (ϕ)→
Q(ϕ) for all ϕ ∈ A. Since A contains the constants, we have λn → Q(1) := λ with
|λ| = 1. Now, since (λn)n converges to λ and λnδxn converges for the topology τβ to Q,
by dividing by λn we obtain that δxn converges for the topology τβ to Q/λ ∈ A∗. The
property Pβ implies that (xn)n converges to some point x ∈ X and in consequence that
δxn converges for the topology τβ to δx. By the uniqueness of the limit, we have that
Q = λδx. �

3. The proof of Theorem 1.2

The proof of Theorem 1.2 is divided into the four steps below. The part (2)⇒ (1)
is easy. We prove the part (1)⇒ (2). Let us begin by recalling the hypotheses
of Theorem 1.2 and fixing some notation which will appear in the proof. Let X
and Y be two complete metric spaces and A ⊂ Cb(X) and B ⊂ Cb(Y) be two Banach
spaces satisfying the axioms (A1)–(Aβ

4) with the same β, where β = F or β = G.
Let T : A→ B be an isomorphism and T ∗ : B∗ → A∗ the adjoint of T . Recall that
T ∗ is norm to norm continuous as well as weak-star to weak-star continuous. By
IX , we denote the identity map on A and by IY we denote the identity map on B.
Recall that by the β-differentiability, we mean the Fréchet differentiability if β = F
and the Gâteaux differentiability if β = G. By the τβ topology, we mean the norm
topology if β = F and the weak-star topology if β = G. There exists a connection
between the β-differentiability and the property Pβ that we are going to use in this
section. The purpose is to be able to identify the Dirac masses in the dual space
A∗. The β-differentiability is a good tool for it. It indeed allows us to see, thanks to
[6, Theorem 2.8], that the Dirac masses correspond to the β-differentiability of f ×

defined below, at some well-chosen points of the space A whenever this space has
the property Pβ. The existence of these ‘good’ points of A will be guaranteed by
Lemma 2.8.

Let f : X→ R ∪ {+∞} be a lower semicontinuous and bounded from below function
with nonempty domain. We recall from [6] that the conjugacy f × of f and the second
conjugacy f ×× are defined as follows:

f × : A→R
ϕ→ sup

x∈X
{ϕ(x) − f (x)},

f ×× : X→R ∪ {+∞}
x 7→ f ××(x) := sup

ϕ∈A
{ϕ(x) − f ×(ϕ)}.
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The function f × is clearly convex and Lipschitz continuous (see for instance [6,
Proposition 2.1]) but the function f ×× is not convex in general even if X is a vector
space. However, under the axiom (A3), we have from [6, Theorem 2.2] that f ×× = f
for each bounded from below and lower semicontinuous function on X. This fact will
be used in Step (4) of the proof of Theorem 1.2. We also need the following elementary
lemma.

Lemma 3.1. We have

sup
x∈X
{|ϕ(x)| − f (x)} = max( f ×(ϕ), f ×(−ϕ))

for all ϕ ∈ A.

Proof. Since |t| = max(t,−t) on R, by inverting the supremum and the maximum,

sup
x∈X
{|ϕ(x)| − f (x)}= max

(
sup
x∈X
{ϕ(x) − f (x)}, sup

x∈X
{−ϕ(x) − f (x)}

)
= max( f ×(ϕ), f ×(−ϕ)). �

3.1. Step 1. The map T has the canonical form. Let f : X → R ∪ {+∞} and
g : Y → R ∪ {+∞} be lower semicontinuous and bounded from below functions with
nonempty domains. Suppose that for all ϕ ∈ A,

sup
y∈Y
{|Tϕ(y)| − g(y)} = sup

x∈X
{|ϕ(x)| − f (x)}.

Lemma 3.2. There exist a map π : dom(g)→ dom( f ) and a map ε : dom(g)→ {±1}
such that for all y ∈ dom(g), we have T ∗δy = ε(y)δπ(y) or, equivalently, Tϕ(y) =

ε(y)ϕ ◦ π(y) for all y ∈ dom(g) and all ϕ ∈ A.

Proof. By Lemma 2.8, the set D(g) is dense in dom(g). Let y ∈ D(g) and ψ̃y ∈

B be such that g − ψ̃y has a strong minimum at y. Let c ∈ R be such that c >
(1/2)(g×(−ψ̃y) − g×(ψ̃y)) and put ψy = c + ψ̃y. The function g − ψy has also a strong
minimum at y and satisfies by the choice of c the inequality g×(ψy) > g×(−ψy). Since
g× and so also g× ◦ (−IY ) are continuous (even Lipschitz functions, see for instance
[6, Proposition 2.1]), there exists an open neighbourhood O(ψy) ⊂ B of ψy such that
g×(ψ) > g×(−ψ) for all ψ ∈ O(ψy). Thus, we have max(g×(ψ), g×(−ψ)) = g×(ψ) on
the open set O(ψy) of B. Since g − ψy has a strong minimum at y, [6, Theorem
2.8] guarantees the β-differentiability of g× at ψy with the derivative (g×)′(ψy) = δy.
Since the functions ψ→ max(g×(ψ), g×(−ψ)) and ψ→ g×(ψ) coincide on the open
set O(ψy), we conclude that ψ→ max(g×(ψ), g×(−ψ)) is also β-differentiable at ψy

with the same derivative (g×)′(ψy) = δy. On the other hand, there exists ϕy ∈ A
such that ψy = Tϕy by the surjectivity of T . The composition of a β-differentiable
function with a linear and continuous map is again β-differentiable. Thus, we have
the β-differentiability of the composite map ϕ→ max(g×(Tϕ), g×(−Tϕ)) at ϕy on
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A and the chain rule formula gives δy ◦ T as the derivative of the function ϕ→

