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REAL HYPERSURFACES WITH rj-PARALLEL SHAPE
OPERATOR IN COMPLEX TWO-PLANE GRASSMANNIANS

YOUNG SUK CHOI AND YOUNG JIN SUH

In this paper we give a characterisation of 55-invariant real hypersurfaces of
type A; that is, a tube over a totally geodesic G2(Cm+1) in complex two-plane
Grassmannians G2(Cm+2) or a ruled real hypersurface foliated by complex hy-
persurfaces which includes a maximal totally geodesic submanifold G2(Cm+1) in

+ 2) in terms of 77-parallel shape operator.

0. INTRODUCTION

In the geometry of real hypersurfaces in non-flat complex space forms Mm(c) or in
quaternionic space forms there have been many characterisations of model hypersurfaces
of type A\,A2,B,C, D and E in complex projective space CPm, of type AQ,AI,A2

and B in complex hyperbolic space CHm or Ai,A2, B in quaternionic projective space
MPm, which are completely classified by Cecil and Ryan [4], Kimura [6], Berndt [l],
Martinez and Perez [7] respectively. Among them there are only a few characterisations
of homogeneous real hypersurfaces of type B in complex projective space C P m . For
example, the condition that the shape operator A and the structure tensor <f> satisfy
Acj> + 4>A = k<j>, k = const, is a model characterisation of this kind of type B, which is
a tube over a real projective space RP m in CP m (see Yano and Kon [14]).

On the other hand, real hypersurfaces of type Ai or A2 in CPm and those of
type AQ, AI or A2 in HPm mentioned above respectively are said to be of type A.
Okumura [9] for c > 0, Montiel and Romero [8] for c < 0 has given respectively a
characterisation of real hypersurfaces of type A with the condition that the structure
tensor <j> and the shape operator A commute with each other.

Now let us denote by G2(Cm+2) the set of all two-dimensional linear subspaces
in Cm+2 . This Riemannian symmetric space G2 (Cm+2) has a remarkable geometrical
structure. It is the unique compact irreducible Riemannian manifold being equipped
with both a Kahler structure J and a quaternionic Kahler structure 3 not containing
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J. In other words, G2 (Cm + 2) is the unique compact, irreducible, Kahler, quaternionic
Kahler manifold which is not a hyperKahler manifold. So, in G2(Cm+2) we have the
two natural geometrical conditions for real hypersurfaces M that [£] = Span {£} or
I)1- = Span {£1,62! £3} are invariant under the shape operator A of M. The almost
contact structure vector field £ mentioned above is defined by £ = —JN, where N

denotes a local unit normal vector field of M in G2(Cm+2) and the almost contact
3-structure vector fields {£1,62,£3} are defined by £„ = —JUN, v = 1,2,3, where Ju

denotes a canonical local basis of a quaternionic Kahler structure 3.

The first result in this direction is the classification of real hypersurfaces in
G2(Cm+2) satisfying both conditions. Namely, Berndt and the second author [2] have
proved the following

THEOREM A. Let M be a connected real hypersurface in G2(Cm + 2), m > 3.
Then both [£] and 'S± are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in

G2(Cm+2),or
(B) m is even, say m = 2n, and M is an open part of a tube around a totally

geodesic HP" in G 2 (C m + 2 ) .

In Theorem A the vector £ contained in the one-dimensional distribution [£] is said
to be a Hop}Vector when it becomes a principal vector for the shape operator A of M in
G2(C m + 2 ) . Moreover in such a situation M is said to be a Hopf hypersurface. Besides
of this, a real hypersurface M in G2 (Cm+2) also admits the 3-dimensional distribution
'D± , which is spanned by almost contact 3-structure vector fields {£1, 2̂) £3} i such that
TXM = D © S)-1.

On the other hand, in [3] Berndt and the second author consider the geometric
condition that the shape operator A of real hypersurfaces M in G2(Cm+2) commutes
with the structure tensor, that is, A<j> — <j>A, which is equivalent to C$g — 0, where
C^ denotes the Lie derivative along the direction of the Reeb vector field £ and g a
Riemannian metric on M induced from the metric of G2(Cm + 2). This condition also
has the geometric meaning that the flow of the Reeb vector field £ is isometric. From
such a view point, they proved that a real hypersurface in G2 (Cm+2) with isometric
flow is congruent to a tube over a totally geodesic G2(Cm+1) in G2(Cm + 2). Moreover,
the second author [12] has given a characterisation of such a tube by the Lie derivative
of the second fundamental tensor A of M in G2 (Cm+2) along the direction of the Reeb
vector field £.

