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1. Introduction. In 1954, H. Freudenthal [10] constructed the exceptional simple
Lie algebras of types E7 and Eg by means of the exceptional simple Jordan algebras.
The construction of Eg has been extended in several ways to give 5-graded Lie algebras

g=9g 289 1DgDPg1 D

starting with some nonassociative algebras or triple systems, which appear as the
component g;.

The concept of (g, §)-Freudenthal Kantor triple system covers many of these
systems:

DEFINITION 1.1[29]. Lete, § = £1. A vector space V over a field F, endowed with
atrilinear operation V' x V x V — V,(x, y, z) > xyz,issaid to be a (¢, 8)-Freudenthal
Kantor triple system ((g, §)-FKTS for short) if the following two conditions are satisfied

D) Uaps le.al = U, ye.a + ley pas

(1) lg.ckap — €kaplea = Kiyyed
for any a, b, ¢,d € V, where I, k,p : V — V are given by /, ,c = abc, k,pc = ach —
8bca.

Thus a (—1, 1)-FKTS is exactly a generalized Jordan triple system of second
order in the sense of Kantor [20] (if & = 0 this is just a Jordan triple system), while a
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(1, —=1)-FKTS with £ = 0 is an anti-Jordan triple system (see [9] for the definition of
anti-Jordan pair (U™, U™); when UT = U~ one gets an anti-Jordan triple system).

An (g, §)-FKTS V is said to be balanced ((¢, §)-BFKTS for short) if there exists a
nonzero bilinear form (|): V' x V' — Fsuchthatk,, = (a|b)1y foranya,b e V (1y
denotes the identity map on V). Since k, , = —8kp , by its own definition, (| ) is either
symmetric (§ = —1) or skew-symmetric (§ = 1). On the other hand, condition (ii) in
Definition 1.1 gives here that (] ) is either symmetric or skew-symmetric according to
¢ being —1 or 1, so that e = § in case V' is balanced.

Any (1, 1)-BFKTS becomes, by means of minor modifications of its triple product,
a symplectic ternary algebra [8], a symplectic triple system [28] or a Freudenthal triple
system [21], and conversely. The simple finite dimensional Freudenthal triple systems
were classified in [21], with some restrictions which are satisfied if the ground field is
algebraically closed, and this amounts to a classification of the simple (1, 1)-BFKTS
(and of the symplectic ternary algebras [8]). The related 5-graded Lie algebras satisfy
that g, is one dimensional.

Further properties of (¢, §)-FKTS’s can be found in [12-18, 24] and the references
therein.

Our aim in this paper is to obtain the classification of the finite dimensional simple
(=1, —1)-BFKTS’s over fields of characteristic 0. To achieve this, the classification [11]
of the finite dimensional simple Lie superalgebras over algebraically closed fields of
characteristic 0 will be used, but we will have to look at the known relationship between
(—1, —1)-FKTS’s and 5-graded Lie superalgebras [27] in a different way, suitable to
our needs. This will be done in Section 2. The relevant examples of (—1, —1)-BFKTS’s
will be given in Section 3 and, finally, Section 4 will provide the promised classification
(Theorem 4.3), which asserts that the simple finite dimensional (—1, —1)-BFKTS’s fall
into six classes, three of them with arbitrarily large dimension: orthogonal, unitarian
and symplectic types; and another three classes of four dimensional (D,-type), seven
dimensional (G-type) and eight dimensional systems (F-type).

Using Definition 1.1, the defining relations for a (—1, —1)-BFKTS are

ab(xyz) = (abx)yz — x(bay)z + xy(abz), (1.1)
abx + bax = (a | b)x = axb + bxa, (1.2)

foranya, b, x,y,z € V, where (|) is a nonzero symmetric bilinear form. Over fields of
characteristic # 2, put (|) = %( | ) and then (1.2) is equivalent to

xxy = (x| x)y = xpx (1.3)

forany x,y € V.

The main motivation for the classification of the simple (—1, —1)-BFKTS’s was
provided by the recent paper [19] by two of the authors, where the exceptional simple
classical Lie superalgebras were constructed by using the last three classes mentioned
above (D, G and F types). These triple systems are closely related to quaternion and
octonion algebras. A different construction of the exceptional simple classical Lie
superalgebras has been given in [2] by means of a generalized Tits’ construction (which
also uses quaternion and octonion algebras).

2. (=1, —1) balanced Freudenthal Kantor triple systems and Lie superalgebras.
The relationship between (—1, —1)-BFKTS and Lie superalgebras has been studied in
[19]. A more useful approach for us is obtained as indicated by the next Theorem.
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THEOREM 2.1. Let g be a finite dimensional Lie superalgebra over a field F of
characteristic # 2 such that g5 = sl,(F) @ 0 (direct sum of ideals) and g5 = U ®f V,
where U is the two dimensional module for sl,(F) and V is a module for 0. Let ¢ be a
nonzero skew symmetric form on U, so that we may identify sl,(F) = sp(U, @) and for
any a, b € U consider the map ¢, » € sl,(F) given by

@ap(c) = @(c, a)b + ¢(c, b)a
for any ¢ € U. Then the product of odd elements in g is given by
l[a®u,b®@v] = (u|v)gap+ @@ b)dyy 2.1

forany a,b € U andu,v € V, where {|) is a symmetric bilinear form and V x V — 0,
(x,¥) = d. . is a skew symmetric bilinear map that satisfy

(dx) | y) +({xd() =0, (2.2a)
[d d‘C y] = dd(Y)} + dx,d(y)a (22b)
dvy) =1 x)y— ¥y, (2.2¢)

forany x,y € Vandd €.

Conversely, let V be a vector space endowed with a symmetric bilinear form (|) :
V x V — F and a skew symmetric bilinear map V x V — Endp(V) (1, v) = dy0).
Assume that:

(duw(X) | ¥) + (x| duu(»)) =0, (2.3a)
[dyv, dvy] = dy, 0.y + dx.d,u0)s (2.3b)
dey() = (¥ | x)y = ¥ | 9)x, (2.3¢)

for any u,v,x,y € V. Let 0 be span{d,, : u,v € V} (a Lie subalgebra of Endp(V) by
(2.3b)) and let g = g5 @ g7 be the superalgebra where gg is the Lie algebra sl,(F) @0 =
sp(U, @) ® 0, g7 is the gg-module U @ V and where the product of odd elements is given
by (2.1). Then g is a Lie superalgebra.

Proof. Since Homgpw,e)(U @ U, F) is spanned by the form ¢ and
Homgpv,»)(U ®F U, sp(U, ¢))isspanned by the symmetricmapa ® b +— ¢, ;, formula
(2.1) follows. Formulae (2.2a) and (2.2b) follow from the Jacobi superidentity applied
to the elements d € 0 and a ® x,h ® y € U ®p V and (2.2¢) follows from the Jacobi
superidentity applied to three odd elements.