max(g×(Tϕ), g×(−Tϕ)) at ϕy. But by hypothesis and by Lemma 3.1, we have that
max(g×(Tϕ), g×(−Tϕ)) = max( f ×(ϕ), f ×(−ϕ)) for all ϕ ∈ A. We deduce that the
function ϕ→ max( f ×(ϕ), f ×(−ϕ)) is also β-differentiable at ϕy on A with the same
derivative δy ◦ T . Lemma 2.9 implies that either the function ϕ→ f ×(ϕ) or the
function ϕ→ f ×(−ϕ) = ( f × ◦ (−IX))(ϕy) is β-differentiable at ϕy with the derivative
given by the derivative of ϕ→ max( f ×(ϕ), f ×(−ϕ)) at ϕy that is here δy ◦ T . If it is
the function ϕ→ f ×(ϕ), [6, Theorem 2.8] asserts that there exists π(y) ∈ D( f ) such
that ( f ×)′(ϕy) = δπ(y). If it is the function ϕ→ f ×(−ϕ), then by composition with
−IX , we have that f × is β-differentiable at −ϕy and so [6, Theorem 2.8] guarantees
the existence of a point π(y) ∈ X such that ( f ×)′(−ϕy) = δπ(y). Using the chain rule
formula, we obtain that ( f × ◦ (−IX))′(ϕy) = ( f ×)′(−ϕy) ◦ (−IX) = δπ(y) ◦ (−IX) = −δπ(y).
By identifying the derivatives of the two equal functions ϕ→max(g×(Tϕ),g×(−Tϕ)) =

max( f ×(ϕ), f ×(−ϕ)), we obtain that δy ◦ T = δπ(y) or δy ◦ T = −δπ(y). Let us put
ε(y) = ±1. Then we have proved that

∀y ∈ D(g)∃π(y) ∈ D( f )/T ∗δy := δy ◦ T = ε(y)δπ(y). (3.1)

Now let y be any point of dom(g); there exists by Lemma 2.8 a sequence (yn)n ⊂ D(g)

such that yn → y. The property Pβ (axiom Aβ
4) implies that δyn

τβ
→ δy. Since T ∗ is

τβ to τβ continuous (here τβ is the norm or the weak-star topology), T ∗δyn

τβ
→ T ∗δy.

Since (yn)n ⊂ D(g), from the formula (3.1) there exists π(yn) ∈ D( f ) such that T ∗δyn =

ε(yn)δπ(yn). So, we have ε(yn)δπ(yn)
τβ
→ T ∗δy. Lemma 2.10 implies the existence of

a real number ε(y) = ±1 and some point π(y) ∈ X such that ε(yn)→ ε(y) in R and
π(yn)→ π(y) in X. Thus, π(y) ∈ D( f ) = dom( f ). Lemma 2.10 implies also that
T ∗δy = ε(y)δπ(y). Thus, we have proved that there exist a map π : dom(g)→ dom( f ) and
a map ε : dom(g)→ {−1, 1} such that for all y ∈ dom(g), we have T ∗δy = ε(y)δπ(y). �

3.2. Step 2. The map π is bijective.

Proof. Lemma 3.2 applied to T−1 implies also the existence of a map π′ : dom( f )→
dom(g) and a map ε′ : dom( f ) → {−1, 1} such that for all x ∈ dom( f ), we have
(T−1)∗δx = ε′(x)δπ′(x). We obtain then

δx = T ∗(ε′(x)δπ′(x))

= ε′(x)T ∗(δπ′(x))

= ε′(x)ε(π(x))δπ(π′(x)).

By applying the above identity to the constant function 1, we obtain that ε′(x)ε(π(x))
= 1. On the other hand, since the space A separates the points of X (axiom (A3)), we
obtain π(π′(x)) = x. This reasoning applies for all x ∈ dom( f ). By inverting the roles
of T and T−1, we have also π′(π(y)) = y for all y ∈ dom(g). Thus, π is bijective. �
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3.3. Step 3. The maps ε, π and π−1 are continuous.
Proof. Let yn ∈ dom(g) be such that yn → y ∈ dom(g). Let us prove that ε(yn)→ ε(y)
in R and π(yn)→ π(y) in dom( f ). Indeed, by the property Pβ (axiom Aβ

4), we have that

δyn

τβ
→ δy. Since T is τβ to τβ continuous, T ∗δyn

τβ
→ T ∗δy for the τβ topology in A∗. In

other words, ε(yn)δπ(yn)
τβ
→ ε(y)δπ(y), which implies by Lemma 2.10 that ε(yn)→ ε(y) in

R and δπ(yn)
τβ
→ δπ(y) in A∗. Again by the property Pβ, we have π(yn)→ π(y) in dom( f ).

Thus, ε and π are continuous. The same argument applied to T−1 shows that π−1 is
also continuous. �

3.4. Step 4. The formula g = f ◦ π on dom(g).
Proof. This formula follows from the previous steps together with [6, Theorem 2.2].
Indeed, by hypothesis,

sup
y∈Y
{|Tϕ(y)| − g(y)} = sup

x∈X
{|ϕ(x)| − f (x)}

for all ϕ ∈ A. Since g (respectively, f ) is equal to +∞ on Y \ dom(g) (respectively, on
X \ dom( f )),

sup
y∈dom(g)

{|Tϕ(y)| − g(y)} = sup
x∈dom( f )

{|ϕ(x)| − f (x)}

for all ϕ ∈ A. Since dom(g) and dom( f ) are homeomorphic by Steps (2) and (3), by
replacing Tϕ(y) in the above formula with its expression ε(y)ϕ(π(y)) for y ∈ dom(g)
(see Step (1)),

sup
y∈dom(g)

{|ϕ(π(y))| − g(y)} = sup
x∈dom( f )