Now let us consider a distribution TQ defined in such a way that Tb(x) = {X

6 TXM I XlQ for any point x of M in G2(Cm + 2). Then it can be easily proved

in section 3 that real hypersurfaces of type A and ruled real hypersurfaces satisfy the
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following formula on the distribution To

(*) g({A4>-4>A)X,Y)=O,

for any X, V in To.

If the shape operator A satisfies

(**) g((VxA)Y,Z)=0

for any X, Y and Z in To, we say that the shape operator A of M in Gi(Cm+2) is

said to be ^-parallel. Moreover, the formula (**) has a geometric meaning that every

geodesic 7 on M, considered as a curve in G2(Cm + 2) , orthogonal to the Reeb vector

field £, has constant first curvature along 7.

On the other hand, we say that a real hypersurface M in G2 (Cm+2) is 3-invariant

if g(A1),S)x) = 0, that is, the distribution 2) is invariant by the shape operator A of

M in G2(Cm + 2) .

Now in this paper we want to give a complete classification of real hypersurfaces

M in G2(Cm+2) satisfying both conditions (*) and (**) as follows:

THEOREM. Let M be a real hypersurface in Gi (Cm+2) satisfying the condition

(*) and (**). If the distribution D is invariant by the shape operator, then M is locally

congruent to a tube over a totally geodesic G2 (Cm + 1) or to a ruled real hypersurface fo-

liated by complex hypersurfaces which includes a maximal totally geodesic submanifold

G2{Cm+1) in G 2 (C m + 2 ) .

1. RlEMANNIAN GEOMETRY OF G 2 ( C m + 2 )

In this section we summarise basic material about G2(Cm + 2), for details we refer
to [2] and [3]. By G2(Cm+2) we denote the set of all complex two-dimensional linear
subspaces in <Cm+2. The special unitary, group G = SU(m + 2) acts transitively on
G2(Cm+2) with stabiliser isomorphic to K = 5(17(2) x U(m)) C G. Then G2(Cm+2)
can be identified with the homogeneous space G/K, which we equip with the unique
analytic structure for which the natural action of G on G2 (Cm+2) becomes analytic.
Denote by g and I the Lie algebra of G and K, respectively, and by m the orthogonal
complement of 6 in g with respect to the Cartan-Killing form B of g. Then g = I © m
is an Ad(K) -invariant reductive decomposition of g. We put o = eK and identify
7oG2(Cm+2) with m in the usual manner. Since B is negative definite on g, — B re-
stricted to m x m yields a positive definite inner product on m. By >ld(A")-invariance
of B this inner product can be extended to a G-invariant Riemannian metric g on
G2(Cm+2) . In this way G2(Cm + 2) becomes a Riemannian homogeneous space, even
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space. For computational reasons we normalise g such that the maximal sectional
curvature of (G2(Cm+2),5) is eight. Since G2(C3) is isometric to the three-dimensional
complex projective space CP3 with constant holomorphic sectional curvature eight we
shall assume m > 2 from now on. Note that the isomorphism Spin(6) ~ SU(4) yields
an isometry between G2(C4) and the real Grassmann manifold G^K6) of oriented
two-dimensional linear subspaces of K6.

The Lie algebra 6 has the direct sum decomposition t = su(m) ©su(2) ©9t, where
9\ is the centre of E. Viewing I as the holonomy algebra of G2(Cm+2), the centre 5H
induces a Kahler structure J and the su(2) -part a quaternionic Kahler structure 3 on
G2(C m + 2 ) . If J\ is any almost Hermitian structure in 3, then JJ\ = J\J, and JJ\ is
a symmetric endomorphism with (JJi) = I and tr{JJ{) — 0. This fact will be used
frequently throughout this paper.