The converse is a straightforward computation. O

With V, V x V' — Endg(V), (x,y) = dy,, and (|) as before, consider the triple
product in V given by

xyz =dyyz+ (x| y)z 2.4)

for any x, y, z € V. Conditions (2.3a—c) translate into

xxy = (x| x)y = xpx, (2.52)
uv(xyz) = (uvx)yz — x(vuy)z + xy(uvz), (2.5b)
(uvx | y) = (x| vuy), (2.5¢)
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for any u, v, x, y, z € V. Let us check (2.5b) for instance. For this, denote by /. , the
map z > xyz forany x, y,z € V, then for any u, v, x,y € V

(ivs Loyl = [duw, diy] (since /., — d,,., 1s scalar)
= dd, .y T dx.d,., )
= lg,, 0.y = {duw(X) | ) + L, ) — (X | duw ()
= ld,.0.y = Ledyuy)
= by — U | V) y — Leowuy + (v [ U)ly

= luvx,y - lx,vuy

and this is equivalent to (2.5b). Conversely, conditions (2.5a—c) give conditions
(2.3a—), if (2.4) is used to define d, , for x, y € V.

Conditions (2.5a) and (2.5b) are just the defining conditions (1.3) and (1.1) of a
(=1, —1)-BFKTS, while condition (2.5c) is a consequence of (2.5a-b) [13]. We include
a proof of this fact by completeness:

Take x = y in (2.5b) and use (2.5a) to get

(x| X)uvz = (uvx)xz — x(vux)z + (x | x)uvz
= (uvx)xz + ((vux)xz — 2(x | vux)z) + (x | xX)uvz

= 2u | v)xxz — 2(x | vux)z + (x| x)uvz

and this shows that (x | vux) = (u | v){x | x) for any x, u, v € V. Linearizing this one
obtains that (x | vuy) + (y | vux) = 2(u | v){x | y) for any x, y, u, v € V, whence

(x [ vuy) = (2(u | v)x —vux | y) = (uvx | y),

as desired. In the same way, (2.3a) follows from (2.3b) and (2.3c¢).

Because of (2.3a-b), o = dy p is a Lie algebra of derivations of the (—1, —1)-
BFKTS, which will be said to be the Lie algebra of inner derivations of V.

Given a vector space ' endowed with a nonzero symmetric bilinear form (| ) and
a skew symmetric map V' x V — Endg(V), (x,y) = d., for any x, y € V, satisfying
conditions (2.3), denote by g(}) the Lie superalgebra constructed in Theorem 2.1.
Also, consider the triple product xyz defined on V by (2.4) and the triple product given
by {xyz} =d. ,(z) forany x,y,z € V.

THEOREM 2.2. Under the hypotheses above, the following conditions are equivalent:
(1) (|) is nondegenerate,

(1) (V, {xyz}) is a simple triple system,

(1) (V, xyz) is a simple triple system,

@iv) g(V)is a simple Lie superalgebra.

Proof. Assume that (i) is satisfied and let / be a nonzero ideal of the triple system
(V,{xyz}). Then forany x e I and y € V, {xpy} =d,(y) = =y | »)x + (x| y)y € 1,
by (2.3c), and hence (x| y)y € I for any y € V. Since (|) is nondegenerate, there
is a basis of V' formed by elements y with (x| y) # 0 and this shows that 7 = V.
Conversely, V't = {x e V : (x| V) = 0} is an ideal of (V, {xyz}) because of (2.3a) and
the linearization of (2.3c). Hence (ii) implies (i).

Similarly, condition (i) and the linearization of (2.5a) imply (iii), and conversely
(iii) implies (i) since V'* is an ideal of (V, xyz) because of (2.5a) and (2.5c).
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Now assume that (i) is satisfied and that 0 # I = I @ I7 is an ideal of the Lie
superalgebra g(V). By sly(F)-invariance, /7 = U ® W for a subspace W of V. Let
x e Vandy e Wwith (x| y) # 0,thenforanya € U,[a® x,a® y] = —(X | ¥)@4.a, SO
@a.q € I forany aand sl,(F) C I;. But then g; = [s(F), g7] € [ and g5 = [g7, 97] S 1,
so I = g. Otherwise W = 0, so I; = 0, but then it is easy to show that / = 0.

Conversely, the graded subspace dy . @ (U ®F V) is an ideal of g(V), so (iv)
implies (i). O

Since the nondegeneracy of a bilinear form is preserved under scalar extensions,
it immediately follows that:

COROLLARY 2.3. With the same notation as above, if {|) is nondegenerate, then
(V, {xyz}), (V, xyz) and g(V') are central simple.

3. Examples. This section is devoted to constructing the examples of simple
(=1, —1) balanced Freudenthal Kantor triple systems that will appear in the
classification. Throughout this section, the ground field F will be assumed of
characteristic # 2.

3.1. Hermitian type. Let R be a unital separable associative algebra over F of
degree < 2. Therefore, R is, up to isomorphism, either the ground field F, F x F, a
quadratic separable field extension K of F or a quaternion algebra Q over F. In any case,
R is endowed with an involution of the first kind, x — X, suchthat x + X, xx = xx € F
forany x € R. Let V' be a left module over R endowed with a nondegenerate hermitian
form/: V x V — R. Thatis, his F-bilinear and satisfies forany x, y € V' and r € R:

h(rx, y) = rh(x, y),
h(x,y) = h(y, x), (3.1
h(x, V) = 0if and only if x = 0.

Then the symmetric bilinear form V' x V' — F defined by means of

1
(x 19} = 3(hx, y) + h(y, x)), (3.2)

for any x, y € V, is nondegenerate and determines /.
Define now the triple product on ¥ by means of

xyz = h(z, x)y — h(z, y)x + h(x, y)z, (3.3)

forany x, y,z e V.

It is clear that xxy = h(x, x)y = (x | x)y = xyx for any x, y € V and a straight-
forward computation shows that this triple product satisfies (2.5b) too. Therefore V' is
a (—1, —1)-BFKTS which will be said to be of hermitian type. Depending on dimz R
being either 1, 2 or 4, I will be said to be of orthogonal, unitarian or symplectic type,
respectively, for reasons that will become clear later on.

Let us compute the Lie algebra @ = dp in this case. Assume first that R = F, the
ground field, then dy, = (— | x)y — (— | y)x =t 0, for any x, y € V, and these maps
span the orthogonal Lie algebra o(¥). From the construction in [11, Supplement to
2.1.2], g(¥) is the orthosymplectic Lie superalgebra osp(}V & U). A word of caution
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is needed here: the multiplication of odd elements in [11, Supplement to 2.1.2] should
read [a® ¢, b ® d] = —(a, b)oc o d + (¢, d)a A b (a minus sign has been added).

Now, in case R is a quadratic étale algebra, that is, either K = F x F or K is a
quadratic field extension of F, then for any x, y € V,

dyy = hyy + ho(x, )y, (3.4
where
hyy = M=, x)y — h(—, y)x (3.5)
and
ho(x, y) = h(x,y) = (x| y) = %(h(x, y) = h(y, x)). (3.6)
Note that

heyeu(V, h) ={f € Endx(V) : h(f(x), y) + h(x, f(y)) = 0 for any x, y € V'}.