{|ϕ(x)| − f (x)}

for all ϕ ∈ A. Since π is bijective, we obtain by the change of variable x = π(y),

sup
x∈dom( f )

{|ϕ(x)| − g(π−1(x))} = sup
x∈dom( f )

{|ϕ(x)| − f (x)}

for all ϕ ∈ A. The above formula is also true for the functions ϕ − infX(ϕ) ≥ 0 for all
ϕ ∈ A since A contains the constants. Replacing ϕ by ϕ − infX(ϕ) ≥ 0,

sup
x∈dom( f )

{ϕ(x) − inf
X

(ϕ) − g(π−1(x))} = sup
x∈dom( f )

{ϕ(x) − inf
X

(ϕ) − f (x)}

for all ϕ ∈ A. So,

sup
x∈dom( f )

{ϕ(x) − g(π−1(x))} = sup
x∈dom( f )

{ϕ(x) − f (x)}

for all ϕ ∈ A. Let us denote by idom( f ) the lower semicontinuous indicator function,

which is equal to 0 on dom( f ) and equal to +∞ otherwise. The above formula can be
written as follows:

sup
x∈X
{ϕ(x) − (g(π−1(x)) + idom( f ))} = sup

x∈X
{ϕ(x) − ( f (x) + idom( f ))}
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for all ϕ ∈ A. In other words, by using the notation of the conjugacy,

(g ◦ π−1 + idom( f ))
×(ϕ) = ( f + idom( f ))

×(ϕ)

for all ϕ ∈ A. By passing to the second conjugacy,

(g ◦ π−1 + idom( f ))
××(x) = ( f + idom( f ))

××(x)

for all x ∈ X. Since the functions f + idom( f ) and g ◦ π−1 + idom( f ) are bounded from
below and lower semicontinuous on X, by [6, Theorem 2.2], each of these functions
coincides with its second conjugacy. Thus,

g ◦ π−1 + idom( f ) = f + idom( f ),

which is equivalent to g ◦ π−1 = f on dom( f ) as well as g = f ◦ π on dom(g). �

3.5. Remarks. By imitating the proof of Theorem 1.2, we obtain easily the
following version where the map ε coincides with the constant function 1 on Y .

Theorem 3.3. Let X and Y be two complete metric spaces and A ⊂ Cb(X) and B ⊂
Cb(Y) be two Banach spaces satisfying the axioms A1–Aβ

4 (with the same property β).
Let T : A→ B be an isomorphism and let f : X → R ∪ {+∞} and g : Y → R ∪ {+∞}
be lower semicontinuous and bounded from below functions with nonempty domains.
Then we have (1)⇔ (2).

(1) g× ◦ T = f ×, that is, for all ϕ ∈ A,

sup
y∈Y
{Tϕ(y) − g(y)} = sup

x∈X
{ϕ(x) − f (x)}.

(2) There exists a homeomorphism π : dom(g) → dom( f ) such that, for all y ∈
dom(g) and all ϕ ∈ A,

Tϕ(y) = ϕ ◦ π(y)

and
g(y) = f ◦ π(y).

Remark 3.4. (i) In Theorems 1.2 and 3.3, we can have more information about
the homeomorphism π. The more the spaces A and B are regular, the more the
homeomorphism π is also. This is due to the fact that the condition ϕ ◦ π ∈ B for
all ϕ ∈ A implies a certain regularity on π. See for instance Theorem 44 in the paper
of Garrido and Jaramillo [19] for Lipschitz continuous functions; see also the papers
of Gutiérrez and Llavona [21] and Jaramillo et al. [22] for weakly Ck functions and
the paper of Bachir and Lancien [8] for weakly Ck functions on spaces with the Schur
property.

(ii) Under the hypothesis of Theorems 1.2 or 3.3, the isomorphism T is not
necessarily an isometry for the norm ‖ · ‖∞, but if we assume in addition that dom( f ) =

X and dom(g) = Y , then the condition (1) of the theorems implies that T is an isometry
for the norm ‖ · ‖∞; this follows from the formula (4.1) in the theorems.
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4. Applications

This section is concerned with some simple applications of our main result.
For various results around the Banach–Stone theorem, we can consult for example
the works of Amir [1], Araujo [2, 3], Araujo and Font [4], Behrends [10, 11],
Cambern [12], Cengiz [13], Garrido and Jaramillo [18], Garrido et al. [17], Jarosz [23],
Jarosz and Pathak [24], Vieira [27] and Weaver [28].

4.1. Partial isometries. Let X and Y be two complete metric spaces and A ⊂ Cb(X)
and B ⊂ Cb(Y) be two Banach spaces. Let T : A→ B be an isomorphism. We say that
T is partially isometric (for the norm ‖ · ‖∞) if there exist a nonempty closed subset E
of X and a nonempty closed subset F of Y such that supy∈F |Tϕ(y)| = supx∈E |ϕ(x)| for
all ϕ ∈ A. There are examples where an isomorphism is not an isometry but is partially
isometric. Indeed, let K ⊂ X and L ⊂ Y be two nonhomeomorphic compact spaces such
that C(K) and C(L) are isomorphic and let T1 : C(K)→ C(L) be an isomorphism (T1
cannot be isometric by the classical Banach–Stone theorem). Note that Milutin proved
in [25] that if K and L are both uncountable compact metric spaces, then C(K) and C(L)
are always linearly isomorphic. Let E ⊂ X and F ⊂ Y be two homeomorphic closed
spaces such that E ∩ K = ∅ and F ∩ L = ∅ and let π : F → E be a homeomorphism.
Let us consider the map T : Cb(K ∪ E)→ Cb(L ∪ F) defined by T (ϕ)(y) = T1(ϕ|K)(y)
if y ∈ L and T (ϕ)(y) = ϕ ◦ π(y) if y ∈ F for all ϕ ∈ Cb(K ∪ E). Here ϕ|K denotes
the restriction of ϕ to K. The map T is an isomorphism (not isometric) satisfying
supy∈F |Tϕ(y)| = supx∈E |ϕ(x)| for all ϕ ∈ Cb(K ∪ E). As an immediate consequence of
Theorem 1.2, we obtain the following generalization of the Banach–Stone theorem in
the complete metric framework.