A canonical local basis J\, J21J3 of 3 consists of three local almost Hermitian
structures Jv in 3 such that JvJv+\ = Jv+2 = -JV+\JV, where the index is taken
modulo three. Since 3 is parallel with respect to the Riemannian connection V of
(G2(Cm+2),g), there exist for any canonical local basis J\,J2,Jz of 3 three local
one-forms qi,Q2,Q3 such that

(1.1) ^xJv = qv+2(X)Ju+i - qL,+i(X)Jv+2

for all vector fields X on G2(Cm + 2) .

2. SOME FUNDAMENTAL FORMULAS FOR REAL HYPERSURFACES IN G2(Cm+2)

In this section we derive some basic formulae from the Codazzi equation for a real
hypersurface in G2(Cm+2) (see [3, 10, 11, 12, 13]).

Let M be a real hypersurface in G2(Cm+2); that is, a hypersurface in G2(Cm+2)
with real codimension one. The induced Riemannian metric on M will also be denoted
by g, and V denotes the Riemannian connection of (M,g). Let N be a local unit
normal field of M and A the shape operator of M with respect to N. The Kahler
structure J of G2 (Cm + 2) induces on M an almost contact metric structure (<f>, £, 7/, g).
Furthermore, let Ji,J2,J3 be a canonical local basis of 3- Then each Jv induces an
almost contact metric 3-structure {^>v,£,u,^u,g) on M. Using the above expression for
S , the Codazzi equation becomes

- (VYA)X - r){X)4>Y -
3
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The following identities can be proved in a straightforward method and will be
used frequently in subsequent calculations:

Now let us put

JX = 4>X + v{X)N, JVX = 4>VX + r)v{X)N

for any tangent vector X of a real hypersurface M in G2(C m + 2 ) , where N denotes
a normal vector of M in G 2 ( C m + 2 ) . Then from this and the formulas (1.1) and (2.1)
we have that

(2.2) {V

(2.3) V x G = qv+2(X)tv+i - qv+i{X)^+2 + <t>vAX,

{Vx4>v)Y = -qv+1(X)4>v+7Y + qv+2{X)<}>v+1Y

(2.4) +r,v(Y)AX-g{AX,Y)Zv.

Summing up these formulas, we find the following

(2.5)

Moreover, from JJV = JVJ, v = \, 2 ,3 , it follows that

(2.6) <f><t>vX = <
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3. PROOF OF MAIN THEOREM

Before giving the proof of our Main Theorem let us investigate the question "What
kind of hypersurfaces including hypersurfaces mentioned in Theorem A satisfy the for-
mulas (*) and (**)." In other words, we would like to know whether there exist any real
hypersurfaces in G2(Cm+2) satisfying both conditions (*) and (**).

First in this section we shall show that only a tube over a totally geodesic

G2(Cm + 1) in G2(Cm+2) satisfies the formula'(*). Next, it can be easily checked that

such hypersurfaces also satisfy the formula (**) from the expression of the derivative of

the shape operator A of this type (see Berndt and the second author [3]). That is, a

tube over a totally geodesic G2(Cm+1) in G2(Cm+2) has ^-parallel shape operator.

Now in order to solve such a problem let us recall a Proposition given by Berndt

and the second author [2] as follows:

For a tube of type A in Theorem A we have the following.

PROPOSITION A. Let M be a connected realhypersurface of G2(Cm + 2) . Sup-
pose that AT) C T>, At, — a£, and £ is tangent to S)-1. Let Ji e 3 be the al-
most Hermitian structure such that JN = J\N. Then M has three (if r = n/2) or
four (otherwise) distinct constant principal curvatures

a = \/8co*(\/8r) , /3 = %/2co*(\/2r) , A = -V2ta

with some r 6 (0, TT/4) . The corresponding multiplicities are

m(a) = 1 , m(0) = 2, m(X) = 2m-2-

and the corresponding eigenspaces are

TQ = m, - R JN,

T0 = C^ = CXN,

TX = {X\X±E£,JX = J1X},

TM = {X | X±BZ, JX = -JiX}.

Then for such a tube over a totally geodesic G2(Cm+1) in G2(Cm+2) we may put

? = f i , ^ . 0 2 ? , ^ e S ) J - . So ( e r o and £2,£3 e i>.