Since Ag(x, y) = —hy(x, y), it follows that 0 C w(V, k).

In the split case: K = F x F = Fe; & Fey, for orthogonal idempotents e¢; and e,
(@1 =e), let W=e;Vand W =e, V. Then h(W, W) =0 = h(W, W) and for any
ae W and u € W, h(a, u) € Fe;. Hence there is a bilinear nondegenerate form (|) :
W x W — F, such that h(a, u) = (a | u)e; for any a € W and u € W. This bilinear
form determines / and allows us to identify ¥ with the dual W*. Therefore we may
assume that V' = W x W*, with the natural structure of module over K = F x F,
and with A((a, @), (b, B)) = (B(a), (b)) for any a,b € W and «, B € W*. Moreover,
in this case w(V, &) is isomorphic to gi(W) by means of the isomorphism that takes
any f € Endg(W) = gl(W) to the endomorphism of V' = W x W* given by (a, ) —
(f(a), —a o f). Through this isomorphism, /,,0),(0,«) cOrresponds to the endomorphism
of W given by ¢ = —a(c)a, and hence d(,,0),(0,«) corresponds to ¢ = —a(c)a + %a(a)c.
If the dimension of W is not 2, this shows that 0 = w(V, k) = gl(W), while if the
dimension is 2, 0 = su(V, h) = sl(W).

By scalar extension, we have that 0 = u(V, h) if dimg V # 2 (dimg V' # 4) and
0 =su(V, h)ifdimg V' = 2.

Finally, assume that R is a quaternion algebra Q. Again d. , = h,, + ho(x, )1y,
but now /., is Q-linear, while /o(x, y)1 is not in general, since the center of Q is F.
It is easily checked here that [Ay y, 7o) = hi )0 + Pun, ) TOr any x, y, u, v € V, and
thus hy,y = span {h., : x,y € V'} is a Lie algebra contained in

sp(V,h) = {f € Endp(V) : h(f(x), y) + h(x,f(y)) =0forany x,y € V},

and 0 = dy y is contained in sp(V, h) ® Qoly, where Qp = [Q, O] is the set of skew
symmetric elements in Q relative to its involution, which form a three dimensional
simple Lie algebra.

Again, consider the split case: Q = Endg(U) for a two dimensional vector space U
endowed with a nonzero skew symmetric bilinear map ¢ which induces the involution
in Q. Standard arguments of complete reducibility as a module over Q show that
V = U ®r W for some vector space W over F. For any ¢ € Qp = sl(U) = sp(U, ¢)
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and for any x,y € V,

1 1 -
<WLW=§%M”+M%WD=?Www+me)

1 _
=§WGJM+M&w®=—WIW%

so Qp embeds into the orthogonal Lie algebra o(V, (| )) and, therefore, (| ) is invariant
under the action of sI(U) = sp(U, ¢). But, up to scalars, ¢ is the unique bilinear form on
U which is sp(U, ¢g)-invariant, so (a Q u | b ® v) = %(p(a, b)Y (u, v), for any a,b € U,
u,v € W, for a skew-symmetric nondegenerate bilinear form y : W x W — F.

Since the hermitian form / is completely determined by (| ), it turns out that / :
VxV— Q=Endp(U)is given by h(a Q@ u, b ® v) = ¥(u, v)p(—, b)a, for any a, b €
U and u, v € W. Note that / thus defined is hermitian and

L@ ub® ) +hb@ v, a®w) = 5y V)p(~, D~ ol ab).

But ¢(a, b)c + ¢(b, ¢)a + ¢(c, a)b = 0 for any a, b, ¢ € U, so

L a®ub® )+ Hb@v.a® W) = Ly vpla. D1
Hence, for any a, b € U and u,v € W:
hola@u,b@v) = %(h(a Qu,b®v)—h(bQv,a®u)) (see(3.6))
= SU V(. B+ (= a)B) = (. Vg,
and thus, forany ¢, b,c € U and u, v, w € W:
hagubgv(c @ w) = Y(w, (b, a)c ® v — Y(w, v)p(a, b)e ® u
= —¢(a,b)e ® (Y(w, wv + Y (w, v)u) = —g(a, b)c ® Y, (w).

Therefore, hy,p = sp(V, h) := {f € Endo(V) : h(f(x),y) + h(x,f(y)) = 0 for any
x,y €V} Zsp(W, ) (which acts on V' = U @ W in a natural way: on the second
factor). Moreover, from (3.4),

1
da@u,b@v = hu@u,b@v + hO(a ® u, b ® U)IV = §¢u,b ® 1#(“» v)l w = (p(a, b)lU & 1//14,1)7

s00 =dy,y =sp(U, ¢) ® sp(W, V) = sl(U) @ sp(W, ¥).

For general Q, again extending scalars we arrive at hy, = sp(V, h) (which is a
simple Lie algebra of type C) and 0 is the direct sum of the three dimensional simple
Lie algebra Qy and of the simple Lie algebra sp(V, h).

Summarizing the above discussion:

PROPOSITION 3.1. Let R be a unital separable associative algebra of degree < 2
over a field F of characteristic # 2, and let V be a left module over R endowed with a
nondegenerate hermitian form h : V x V — R. Endow V with the structure of a simple
(=1, =1)-BFKTS of hermitian type (with associated symmetric bilinear form given by
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(x|y)= %(h(x, y)+ h(y, x)) for any x,y € V) and let 0 = dy i be the associated Lie
algebra of inner derivations. Then:
(i) If R=F, thendo =o(V, (])).

(1) If R = K is a quadratic étale algebra, then 0 = w(V, h) unless dimg(V) = 4.
In this latter case, 0 = su(V, h).

(iii) If R is a quaternion algebra Q, then 0 = Qy ® sp(V, h), where sp(V, h) acts
naturally on V, and the simple three dimensional Lie algebra Qg acts by left multiplication
on the Q module V.

3.2. D,-type. Let V' be a four dimensional vector space, endowed with a
nondegenerate symmetric bilinear form (|). Let ® be a nonzero skew symmetric
multilinear form: ® : V' x V' x V x V — F. Define a skew symmetric triple product
[xyz] on ¥V by means of:

O(x, y, z, 1) = ([xyz] | 1), (3.7)
for any x, y, z, t € V. The proof of the next result is left to the reader.