Corollary 4.1. Let X and Y be two complete metric spaces. Let A ⊂ Cb(X) and
B ⊂ Cb(Y) be two Banach spaces satisfying the axioms (A1)–(Aβ

4) (with the same β).
Let E be a nonempty closed subset of X and F be a nonempty closed subset of Y. Let
T : A→ B be an isomorphism. Then

sup
y∈F
|Tϕ(y)| = sup

x∈E
|ϕ(x)|

for all ϕ ∈ A if and only if there exist a homeomorphism π : F → E and a continuous
map ε : F → {±1} such that for all y ∈ F and all ϕ ∈ A, we have Tϕ(y) = ε(y)ϕ ◦ π(y).

Proof. It is enough to apply Theorem 1.2 with the indicator functions f = iE and
g = iF , where iE (respectively, iF) is equal to 0 on E (respectively, on F) and +∞

otherwise. �

Let us mention here that the first result about the vector-valued Banach–Stone
theorem is due to Behrends [10, 11] (see also [23]). For the noncompact vector-
valued Banach–Stone theorem, see [2, 3, 5]. We know from [10] that the existence
of an isometric isomorphism between C(K1,C(L)) � C(K1 × L) and C(K2,C(L)) �
C(K2 × L) does not imply in general that K1 and K2 are homeomorphic. This is
due to the fact that in general: (K1 × L and K2 × L are homeomorphic) ; (K1 and
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K2 are homeomorphic). We give below a condition under which the existence of a
particular isomorphism between C(K1 × L) and C(K2 × L) implies that K1 and K2 are
homeomorphic.

Corollary 4.2. Let X, Y, M1 and M2 be complete metric spaces. Let T : Cb(X ×
M1)→ Cb(Y × M2) be an isomorphism. Let m1 ∈ M1 and m2 ∈ M2. Then

sup
y∈Y
|Tϕ(y,m2)| = sup

x∈X
|ϕ(x,m1)|

for all ϕ ∈ Cb(X × M1) if and only if there exist a homeomorphism π : Y → X and a
continuous map ε : Y → {±1} such that for all y ∈ Y and all ϕ ∈ Cb(X × M), we have
Tϕ(y,m2) = ε(y)ϕ(π(y),m1).

Proof. We apply Corollary 4.1 with E = X × {m1} and F = Y × {m2}. �

4.2. Groups and isomorphism. Let X be a complete metric space and E be a
nonempty closed subspace of X. By (IS (Cb(X)), ◦), we denote the group (for the
law ◦ of composition of maps) of all isomorphisms from Cb(X) onto itself. We define
now the following sets:

IsomE(Cb(X)) =
{
T ∈ IS (Cb(X)) : sup

y∈E
|Tϕ(y)| = sup

x∈E
|ϕ(x)|,∀ϕ ∈ Cb(X)

}
,

Isom(Cb(E)) = {S : Cb(E)→ Cb(E) : S isomorphism isometric}.

Let us define the restriction map RE : Cb(X)→ Cb(E) by RE : ϕ 7→ ϕ|E , where ϕ|E
denotes the restriction of ϕ ∈ Cb(X) to E. By NE , we denote the subset of IS (Cb(X))
defined by

NE := {T ∈ IS (Cb(X)) : RE ◦ T = RE}

= {T ∈ IS (Cb(X)) : (Tϕ)|E = ϕ|E , ϕ ∈ Cb(X)}.

Clearly, IsomE(Cb(X)) and Isom(Cb(E)) are groups and NE is a subgroup of
IsomE(Cb(X)). The purpose of the following result is to give a relation between these
three groups.

Theorem 4.3. Let X be a complete metric space and E be a nonempty closed subspace
of X. Then NE is a normal subgroup of IsomE(Cb(X)) and the group quotient
IsomE(Cb(X))/NE is isomorphic to a subgroup of Isom(Cb(E)). If moreover we
suppose that X \ E is also closed (in particular, X is nonconnected here), then

IsomE(Cb(X))/NE � Isom(Cb(E)).

Proof. The proof will be complete if we construct a group homomorphism

Λ : IsomE(Cb(X))→ Isom(Cb(E))

such that Ker Λ = NE , since the kernel of a group homomorphism is always a normal
subgroup and IsomE(Cb(X))/Ker Λ � ImΛ. If moreover Λ is surjective, then we obtain
that IsomE(Cb(X))/Ker Λ � Isom(Cb(E)).
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(i) The construction of the map Λ. For each T ∈ IsomE(Cb(X)), there exist by
Corollary 4.1 a homeomorphism πT : E → E and a continuous function εT : E → {±1}
such that Tϕ(e) = εT (e)ϕ ◦ πT (e) for all ϕ ∈ Cb(X) and all e ∈ E. Let us denote by
T̂ : Cb(E)→ Cb(E) the map defined by T̂ψ(e) = εT (e)ψ ◦ πT (e) for all ψ ∈ Cb(E) and
all e ∈ E. Clearly, T̂ ∈ Isom(Cb(E)), since πT is a homeomorphism from E onto
itself. We define Λ as follows: ΛT = T̂ . This map is well defined. Indeed, let
T, S ∈ IsomE(Cb(X)). If T = S , then εT (e)ϕ ◦ πT (e) = εS (e)ϕ ◦ πS (e) for all ϕ ∈ Cb(X)
and all e ∈ E. Since 1 ∈ Cb(X), we obtain that εT = εS and, since Cb(X) separates the
points of X and also the points of E, πT = πS . Thus, T̂ = Ŝ .