In paper [3] we have proved that the shape operator A of a tube over a totally
geodesic G2(Cm+1) in G2(Cm+2) commutes with the structure tensor <j>, that is, the
Reeb flow on M is isometric. Then naturally the tube satisfies the formula (*).

Now let us check whether such kind of hypersurfaces in G2(Cm+2) have 77-parallel
shape operator or not. Then by the expression for the shape operator A given in [3]
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we know the following for any X,Y,Z& To

3

g({VxA)Y, Z) = -Y\ MY)g(<ftuX, Z) - Vu(4>Y)g{4xltvX, Z)

3

~ / y{ffyfryX,Y)T)U(Z) + g\(f>v(f>X,Y)g(<f>i/£,Z)\.
v=l

From this, together with the formula (2.1), we know g((VxA)Y, Z) — 0 for any X, Y
and Z € 2). Moreover, it can be easily proved that

)&) = 0, S((V?2>1)^2,^3) = 0, ff((Vxi)(2,?3) = 0,

and g[(V^2A)^3,X) = 0 for any XeD. This means that the shape operator A of a
tube over G2(Cm+1) is T? -parallel.

We now turn to the main theorem. Let us suppose that a real hypersurface M in
G2(Cm+2) satisfies the condition (*)

(3.1) g((A(l)-<f>A)X,Y)=0

for any X,Y in To = {X € TXM | X±£}.
From this, differentiating and using the formulas in section 2, we have for any X, Y

and Z in To

(3.2) g((VxA)Y, <f>Z) +g((VxA)Z,

= r,(AY)g(X, AZ) + V(AZ)g(Y, AX) + g(X, A<t>Y)g{Z, V) + g(X, A<f>Z)g(Y, V).

On the other hand, by using the equation of Codazzi we have for any X, Y and Z

in To

g((VxA)Y,<t>Z) - g((VYA)X,<t>Z)

- r}v{Y)g{4>vX, <f>Z) - 2g(</>IJX, Y)r,v{<j>Z)}

, Z) - Vv{<j>Y)g^vX, Z)}.

Then from this, taking the cyclic sum of (3.1), subtracting the third one from the sum
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of the first and the second formulas and using (3.2), we have

2g((VxA)Y, 4>Z) - ^2jvAX)g(4>vY,<f>Z) - r1v{Y)g{4>vX, <f>Z)

-2g(<t>uX,Y)r1l,(<t>Z)}

>vY, Z) - vv(4>Y)g(4>vX, Z)}

, <f>Y) - Vv(Z)g(<f>vX, 4>Y)

-2g{(t>vX,Z)r]v{4>Y)}

J 2 ^ Z , Y) - r)v(ct>Z)g(4>vX, Y)}

, X) - r)v(4,Z)g(4>vY, X)}

= 2r,(AZ)g(AX,Y)

+ 2g(X, V)g(Y, A<j>Z) + 2g(Y, V)g(X, A<f>Z),

where we have used the condition (3.1) and the formula g{<jxj)vX, Z) = g((t>v(j)X, Z) for
any X, Z in To. Then by direct calculations we assert the following

(3.4) g((VxA)Y,<t>Z)

= n(AZ)g(AX, Y) + g(X, V)g(Y, A<f>Z) + g(Y, V)g(X, A<t>Z)

for any X, Y and Z in To. Replacing Z by <j>Z in To, we have

g((VxA)Y, Z) = ex,Y,zg(AX, Y)g(Z, V) - Y,Jlu{Y)g{<i>vX, Z)

(3.5) - YsjitvX, Y)Vv(Z) - 2j2vVA<J>X)g(<t>uY, <f>Z)

where &x,Y,z denotes the cyclic sum of the formula with respect to X, Y and Z.
Now let us assume that a real hypersurface M in G2(Cm+2) has 77-parallel second

fundamental tensor. Then (3.5) gives that
(3.6)

, Y)g{Z, V) = ^Vl/(Y)g(4>,X, Z) + ^ ( ^ X , Y)Vu(Z)

foY, <t>z) + Y^j)v{4>z)g^vx, 4>Y)

r1l,{4>Y).