LEMMA 3.2. With the hypotheses above, there exists a nonzero scalar u € F such
that

([arazas] | [D1b2b3]) = pdet({a; | by)), (3.8)
foranya;, by e V (i=1,2,3).
Now, for any such V" and @, and for any x, y € V, consider the endomorphism
d, € Endp(V) defined by
deyz = [xyz]+ (z [ x)y — (z | y)x. (3.9)
As shown in [22, §5], conditions (2.3a-b) are satisfied, so if the triple product xyz on
V is defined by means of
xyz = [xpz] + (z | x)y — (z | y)x + (x| y)z. (3.10)
for any x, y,z € V, then V becomes a (—1, —1)-BFKTS, which will be said to be of
D, -type.
Assume for a while that the scalar u in (3.8) is a square, u =v>, 0 # v € F,
and that (|) represents 1. Then, by [4, Theorem 2], V' is endowed with a binary

multiplication that makes it a quaternion algebra Q over F, with involution x — X
such that xx¥ = (x | x) for any x € V, satisfying

v Dzl = xpz = (x | »)z + (2 | Xy — (2 | p)x
for any x, y, z € V. Therefore, for any x, y, z € V, (3.9) shows that:
dyy(z) = vxyz+ (1 +v)({z | x)y — (z | y)x) —vix | y)z

_ 1+v _ _ _ _ v, _
= vxyz + ——((OZ + z20)y — x(jz + 2y)) — ST+ y3)z
_ o 14+v _ v _ I+v _
= |\ vy - - E(xy +yX) )z + zZXy

1+v
4

2(Xy — yx),

1 _ v _ +1+v_ v—l(_ 9z +
=(—=xy— =yx|z Xy = — yX)z
2y 2)’ 2 Y 4 Xy —)yx
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because Xy +jix=xj+yx¥x=2(x|y) € F, so Xy — jx =2Xy — (xj+ yX). Hence,
forany x,ye V,d., =L, — Ry, with p = VT’I(x)? —yX), g = —"TH(Xy — yx) € Qy,
where L and R denote left and right multiplications in V' = Q. Therefore, if u =1
(v = £1), 9 = dy,p is isomorphic to the three dimensional simple Lie algebra Q.
However, if u # 0,1 (v # 0, £1), then 9 = Ly, @ Ry,, a direct sum of two copies of
the three dimensional Lie algebra Qy, which coincides with the orthogonal Lie algebra
o(V, (])). Moreover, in this latter case, [2, Lemma 3.1 and its proof], g(¥) is a form of
the simple Lie superalgebra I' —%, 1; L “g ) (notation as in [26, pp. 16-17]). That is,
itis a form of D(2, 1; * ;1) (see also [19]).
Simply by extending scalars, we obtain:

PROPOSITION 3.3. Let V be a four dimensional vector space over a field F of
characteristic # 2 with a nondegenerate symmetric bilinear form (| ). Let ® be a nonzero
skew symmetric 4-linear form and let the triple product [xyz] be defined by means of
([xyz] | t) = ®(x, p, z, 1) for any x, y,z,t € V. Let 0 # u € F be given by (3.8). Endow
V with the structure of a simple (—1, —1)-BFKTS by means of (3.10) and let 0 = dy
be the corresponding Lie algebra of inner derivations. Then:

(1) Ifu =1, thend is a three dimensional simple ideal of the orthogonal Lie algebra
o(V, (1))
(1) If u #0, 1, then 0 coincides with the orthogonal Lie algebra o(V, ().

There is some overlapping in the types considered up to now.

To begin with, let V' be any four dimensional simple (—1, —1)-BFKTS and let [xyz]
be defined by [xyz] = xyz — (z | X)y + (z | y)x — (x| y)z, for any X, y, z € V. Because
of (2.5a), [xyz] is skew symmetric on its arguments. In case [xyz] is identically zero, we
are in presence of a system of orthogonal type. Otherwise, this is a system of D-type.
This means that the systems of hermitian type with R = K or Q and with dimg V' = 4
are systems of D-type. Let us check which u’s are involved in these cases. To do so, it
is enough to consider the split cases.

Assume K = F x Fand V = W x W* with h((a, o), (b, B)) = (B(a), «(b)) for any
a,be W and «, 8 € W and with dimp W = 2. Take a,b € W and «, § € W* with
a(a) =1= B(b), a(b) =0 = B(a). Then with (a1, a1) = (a,0), (a2, a2) = (0, @) and
(a3, a3) = (b, B),

[e=)

det({(a;, i) | (aj, o)) =

(e ST
S O =

while [(a, 0)(0, @)(b, B)] = 1(b, B) and

(@, 000, )b, B)] | (e, 000, )b, BY) = (b, ~B) | (b, ) = — .

Hence, 1 = 1 in this case. (This can also be deduced directly from the size of the Lie
algebras 0.)

Assume now that R = Qis a quaternion algebra and dimg V' = 4, then V' is a free
Q-module of rank 1 and hence we may assume that V' = Q and that A(x, y) = axy for
any x, y € Q, where 0 £ « = h(1, 1) € F. Then for any x1, x;, x3 € Q,

[x1x2x3] = ho(x3, x1)x2 — ho(x3, X2)x1 + ho(x1, X2)x3
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where ho(x, y) = %(h(x, y)—h(y, x)) = a(xy — yX) € Qp. By skew symmetry of 4,
[x1x2x3] = ! Zho(xa(l), Xo(2))Xo(3) = g(—1)axa(l)fa(z)xa(3)
2 & 2

where the sum is over all the permutations of 1,2,3. Take x; =1, x,, and x3
mutually orthogonal to get (1 |1) =A(1,1) = «, det({x; | X;)) = a{x2 | X2)(x3 | x3),
while [x1x2x3] = —3@x2X3 since xox3 = —x3x2, X; = —x; fori = 2, 3,and I = 1. Thus,
([X1X2X3] | [X1X2X3]> = 9()[3(X2X3)(X2x3) = 905()62 | Xz) (X3 | X3>, and m = 9 in this case.

A final overlap occurs if V' is of hermitian type with R = K quadratic and with
dimF V =2.As above, [X1XQX3] = % ZO_ hO(.xU—(l), Xa(z))xa(3) for any xi, Xz, X3 € V. By
skew symmetry and dimension, this is zero, and therefore we are in the situation of
R = F. We summarize the above arguments in the following remark, whose last part

follows from the structure of the Lie algebras of inner derivations.

REMARK 3.4.

— The simple (—1, —1)-BFKTS ¥V of unitarian type and dimg V' = 2 are also of
orthogonal type.

— The simple (—1, —1)-BFKTS V' of unitarian type and dimy V' = 4 are of D;-
type.

— The simple (—1, —1)-BFKTS V' of symplectic type and dimg V' =4 are of
Dyo-type.

— There are no more overlaps among different types.

3.3. G-type. Let C be an eight-dimensional Cayley-Dickson (or octonion)
algebra over F with norm » and trace t. Let Cy be the set of trace zero eclements.
For any x, y € C, the linear map

Dx,y = [L.\'ﬂ Ly] + [LXv Ry] + [va Ry] (311)

(where L, and R, denote the left and right multiplication by x) is known to be a
derivation of C [25, Ch. II1.8], and hence it leaves C, invariant. Consider then, for
any 0 # o € F, the nondegenerate symmetric bilinear form and the triple product on
V = Cp given by (x| y) = —2at(xy) and xyz = a(Dy ,(z) — 2(xp)z), for any x, y,z €
V. Since D, , is a derivation and

Dy, (¥) = xp* — p(xp) + xp* — (0)y + ¥°x — (1x)y = 4p7x — 2(xp + yx)y
= —4dn(y)x = 2t(xy)y = —(y | y)x + (x| )y,

where we have used that x*> = —n(x)1 = —%t(xz)l for any x € V = Cy; it follows from
(2.3) that V' is a (—1, —1)-BFKTS (see also [19]), which will be said to be of G-type.
It is clear here that the Lie algebra 9 is the span of the D, ,’, which is precisely the
Lie algebra of derivations of the Cayley-Dickson algebra C in case the characteristic
is # 3 [25, Ch. I11.8], a simple Lie algebra of type G,. (If the characteristic is 3, then
this is a seven dimensional simple Lie algebra which is a form of psl((7) [1].)