(ii) The map Λ is a group homomorphism. This fact is obvious.
(iii) We have that Ker Λ = NE . Indeed, let I be the identity map on Cb(X)

and i the identity map on E. Recall that for each T ∈ IsomE(Cb(X)), there exist
a homeomorphism πT : E → E and a continuous function εT : E → {±1} such that
Tϕ(e) = εT (e)ϕ ◦ πT (e) for all ϕ ∈ Cb(X) and all e ∈ E. So,

Ker Λ := {T ∈ IsomE(Cb(X)) : ΛT = I}
= {T ∈ IsomE(Cb(X)) : εT ≡ 1; πT = i}
= {T ∈ IsomE(Cb(X)) : RE ◦ T = RE}

:= NE . (4.1)

(iv) If moreover we assume that X \ E is also closed, then the map Λ is surjective.
Indeed, let L ∈ Isom(Cb(E)). By Corollary 1.3, there exist a homeomorphism π :
E → E and a continuous function ε : E → {±1} such that Lψ(e) = ε(e)ψ ◦ π(e) for all
ψ ∈ Cb(E) and all e ∈ E. Let us define T : Cb(X)→ Cb(X) as follows: for all ϕ ∈ Cb(X),
Tϕ(x) = ε(x)ϕ ◦ π(x) if x ∈ E and Tϕ(x) = ϕ(x) if x ∈ X \ E. Since E and X \ E are
closed subsets of X, T is a well-defined isomorphism and satisfies supy∈E |Tϕ(y)| =
supx∈E |ϕ(x)|,∀ϕ ∈ Cb(X). So, T ∈ IsomE(Cb(X)) and we have L = ΛT . �

Let f : X → R be a lower semicontinuous and bounded below function with
dom( f ) = X. Let us define the setsH f (X) and Isom f (Cb(X)) as follows.

H f (X) = {π : X → X : homeomorphism such that f ◦ π = f },
Isom f (Cb(X)) := {T : Cb(X)→ Cb(X), isomorphism/ f × ◦ T = f ×}.

Clearly, (H f (X), ◦) and (Isom f (Cb(X)), ◦) are groups for the composition law.

Proposition 4.4. Let X be a complete metric space. Then the following assertions hold.

(1) The groups (H f (X), ◦) and (Isom f (Cb(X)), ◦) are isomorphic.
(2) The group Isom0(Cb(X)) (with f ≡ 0) coincides with the set of all isometric

isomorphisms T : Cb(X)→ Cb(X) such that T1 = 1.

Proof. For the part (1), we prove that the following map is an isomorphism of groups:

χ :H f (X)→ Isom f (Cb(X))
π 7→ [π̂ : ϕ 7→ ϕ ◦ π].
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It is clear that χ is well defined and is a group morphism. The injectivity of χ follows
from the fact that Cb(X) separates the points of X and its surjectivity follows from
Theorem 3.3.

For the part (2), let T be an isometric isomorphism such that T1 = 1. We obtain from
Corollary 1.3 a homeomorphism π : X → X and a continuous function ε : X → {±1}
such that Tϕ(x) = ε(x)ϕ ◦ π(x) for all x ∈ X and all ϕ ∈ Cb(X). Since T1 = 1, ε ≡ 1 and
so we have Tϕ = ϕ ◦ π for all ϕ ∈ Cb(X). This implies that supx∈X Tϕ(x) = supx∈X ϕ(x)
for all ϕ ∈ Cb(X) or, equivalently, 0× ◦ T = 0×. So, we have T ∈ Isom0(Cb(X)).
Conversely, if T ∈ Isom0(Cb(X)), from Theorem 3.3, there exists a homeomorphism
π : X → X such that Tϕ = ϕ ◦ π; in particular, T is isometric and satisfies T1 = 1. �

4.3. Isometries of the space of lower semicontinuous and bounded functions.
We are interested in this section in the isometries between spaces of lower
semicontinuous and bounded functions defined on complete metric spaces. Let X be
a complete metric space. We denote by SCIb(X) the set of all lower semicontinuous
and bounded functions f : X → R (dom( f ) = X). We define the metric ρ on SCIb(X)
as follows:

ρ( f1, f2) = ‖ f1 − f2‖∞; ∀( f1, f2) ∈ SCIb(X) × SCIb(X).

Note that the space (SCIb(X), +) is a monoid having 0 as identity element and
that the maximal group of (SCIb(X),+) is exactly the group (Cb(X),+). We prove
below that the Banach–Stone theorem is also true for the metric monoid structure
of (SCIb(X),+, ρ). For other examples of Banach–Stone-type theorems for monoid
structures, we refer to the paper [7].

Theorem 4.5. Let X and Y be two complete metric spaces and let Φ : (SCIb(X),+, ρ)→
(SCIb(Y),+, ρ) be a map. Then (1)⇔ (2)⇔ (3).

(1) The map Φ : (SCIb(X),+, ρ)→ (SCIb(Y),+, ρ) is an isometric isomorphism of
monoids such that Φ1 ≥ 0.

(2) There exists a homeomorphism π : Y → X such that Φ f = f ◦ π for all f ∈
SCIb(X).

(3) The map Φ : (SCIb(X),+, ρ)→ (SCIb(Y),+, ρ) is an isometric isomorphism of
monoids such that Φ1 = 1.