3.4. F-type. Let X be a 3-fold vector cross product on a vector space V of
dimension 8, endowed with a nondegenerate symmetric bilinear form (|) . That is, X
isatrilinearmap X : Vx Vx V =V, (a,b,c) — X(a,b, c), satisfying (see [4], [23,

https://doi.org/10.1017/50017089503001290 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089503001290

FREUDENTHAL KANTOR TRIPLE SYSTEMS 363

Ch. 8] and the references therein):

(X(aj,ay,a3) | a;j) =0foranyi=1,2,3,

(3.12)
(X(ar, ar, a3) | X(ay, az, a3)) = det({q; | a;)),
forany aj, az,az € V.
It is known that (3.12) implies the skew symmetry of X. Moreover, X satisfies:

(X(a1, az, a3) | X (b1, ba, b3))
= det({a; | bj)) + € Z Z (@) | be1))®(do@): Goi), br), brz)  (3.13)

o even teven

forany a;, b; € V (i = 1, 2, 3), where ®(a, b, ¢, d) = (a | X(b, ¢, d)) for any a, b, ¢, d €
V,and € = 1. In case € = 1 (resp. —1), X is said to be of type I (resp. II). Also, if
dimg V' = 8 and X is of type I, then — X is of type II, and conversely.

Assume now that the characteristic of the ground field F is # 2, 3. Given a 3-fold
vector cross product X of type I, define d, , € Endg(V), x, y € V, by means of:

1
dyyz = gX(x, v, )+ (z|x)y—(z]|y)x. (3.14)
As shown in [22, §5], condition (2.3b) is satisfied, so if the triple product xyz on V' is
defined by means of
1
xXyz = gX(X,y, )+ (z | x)y—{zIyx+{x]pez (3.15)

for any x, y,z € V, then V becomes a (—1, —1)-BFKTS, which will be said to be of
F-type.

Since dy ), is a derivation of the triple system and it is skew symmetric relative to
(1), it follows that d, , is a derivation of the 3-fold vector cross product X. According
to [4, Theorem 12], if e is an element of V with (e | e) Z0, W ={v e V : (e | x) = 0},
and ¢ is the nondegenerate quadratic form on V' defined by g(v) = —(e | €)' (v | v),
then the Lie algebra of derivations of X is isomorphic to the orthogonal Lie algebra
o(W, q). Actually, V' has the structure of an eight dimensional Cayley-Dickson algebra
C with unit 1 = e, so that there is an scalar 0 # « € F such that X(a, b, ¢) = a((ab)c +
(alc)b—(b|c)a—(a|b)c)and (a | b) = a(a | b),foranya, b,c € V= C.Herex > X
denotes the involution and (a | @) = aa is the norm of C. Note that @ = (e | ¢). Hence
for any x, y € V, d. , is a derivation of the 3C-product given by (ab)c (see [4]). But for
any x,y,z€ V=0C, gdx,y(z) = (xp)z+4(z | x)y —4(z | x)x — (x| y)z, in particular,
for a traceless x (X = —x), gdg,x(y) =-=xy+2x(+y) —2(xy —yx) =xy+2yx =
(L+ 2R),(y), that is, d, . = (L +2R),, where L and R denote the left and right
multiplications in C. But these operators generate the Lie algebra of derivations of
the triple product given by (ab)c [7, 4] (see also [5]), so we conclude that d is isomorphic
to o(W, q).

Note that in [19] it is already proved that, after scalar extension, 9 is isomorphic
to o(7), by an explicit computation.
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4. Classification. Given a (—1, —1)-BFKTS V over a field of characteristic # 2,
in Section 2 a simple Lie superalgebra g = g(¥7’) has been defined that contains a
copy s = s(V) of slr(F), which is an ideal of gj that is complemented by the ideal
0 =0(V) =dy, . Inthissituationd = {d € g; : [d, s] = 0} is completely determined by
g and s. Moreover, as a module for gg, g7 is the tensor product of the two dimensional
irreducible module for s and the module V for 0.

Consider a ground field F of characteristic # 2 and the pairs (g, s), where g is a
Lie superalgebra over F and s is a complemented ideal of gz isomorphic to sl>(F). Two
such pairs (g', s'), (g7, s?) are said to be isomorphic if there is an isomorphism of Lie
superalgebras ¢ : g' — g such that ¢(s') = 5.

Given a Lie superalgebra g = g5 @ g7 and a nonzero scalar «, the new Lie
superalgebra defined over g with the new product [, ], given, for homogeneous
elements, by

{ [x,y]e = a[x,y] if both x and y are odd
[x, 7]l =[x,y] otherwise

will be denoted by g,. Also, given a (—1, —1)-BFKTS V, we will denote by V,, the new
(=1, —1)-BFKTS defined on V but with the new product given by (xyz), = axyz, and
new symmetric bilinear form given by (x | y), = a(x | y), for any x, y,z € V. From
the definitions, it is clear that g(V,) = g(V)s. Two (—1, —1)-BFKTS V! and V2 will
be said to be equivalent in case there is a nonzero scalar « such that V! and V2 are
isomorphic.

THEOREM 4.1. Let V' and V? be two (=1, —1)-BFKTS’s. Then V' is equivalent to
V2 if and only if (g(V"), s(V')) is isomorphic to (g(V?), s(V?)).

Proof. Let g = g(V') and o' = (V') = dy: i for i = 1, 2. Also, s(V') = s(V?) =
sp(U, p) as in Section 2. Thus g’y = sp(U, ¢) ® 0’ and g’y = U ®F V', fori = 1, 2. Let
® : g! — g° be an isomorphism such that it restricts to an automorphism of sp(U, ¢).
But any automorphism & of sp(U, ¢) can be extended as in [6, proof of Lemma 2.1]
to an isomorphism from g? onto g2 for some nonzero scalar a and, therefore, we
may (and will) assume that ® is the identity on sp(U, ). Since 0’ is the centralizer of
sp(U, @) in g', i = 1,2, ® restricts to an isomorphism W : 9! — 92, Also, ® restricts
then to an isomorphism of sp(U, ¢)-modules &7 : U ®F V' — U ®F V2. Since U is
absolutely irreducible as a module for sp(U, ¢), there is an isomorphism of vector
spaces ¥ : V! — V2 such that (¢ ® x) = a ® ¥(x)foranya e Uand x € V!,

Now, for any x,y,ze€ V' and any ae U, we have a® ¥(dy,(2) =
O([dy,y, a® 2]) = [W(dy,), a @ Y()] = a @ W(d, ) (¥(2), 50

Y (dyy(2)) = W(diy)(¥(2)), (4.1)

forany x,y,z € V. Also, foranya, b € U and x, y € V! we have ®([a ® x, b ® y]) =
[a® ¥ (x), b @ Y(M]= (Y (X) | Y1) @ab+ @(a, b)dy )y (), butalso D([a @ x, b ® y]) =
O((x | Y)gap + @(a, b)dyy) = (x| p)@as + @(a, b)¥(dx.y). So

lI‘(dm) = dW(Y) V()
{ Ve L0 = (x| 7), “2

for any x, y € V', which, together with (4.1), shows that ¥ is an isomorphism between
the triple systems V! and V2.
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For the converse, if ! and V2 are equivalent, there is a 0 # « € F such that V!
and V2 are isomorphic. From here it is easy to deduce that the pairs (g(V"), s(V'!))
and (g(V2), s(V?)) are isomorphic. But g(¥?) is isomorphic to g(¥%) by means of an
isomorphism taking s(7?) into itself (see [6, proof of Lemma 2.1]). O

In order to classify the simple (—1, —1)-BFKTS of finite dimension over a field of
characteristic zero, we will first assume that the ground field F is algebraically closed.
Following Theorems 2.1, 2.2 and 4.1, we will determine, up to isomorphism, the pairs
(9. s), where g is a simple finite dimensional Lie superalgebra and s is an ideal of gg
isomorphic to s[(2):

THEOREM 4.2. Let F be an algebraically closed field of characteristic zero. The
Sfollowing list exhausts, up to isomorphism, the pairs (g, s), where g is a simple finite
dimensional Lie superalgebra over F (g7 # 0) and s is a three dimensional simple
ideal of g;.

(1) g=sl(m,2), m > 3, and s is the (unique) ideal of g5 isomorphic to sl(2).

(ii) g = psl(2, 2) and s is any of the two simple ideals of gg.

(ill) g =o0sp(m,2), m> 1, m # 4, so that g5 = o(m) @ sp(2), and s is the copy of
sp(2).

(iv) g =o0sp(4,2r), r > 2, so that g = 0(4) @ sp(2r) and s is any of the two simple
simple ideals of 0(4) = s1(2) @ sl(2).

v) =D, L;a), a #0,—1, so that g5 =sp(U, ¢) ® sp(U, ¢) ® sp(U, ), U
being a two dimensional vector space and ¢ a nonzero skew symmetric bilinear form
on U, g1 =U®pr U®pr U, with the natural multiplication in gy and natural action of
g on g7 in which the i™ copy of sp(U, ¢) acts on the i factor of U, and with the
multiplication of odd elements given by:

[t ® ur ® uz, v1 @ V2 @ V3] = @(uz, V2)P(U3, V3)Pu, v,
+ag(ur, v)eUs, v3)Pu, v, — (1 + @)U, v)P(U2, V2)Pu; v,

forany u;,v; € U,i=1,2,3. Here s is the first copy of sp(U, ¢).
(vi) g = G(3) and s is the (unique) ideal of gg isomorphic to s((2).
(vil) g = F(4) and s is the (unique) ideal of g5 isomorphic to s|(2).
(viii) g =1sp(3,2r), r > 1, and s is the copy of o(3) in g;.
Moreover, different choose of the simple ideal s in (i1) or (V) give isomorphic pairs
and two pairs in (V) corresponding to the values oy and oy are isomorphic if and only if
either oy = ap or ay + op = —1.

Proof. A careful look at the list of simple Lie superalgebras in [11, Theorem 5]
shows that the semisimple part of W(n); (n > 2), of S(n) (n > 3) and of S(n) (n > 3),
is isomorphic to sl(n) [11, Propositions 3.1.1 and 3.3.1], while W(2) is isomorphic
to sl(1,2). Also, the semisimple part of H(n) (n > 4) is isomorphic to o(n) [11,
Proposition 3.3.6], while H(4) is isomorphic to psl(2, 2). Hence, it is enough to deal with
the classical algebras. One checks easily that the simple classical Lie superalgebras with
gg containing a three dimensional simple ideal are those listed above. Since osp(4, 2)
is isomorphic to D(2, 1; 1), this has been excluded from (iii) and included in (v), and
since sl(1, 2) is isomorphic to osp(2, 2), this has been included in (iii).

The last assertion about cases (i) and (iv) is clear. Also, the Lie algebras in
(v) are the ones denoted by I'(1, o, —(1 + &)) in [26, p. 16-17]. Here we have three
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copies of sl(2) in gz, but there are isomorphisms preserving the three copies from
(o1, 03, 03) (01 + 03 + 03 = 0) onto I'(noy, noy, no3) for any 0 # n € F, and also
natural isomorphisms permuting the three copies of s[(2) (and the corresponding
o;’s). Therefore, the distinguished copy of sl(2) can always be taken to be the first one.
Finally, if there is an isomorphism from I'(1, &, —1 — «) onto I'(1, B, —1 — B) that takes
the first copy of sl(2) in I'(1, @, —1 — &) to the first copy of sl(2) in '(1, 8, —1 — B),
then it takes the second copy of sl(2) in I'(1, @, —1 — &) to either the second or the
third copy of sl(2) in I'(1, B, —1 — B), whence the last assertion of the Theorem. [

Now we are ready for our main Theorem, it asserts that the examples in Section 3
exhaust all the simple (—1, —1)-BFKTS’s:

THEOREM 4.3. Let V be a finite dimensional simple (—1, —1)-BFKTS over a field F
of characteristic zero with associated symmetric bilinear form (| ). Either:
(1) The multiplication in V is given by

xyz={z|x)y—{z|y)x+{x|ysz,

for any x, y, z € V (orthogonal type), or
(1) There is a quadratic étale algebra K over F such that V is a free K-module of
rank at least 3, endowed with a hermitian form h : V x V — K such that

{(X | y) = 50(x, y) + h(p, X)),
xyz = h(z, x)y — h(z, y)x + h(x, y)z,
forany x,y,z € V (unitarian type).

(iii) There is a quaternion algebra Q over F such that V is a free left Q-module of
rank > 2, endowed with a hermitian form h : V x V — Q such that

{x | ») = 5(h(x, ) + h(p, X))
xXyz = h(z, x)y — h(z, y)x + h(x, y)z
forany x,y,z € V (symplectic type).

(iv) dimpg V = 4 and there is a nonzero skew symmetric multilinear form ® : V x
V x V x V — F such that for any x,y,z € V:

xyz =[xyz]+ (z | x)y — (z | »)x + (x| )z,
where [xyz] is defined by means of ®(x, y, z, t) = ([xyz] | t) for any x, y, z, t € V. In this
case, there is a nonzero scalar . € F such that (3.8) holds (D,,-type).
(v) dimg V = 7 and there is an eight dimensional Cayley-Dickson algebra C over

F with trace t and a nonzero scalar a € F such that V = Cy = {x € C: t(x) = 0}, and
forany x,y,z€ V:

{(x | y) = —2at(xy)
xyz = a(Dy (z) — 2t(xy)z)

where D, is the inner derivation of C given by (3.11) (G-type).
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(vi) dimp V =8 and (V, (|)) is endowed with a 3-fold vector cross product X of
type I such that

1
Xyz =3 X0y, )+ (z 1 Xy — (| yx+ (x| )z

forany x,y,z € V. (F-type.)