Proof. The part (2)⇒ (3)⇒ (1) is trivial. Let us prove the part (1)⇒ (2). Since a
monoid isomorphism sends the maximal group to the maximal group, we have that
the restriction T := Φ|Cb(X) of Φ to Cb(X) is a group isomorphism from (Cb(X),+) onto
(Cb(Y),+). Since Φ is isometric for ρ and ρ( f ,0) = ‖ f ‖∞ for all f ∈ SCIb(X), we obtain
that ‖Tϕ‖∞ = ‖ϕ‖∞ for all ϕ ∈ Cb(X). Thus, T is an isometric group isomorphism
between (Cb(X),+, ‖ · ‖∞) and (Cb(Y),+, ‖ · ‖∞) and so an isometric isomorphism of
Banach spaces. It follows from Corollary 1.3 that there exist a homeomorphism
π : Y → X and a continuous function ε : Y → {±1} such that Tϕ(y) = ε(y)ϕ ◦ π(y) for
all y ∈ Y and ϕ ∈ Cb(X). Since T1 = Φ1 ≥ 0, ε ≡ 1 and so Tϕ = ϕ ◦ π for all ϕ ∈ Cb(X).
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On the other hand, we know that ρ(Tϕ,Φ f ) = ρ(ϕ, f ) for all (ϕ, f ) ∈ Cb(X) × SCIb(X),
since Φ is isometric. In other words, for all (ϕ, f ) ∈ Cb(X) × (SCIb(X)),

sup
y∈Y
{|Tϕ(y) − Φ f (y)|} = sup

x∈X
{|ϕ(x) − f (x)|}.

Replacing T by its expression,

sup
y∈Y
{|ϕ ◦ π(y) − Φ f (y)|} = sup

x∈X
{|ϕ(x) − f (x)|}.

By changing the variable π(y) by x in the left-hand member of the above equality,

sup
x∈∈X
{|ϕ(x) − (Φ f ) ◦ π−1(x)|} = sup

x∈X
{|ϕ(x) − f (x)|}.

For each (ϕ, f ) ∈ Cb(X) × (SCIb(X)), there exists a real number c(ϕ, f ) ∈ R such that
ϕ + c(ϕ, f ) ≥ max((Φ f ) ◦ π−1, f ) (it is enough to choose a very big positive number).
Since ϕ + c(ϕ, f ) ∈ Cb(X), replacing ϕ by ϕ + c(ϕ, f ) in the above equality,

sup
x∈∈X
{ϕ(x) + c(ϕ, f ) − (Φ f ) ◦ π−1(x)} = sup

x∈X
{ϕ(x) + c(ϕ, f ) − f (x)},

which is equivalent to

sup
x∈∈X
{ϕ(x) − (Φ f ) ◦ π−1(x)} = sup

x∈X
{ϕ(x) − f (x)}.

In other words, with the notation of the conjugacy,

((Φ f ) ◦ π−1)×(ϕ) = f ×(ϕ), ∀ϕ ∈ Cb(X).

By using the second conjugacy and [6, Theorem 2.2], we get (Φ f ) ◦ π−1 = f . Thus,
Φ f = f ◦ π for all ϕ ∈ Cb(X). �

The following corollary concerns the extension of isometries.

Corollary 4.6. Let X and Y be two complete metric spaces and A ⊂ Cb(X) and
B ⊂ Cb(Y) be two Banach spaces satisfying the axioms (A1)–(Aβ

4) with the same β. For
each isometric isomorphism (for the norm ‖ · ‖∞) T from A onto B such that T1 = 1,
there exists a unique map T̃ extending T to an isometric isomorphism of monoids from
(SCIb(X),+, ρ) onto (SCIb(Y),+, ρ).

Proof. Since T is an isometric isomorphism, by Corollary 1.3, there exist π : Y → X
a homeomorphism and ε : Y → {±1} continuous such that Tϕ(y) = ε(y)ϕ ◦ π(y) for
all y ∈ Y and ϕ ∈ A. Since T1 = 1, ε ≡ 1 and so Tϕ = ϕ ◦ π for all ϕ ∈ A. Now it
is clear that the map T̃ : f 7→ f ◦ π for all f ∈ SCIb(X) is an isometric isomorphism
of monoids between (SCIb(X), +, ρ) and (SCIb(Y), +, ρ), which is an extension of
T . For the uniqueness of T̃ , let Φ be an isometric isomorphism of monoids from
(SCIb(X),+, ρ) onto (SCIb(Y),+, ρ) such that Φ|A = T . By Theorem 4.5, there exists a
homeomorphism πΦ : Y → X such that Φ f = f ◦ πΦ for all f ∈ SCIb(X). Since Φ|A = T
and A separates the points of X, πΦ = π and so Φ = T̃ . �
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4.4. Operators between products of function spaces. This section concentrates on
the representations of some class of operators between products of function spaces.

Let X, Y be complete metric spaces and Z, W be Banach spaces. We denote by
Cb(X, Z) the space of all bounded Z-valued continuous functions. When Z = R, we us
the notation Cb(X) for Cb(X,R). We define the norm ‖ · ‖∞,1 on Cb(X) ×Cb(X,Z) by

‖(ϕ, ψ)‖∞,1 := sup
x∈X
{|ϕ(x)| + ‖ψ(x)‖Z}

for all (ϕ, ψ) ∈ Cb(X) × Cb(X, Z). Let A ⊂ Cb(X) and B ⊂ Cb(Y) be Banach subspaces
and let A′ ⊂ Cb(X,Z) and B′ ⊂ Cb(Y,W) be any sets. Let H be an operator

H : A × A′→ B × B′

(ϕ, ψ) 7→ (H1(ϕ, ψ),H2(ϕ, ψ)).

Definition 4.7. We say that the operator H satisfies the property (P) if:

(a) for all (ϕ, ψ) ∈ A × A′, we have H2(ϕ, ψ) = H2(0, ψ) (H2 depends only on the
second variable);

(b) for all ψ ∈ A′, the map ϕ 7→ H1(ϕ, ψ) is an isomorphism from A onto B.