Moreover, two triple systems in different items cannot be isomorphic and:

(1) Two triple systems of orthogonal type are isomorphic if and only if the
corresponding symmetric bilinear forms are isometric.

(ii") Two triple systems of unitarian type V| and V,, with associated quadratic
étale algebras K| and K, and hermitian forms hy and h,, are isomorphic if and only if the
hermitian pairs (V1, hy) and (V>, hy) are isomorphic, that is, there is an isomorphism of
F-algebras o : Ki — K, and a linear bijection ¢ : Vi — V5 such that hy(¢(x), ¢(y)) =
o(hi(x,y)) forany x,y € V).

(iii")  Two triple systems of symplectic type V1 and V,, with associated quaternion
algebras Q) and Q, and hermitian forms hy and h,, are isomorphic if and only if the
hermitian pairs (V, hy) and (V3, hy) are isomorphic.

(iv') Two triple systems of D,-type, with associated scalars w, and ,, are
isomorphic if and only if the corresponding symmetric bilinear forms are isometric and
H1 = 2.

(V') Two triple systems of G-type, with associated Cayley-Dickson algebras C| and
G and scalars oy and o, are isomorphic if and only if so are Cy and Cy and a; = ary?
for some 0 #£ y € F.

(vi')  Two triple systems of F-type V| and V,, with associated type I 3-fold vector
cross products X, and X, are isomorphic if and only if so are the triple systems (V1, X1)
and (Vz, Xz).

Proof. First, the new triple product defined on V by [xyz] = xyz — (z | x)y +
(z|y)x — (x| y)z for any x, y,z € V' is skew symmetric because of (2.5a). If this is
identically zero, V' is of orthogonal type. Otherwise, if the dimension of V' is 4, V' is of
D, -type.

Hence, in what follows, assume that dimyp V' # 4. Then, after extending scalars to
an algebraic closure F of F,if V = F ®r V, (g(V), s(V)) is one of the pairs considered
in cases (1), (iii), (iv), (vi) or (vii) in Theorem 4.2. Note that case (viii) does not appear
since there g7 is a direct sum of adjoint modules for s instead of a direct sum of two
dimensional irreducible modules.

Because of Theorem 4.1 and the computations in Section 3, and since the classical
Lie superalgebras other than D(2, 1;«)’s are determined by its even part and the
structure of g7 as a gg-module [11, Proposition 2.1.4], it follows that case (i) in
Theorem 4.2 corresponds to the unitarian type with K = F x F and dimg V > 6,
case (iii) in 4.2 corresponds to the orthogonal type, case (iv) to the symplectic type and
dimg V' > 8 and cases (vi) and (vii) to G and F types.

Therefore, it is enough to deal with the forms over F of the simple (—1, —1)-
BFKTS’s over F considered in Section 3 with dimension # 4.

It is clear that if V is of orthogonal type, so is V. If ¥/ is of unitarian type with
dimy V > 6, then since K = End3(V) = F ®7 Endy(V), K = Endy(V) is a quadratic
étale algebra over F; besides, there is a K-hermitian form /: 7 x 7 — K such that
xyz = h(z, x)y — h(z, y)x + h(x, y)z for any x,y,z € V. But if {1, i} is an F-basis of
K with 2 =« € F, then h(x, y) = (x| y) —a~"(x | iy)i for any x, y € V. Since both
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(x| y) and (x | iy) are in F in case x, y € V, it follows that / restricts to an hermitian
form#h: V x V — Kand V is the corresponding simple (—1, —1)-BFKTS of unitarian
type. A similar argument works in case ¥ is of symplectic type and dimy V' > 8. In
this case d = b @ § with 5 = sl(2, F) Z b, so that 9 = b @ s for a suitable unique ideal
b and Q = End;(¥) = F ®r Endy(V). Hence Endy (V) = Q is a quaternion algebra
and V is a free O-module. Now one takes a suitable F-basis {1, i, j, k} of Q and argues
as above.

If ¥ is of G-type, then 0 is a form of G, so there is an eight-dimensional Cayley-
Dickson algebra C over F such that 0 = Der C and V is, up to isomorphism, its seven
dimensional irreducible module for 0, that is Cy, the set of traceless elements in C.
Since Homy (V' ®F V, 0) is one-dimensional, after identifying V" with Cj there exists a
nonzero « € F such thatd, , = aD, , for any x, y € Cy = V. From here, using (2.3c),
it follows that V" is of G-type.

Finally, if ¥ is of F-type, define X : V' x V x V — F by X(x,y,z) = 3(xyz —
(z| xX)y+{z|y)x — (x| y)z), for any x,y,z€ V. Then X is a 3-fold vector cross
product of type I (because it is so after extending scalars) and hence V is of F-type.

Moreover, two simple (—1, —1)-BFKTS’s of different types cannot be isomorphic
because the corresponding Lie algebras of inner derivations are not. Also note that,
because of (2.5a), any isomorphism among two (—1, —1)-BFKTS’s is an isometry of
the corresponding symmetric bilinear forms. Now (i) is clear and (ii) (respectively (iii’))
follows from the fact that K} and K, (resp. Q; and Q,) are determined as centralizers
of the action of a suitable ideal of the Lie algebra of inner derivations.

Let us check (iv'), so let (V}, (xyz);) be two simple (—1, —1)-BFKTS’s of D, -
type (i=1,2). If ¢ : V1 — V3 is an isomorphism, then it is an isometry and thus
e([xyz]1) = [p(X)e(»)p(2)]: for any x, y, z € V1. Hence

(p([x1x2x311) | @([x1x2x3]1))2 = ([x1x2x3]1 | [X1200x3]1)1 = i det({x; | x;j)1),

but also

(([x1x2x3]1) | p([x1x2x3]1))2 = {[p(x1)@(x2)@(x3)]2 | [p(xD)e(x2)@(x3)]2)2
= pa det({p(x) | 9(x)))2)
= wo det({x; | x;)1).
Therefore, 1} = w. Conversely, assume that ¢ : V1 — V> isanisometry and that u; =

p2 = . Consider @; : Vi — F(i = 1,2)given by ®;(x1, X2, X3, X4) = ([x1X23]; | X4);.
Also, let @1 : V} — F be defined by

@1 (1, x2, X3, X4) = Pae(x1), 9(x2), P(x3), 9(X4))

for any x1, x2, X3, X4 € F. Since dimy V; = 4 and both ®; and &, are skew symmetric,
they are proportional, and hence there is a nonzero scalar & € F such that ®| = ¢ ®;.
For any xi, x», x3, y1, ¥2, y3 € F:

D1 (p(x1), (x2), 9(x3), @[ y1y2y3]1)) = P1(x1, X2, X3, [ y1y2y3]1)
= a®(x1, X2, X3, [1y2)3]1)
= ap det({x; | yj)1)
ap det({p(x:) | 9(17))2)
= Pa(p(x1), p(x2)@(x3), alp(y)e( y2)e(y3)h),
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where we have used (3.8) and the fact that ¢ is an isometry. Thus ¢([y1y2y3]1) =
alp(yD)e(12)e(y3), for any yi, s, y3 € V1. But now, again by (3.8), this shows
that wdet((y; | y)1) = o’udet({y; | y;)1) for any p’s, so that o’ =1. If o =1
we are done, otherwise « = —1. In this latter case, choose any isometry o of
(|)1 with deto = —1 and consider ¢ = ¢o : V| — V>. Then if &1(x1,xQ,x3,x4) =
Dy ((x1), P(x2), @(x3), @(x4)) for any x; € V| (i = 1,2, 3, 4), we have:

Dy(x1, X2, x3, X4) = P2A@(x1), P(x2), P(X3), P(X4))
= CB](G(X]), U(Xz), O'(X3), G(X4)) = a(deto)cbl(xl, X2, X3, X4) = @1()(1, X2, X3, X4),

because « = —1 = deto and &, is multilinear and alternating. The same argument as
above, with ®; replaced by ®; shows that ¢ is an isomorphism between the two triple
systems.

With regard to (V'), if ¢ : V' — V? is an isomorphism of two triple systems of
G-type with associated Cayley-Dickson algebras C! and C? and scalars o and a», then
@ is an isometry of the associated symmetric bilinear forms and for any x, y, z € V)

(p(dx,yz) = d(p(x),tp(y)w(z)- 4.2)

Also, ¢ : 0! =dyr 0 — 0% d > pdp~! is an isomorphism of Lie algebras and ¢
becomes an isomorphism of d'-modules, where V2 is a 9'-module through ¢. Since
Hom,i (A2(V1Y), V1) is spanned by x A y — [x, y] = xy — yx (multiplication in C'),
there is a nonzero scalar © € F such that

o([x, yD = ule(x), p(»)] (4.3)

forany x,y € V! = C} = {z € C' : i(z) = 0}. In particular, ng : (CJ,[, ) = (C3.[, ])
is an isomorphism of Malcev algebras and hence C! and C? are isomorphic (see, for
instance, [3, (3.1)]). But the associator (x, y, z) = (xy)z — x(yz) in C' is skew symmetric
on its arguments, so for any x, y, z € C!, (x, y,2) = —(x, 2, ¥) = (z, X, ) = (¥, Z, X), SO
that L, — L.L, = [Ly, R,] = R,R; — Ry, = [Ry, L,], hence ad, — LiL, + R,R, =
2[Ly, R)] for any x,y € C', where ad, y =[x, y] = (L — R,)(»). Permuting x and y
and subtracting we get ad, ;) = [Lx, L,] + [Ry, Ry +4[Ly, R)] = D, + 3[L,, R)]. On
the other hand,

[ady,ad,] =[Ly — Ry, L, — Ry =[Ly, L,] +[R:, R)] — 2[L, R)]
= Dx,y - 3[Lx’ Ry]y

and from here we conclude that 2D, , = ady ) + [ad,, ad,] for any x, y € C'. Since
dyy = a1 Dy and dy(y) o(y) = 2 Dy(x).e(y) for any x, y € V!, equation (4.3) gives:

o (231
pidy = 5 ¢(adp, +[ady, ady]) = jﬂz(ad[wxm)} +[ady, adyp])e
o 2
S H Dy, 009

while dyxv).00) = % Dy .e(y) for any x, y € V1, so that equation (4.2) gives o u* = a2,
as desired. Conversely, if ¥ : C! — C?isan isomorphism and «, = a2, then the map
@: V=Cl— V2= (3, given by p(x) = u~'y(x) for any x € V!, is an isomorphism
of triple systems.
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We are left with the isomorphism problem for the (—1, —1)-BFKTS’s of F-type.
For these we need some preliminaries, which have their own independent interest:

LEMMA 4.4. Let X be a 3-fold vector cross product of type I on an eight dimensional
vector space V over a field F of characteristic # 2, and let {|) be the associated
nondegenerate symmetric bilinear form (so that (3.11) is satisfied). Then (| ) is determined
by X.

Proof. Because of (3.12), forany a, b, c,d € V:

(alb) (ald)

(b1b) (bld)

(c1b) (cld)
+{anb|bAc)a ]| d)

(a| a)

—(d | X(a, b, X(a, b, c)) = (X(a,b,c)| X(a,b,d)) = |(b]a)
(c|a)

)

={anblanbyc—{anb|anc)b

where (a Ab | unv) = ‘EZ } Z; EZ } 5;‘ for any a, b, u, v € V. By nondegeneracy of (|),
this gives:

X(a,b, X(a,b,c))=(anb|cAnbla+{anblancb—{anb]|aAb)c. (4.4)

Hence, for any a,b,ce V, if d = X(a, b, ¢), then X(a,b,d) € Fa+ Fb+ Fc and,
similarly (since d = X(b, ¢, a) = X(c, a, b)), X(b, ¢, d), X(a,c,d) € Fa+ Fb + Fc, so
that W = Fa+ Fb+ Fc+ Fd is closed under X. Let us prove now that for any
0£vel:

X, V,V)={xeV:{(v|x) =0} (4.5)

Because of (3.12), X(v, V, V) C{xe V:{(x|v) =0} Now,takea=vandletb e V
linearly independent with a and such that (|) is nondegenerate on W), = Fa + Fb.
By(4.4)ce X(a,b,V)C X(v, V, V)foranyce Wi ={xe V:(x|a)=0= (x| b)}.
Take any two such b’s with different W}’s, then the sum of the Whl’s s {xeV:
(x| v) =0}, so (4.5) follows.

Thus, assume that X is also a 3-fold vector cross product of type I relative to
another nondegenerate symmetric bilinear form (|) on V. Then for any 0 £ u,v € V,
if (u|v)=0, then ue X(v, V, V) by (4.5), so by (3.12), also (u | v) = 0. The only
possibility then is that (|) = «(|) for some nonzero scalar « € F. But then (3.12)
implies that o’ = o, so @ = £1, and (3.13) that a = 1. O

Note that if X is a 3-fold vector cross product of type I on an eight dimensional
vector space V relative to the nondegenerate symmetric bilinear form (|), then X
is a 3-fold vector cross product of type II relative to —(|). Also note that (|) does
not determine X, since not every orthogonal transformation relative to (|) is an
automorphism of X ([4]).

COROLLARY 4.5. Let X; be a 3-fold vector cross product on an eight dimensional vector
space Vi over a field F of characteristic # 2 with associated nondegenerate symmetric
bilinear form (|); (i = 1,2). Then if ¢ : (V1, X1) = (V2, X2) is an isomorphism, then it
is also an isometry ¢ - (V1, {|)1) = (V2, {|)2).

Now, the proof of item (vi") in Theorem 4.3 follows immediately from the Corollary
above and this finishes its proof.
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