Example 4.8. (1) Suppose that X and Y are homeomorphic complete metric spaces
and let H0,0(Y, X) be the set of all homeomorphisms from Y onto X. Let
λ : Cb(X)→H0,0(Y, X) be any map. Let A = A′ = Cb(X) and B = B′ = Cb(Y).
Let us define H by

H(ϕ, ψ) = (ϕ ◦ λ(ψ), ψ ◦ λ(ψ)).

Then H is not linear but satisfies the property (P). Note that in this case, H
satisfies also ‖H(ϕ, ψ)‖∞,1 = ‖(ϕ, ψ)‖∞,1 for all (ϕ, ψ) ∈ A × A′. For example, we
can set λ : ψ 7→ e‖ψ‖∞π for a fixed homeomorphism π from a Banach space Y onto
a Banach space X.

(2) Let T : A→ B be an isomorphism and S : A′→ B′ be any map. Then the operator
H := (T, S ) defined by H(ϕ, ψ) = (Tϕ, Sψ) for all (ϕ, ψ) ∈ A × A′ satisfies the
property (P).

We are interested now in the operators (not necessarily linear) satisfying the
property (P) and preserving the norm ‖ · ‖∞,1. The following theorem gives a canonical
representation of such maps. Let us note that a nonlinear map H preserving norms,
that is, such that ‖H(ϕ, ψ)‖∞,1 = ‖(ϕ, ψ)‖∞,1 for all (ϕ, ψ) ∈ A × A′, is not an isometry
in general.

Theorem 4.9. Let X, Y be complete metric spaces and Z,W be Banach spaces. Let
A ⊂ Cb(X) and B ⊂ Cb(Y) be Banach spaces satisfying the axioms (A1)–(Aβ

4) (with the
same β) and let A′ ⊂ Cb(X, Z) and B′ ⊂ Cb(Y,W) be any subsets. Let H : A × A′ →
B × B′ be a map satisfying the property (P). Then (1)⇔ (2).

(1) For all (ϕ, ψ) ∈ A × A′, we have ‖H(ϕ, ψ)‖∞,1 = ‖(ϕ, ψ)‖∞,1.
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(2) For all ψ ∈ A′, there exist a homeomorphism πψ : Y → X and a continuous
function εψ : Y → {±1} such that for all (ϕ, ψ) ∈ A × A′ and all y ∈ Y,

H1(ϕ, ψ)(y) = εψ(y)ϕ ◦ πψ(y),

and

‖H2(ϕ, ψ)(y)‖W := ‖H2(0, ψ)(y)‖W = ‖ψ ◦ πψ(y)‖Z .

Proof. Suppose that H satisfies (1). So,

sup
y∈Y
{|H1(ϕ, ψ)(y)| + ‖H2(ϕ, ψ)(y)‖W } = sup

x∈X
{|ϕ(x)| + ‖ψ(x)‖Z}

for all (ϕ, ψ) ∈ A × A′. By the property (P),

sup
y∈Y
{|H1(ϕ, ψ)(y)| + ‖H2(0, ψ)(y)‖W } = sup

x∈X
{|ϕ(x)| + ‖ψ(x)‖Z}

for all (ϕ, ψ) ∈ A × A′. For each fixed ψ ∈ A′, since H1(·, ψ) is an isomorphism from A
onto B by the property (P), then by applying Theorem 1.2 to the spaces A and B which
satisfy the axioms (A1)–(Aβ

4) with the isomorphism Tψ := H1(·, ψ) and the continuous
and bounded function fψ(·) = −‖ψ(·)‖Z on X and gψ(·) = −‖H2(0, ψ)(·)‖W on Y , we
obtain a homeomorphism πψ : Y → X and a continuous map εψ : Y → {±1} such that
for all y ∈ Y and all ϕ ∈ A,

H1(φ, ψ)(y) = εψ(y)ϕ ◦ πψ(y)

and
‖H2(0, ψ)(y)‖W = ‖ψ(πψ(y))‖Z .

So, we proved that (1)⇒ (2). The converse is clear. �

We explore now the case where the operator H is linear, isometric for the norm
‖ · ‖∞,1 and satisfies the property (P).

Corollary 4.10. Let X, Y be complete metric spaces and Z,W be Banach spaces.
Let A ⊂ Cb(X) and B ⊂ Cb(Y) be Banach spaces satisfying the axioms (A1)–(Aβ

4) (with
the same β) and let A′ ⊂ Cb(X, Z) be a linear subspace containing the constants and
B′ ⊂ Cb(Y,W) be any linear subspace. Let H : A × A′ → B × B′ be a map satisfying
the property (P). Then (1)⇔ (2).

(1) The map H is a linear isometry for the norm ‖ · ‖∞,1.
(2) There exist a homeomorphism π : Y → X, a continuous function ε : Y → {±1}

and a linear and isometric map Uy : Z → W for each y ∈ Y such that for each
z ∈ Z the map y 7→ Uy(z) is continuous from Y into W and, for all (ϕ, ψ) ∈ A × A′

and all y ∈ Y,

H1(ϕ, ψ)(y) = H1(ϕ, 0)(y) = ε(y)ϕ ◦ π(y)

and

H2(ϕ, ψ)(y) := H2(0, ψ)(y) = Uy(ψ ◦ π(y)).

If moreover we assume that H is surjective and B′ contains the constants, then Uy
is also surjective.
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Proof. From Theorem 4.9, for all ψ ∈ A′ there exist a homeomorphism πψ : Y → X and
a continuous function εψ : Y → {±1} such that for all ϕ ∈ A and all y ∈ Y ,

H1(ϕ, ψ)(y) = εψ(y)ϕ ◦ πψ(y) and ‖H2(0, ψ)(y)‖W = ‖ψ ◦ πψ(y)‖Z .

Using the linearity of H1, we have that H1(ϕ, 0) = H1(ϕ, ψ) − H1(0, ψ) for all (ϕ, ψ) ∈
A × A′. Thus, we obtain that ε0(·)ϕ ◦ π0 = εψ(·)ϕ ◦ πψ for all (ϕ, ψ) ∈ A × A′. By
replacing ϕ by 1, since A contains the constants, we obtain ε0 = εψ for all ψ ∈ A′ and so
ε := εψ does not depend on ψ. It follows that ϕ ◦ π0 = ϕ ◦ πψ for all (ϕ,ψ) ∈ A × A′. For
each fixed ψ ∈ A′, since the space A separates the points of X, we obtain that π0 = πψ.
So, π := πψ does not depend on ψ. Finally,

H1(ϕ, ψ)(y) = ε(y)ϕ ◦ π(y), ∀y ∈ Y, ∀ϕ ∈ A,
‖H2(0, ψ)(y)‖W = ‖ψ ◦ π(y)‖Z , ∀y ∈ Y, ∀ψ ∈ A′. (4.2)

First, let us observe that for each y ∈ Y , we have Z = {ψ ◦ π(y) : ψ ∈ A′}, since A′

contains the constant functions ψz for each z ∈ Z, where ψz is defined by ψz(x) := z for
all x ∈ X. Now, for each y ∈ Y , we define the map Uy as follows:

Uy : Z = {ψ ◦ π(y) : ψ ∈ A′}→W
ψ ◦ π(y) 7→H2(0, ψ)(y).

This map is well defined. Indeed, let ψ1, ψ2 ∈ A′. Suppose that ψ1 ◦ π(y) = ψ2 ◦ π(y)
or, equivalently, that (ψ1 − ψ2) ◦ π(y) = 0. By the formula (4.2),

‖H2(0, ψ1 − ψ2)(y)‖W = ‖(ψ1 − ψ2) ◦ π(y)‖Z = 0.

Thus, by linearity, we have H2(0, ψ1)(y) = H2(0, ψ2)(y). So, Uy is well defined and we
can write, for all y ∈ Y and ψ ∈ A′,

H2(0, ψ)(y) = Uy(ψ ◦ π(y)). (4.3)

The fact that Uy is linear and isometric follows from the linearity of H2 and the
formula (4.2). For each z ∈ Z, the map y 7→ Uy(z) is continuous from Y into W, since
Uy(z) = H2(0, ψz)(y) and H2(0, ψz) is an element of Cb(Y,W). If furthermore H is
surjective, then H2 will also be surjective since it depends only on the second variable
by the property (P). If moreover B′ contains the constant maps, we deduce from (4.3)
that Uy is also surjective. �

We consider now another example of norm which reveals the Volterra operators in
a natural way in connection with isometries. We denote by C1

0(R) the space of all
continuously differentiable functions ψ such that ψ and ψ′ are uniformly bounded and
ψ(0) = 0. We define the norm ‖ · ‖′

∞,1 on Cb(R) ×C1
0(R) by

‖(ϕ, ψ)‖′∞,1 := sup
x∈R
{|ϕ(x)| + |ψ′(x)|}

for all (ϕ, ψ) ∈ Cb(R) ×C1
0(R) and we consider the norm ‖ · ‖∞,1 on Cb(R) ×Cb(R).
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Corollary 4.11. Let H := (T, L) : Cb(R) ×Cb(R)→ Cb(R) ×C1
0(R) be a map such that

T : (Cb(R), ‖ · ‖∞)→ (Cb(R), ‖ · ‖∞) is an isomorphism and L : Cb(R)→ C1
0(R) is a

linear map. Then we have (1)⇔ (2).

(1) The linear map H is an isometry, that is, ‖H(ϕ, ψ)‖′
∞,1 = ‖(ϕ, ψ)‖∞,1 for all

(ϕ, ψ) ∈ Cb(R) ×Cb(R).
(2) There exist a homeomorphism π : R→ R and two constants ε ≡ ±1 and λ ≡ ±1

such that for all ϕ ∈ Cb(R) and all x ∈ R,

Tϕ(x) = εϕ ◦ π(x) and Lϕ(x) = λ

∫ x

0
ϕ ◦ π(t) dt

= ελ

∫ x

0
Tϕ(t) dt.

Proof. Let us denote by D : C1
0(R)→ Cb(R) the linear map defined by Dψ = ψ′ for

all ψ ∈ C1
0(R). So, the map D ◦ L : Cb(R)→ Cb(R) is linear. Let H̃ := (T,D ◦ L);

then ‖H(ϕ, ψ)‖′
∞,1 = ‖(ϕ, ψ)‖∞,1 if and only if ‖H̃(ϕ, ψ)‖∞,1 = ‖(ϕ, ψ)‖∞,1 for all (ϕ, ψ) ∈

Cb(R) × Cb(R). By applying Corollary 4.10 to the map H̃, we obtain the existence
of a homeomorphism π : Y → X and a continuous function ε, λ : R → {±1} such
that Tϕ(x) = ε(x)ϕ ◦ π(x) and (Lϕ)′(x) = (D ◦ L)ϕ(x) = λ(x)ϕ ◦ π(x) for all x ∈ R
and ϕ ∈ Cb(R). Since R is a connected space, ε ≡ ±1 and λ ≡ ±1. It follows that
Tϕ(x) = εϕ ◦ π(x) and Lϕ(x) = λ

∫ x
0 ϕ ◦ π(t)dt for all x ∈ R and all ϕ ∈ Cb(R). �
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