Now in order to give our result we are going to prove the following:

https://doi.org/10.1017/S0004972700038934 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700038934


[9] //-parallel real hypersurfaces 9

PROPOSITION 3 . 1 . Let M be a real hypersurface in G2(Cm + 2) satisfying

the conditions (*) and (**). If the distribution 2) is A -invariant, then £ G 2) or £ G 2 ) x .

PROOF: NOW let us suppose that £ = Xx + X2 for some X\ G 2) and A"2 € O x •
Then A£ = AXV + AX2 • This implies

(3.7) <j>A£ = <j>AXi + 4>AX2.

Now let us construct a subbundle 3 = {X G To n 2) | <j>X G 2 ) } . Then the

subbundle 3 is invariant by the structure tensor <j>. T h a t is, for any X e 5 we know

<fiX also belongs to 5- By using this fact in (3.6), we have the following

9{AX, Y)g{Z, V) + g(AY, Z)g(X, V) + g(AZ, X)g{Y, V) = 0.

From this, substituting (3.7) and using the fact that the distribution 3) is ..4-invariant,
we have

g(AX, Y)g{4>Z, AX{) + g(AY, Z)g{<j>X, AXJ + g(AZ, X)g(4>Y, AXJ = 0

for any X, Y and Z in 3- Then by putting Y = Z = X in 5 we have

g(AX,X)g{4>X,AX1) = 0.

From this and linearisation we are able to assert that

g{AX, Y) = 0 or gtfX, AXi) = 0

for any X,Y € $. These two cases are similar. So let us consider the second case as
follows:

By virtue of the A-invariance of the distribution 2), we know that

AXi G £>•

On the other hand, since <j>X G 5, we are able to put AXi G D in such a way that

AXl = a£,

for some Yo G 2) orthogonal to the subbundle 5. From this formula, the yl-invariance

of the distribution 2) gives that all Aj = 0, i = 1,2,3. Then we know that the formula

(3.8) a£ + £ .Mi&f + Yo = aXt + aX2 + ^mfcXi + ^.Mi</>iX2 + Yo
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belongs to the distribution D. From this, taking an inner product with X2 6 35X, then
we have

0 = ag(X2, X2) = a.

Then we may put

^ ^2 Yo,
where the left side, and the first and the third terms in the right side belong to the
distribution 35.

On the other hand, we know that

Then it follows that

ii>iX2 € D n £>x = 0.

Moreover, from this expression it follows that the vectors 4>iX2, 4>2X2 and 4>%X2 cannot
be linearly independent vectors, because X2 € 3) x . So the coefficients fn, i — 1,2,3
cannot be simultaneously vanishing. From this, if we put X2 — £2 G S)-1, we know that

= 0.

This is in contradiction to dim!)-1- = 3. Accordingly, we assert that £ € J) or

D
Now let us suppose that the distribution 2) is invariant by the shape operator A

of M in G2(Cm + 2). Then we consider the following two cases:

CASE I. £ € 3D and f is not principal.

Then by the A-invariancy of the distribution 2) we know

So the vector U € 33. Then it follows that the vector V = 4>A£ = @<j>U is orthogonal to

4>€i, 4>& and <#£3 for a non-vanishing function 0 ^ 0 on il. The formula (3.6), together

with V = Z in (3.6), gives that

g(AX, Y)g(V, V) + g(AY, V)g(X, V) + g(AZ, X)g(Y, V)
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for any X, Y e 3D orthogonal to <t>£\,4>t,2 and ^ 3 . From this, putting X = Y = V

and using V = <pA£ orthogonal to <£f 1, ̂ 2 and $£3, we have

and

2g(AX, V)g(V, V) + g(AV, V)g(X, V) = 0

g(AV,V)g(V,V) = 0.

Since the structure vector £ is not principal, we have g{AX, V) = 0, and finally

g(AX,Y) = 0

for any X,Y el) orthogonal to <££i, <j>£,2 and $£3.

From the assumption we know that

g({A<l>-<i>A)X,ti)=0

for any X €T0 and & € 2)-1-. Putting X = <j>£j £ To, we have

Then we are able to consider the following subcases.

SUBCASE I .I . U is orthogonal to 4>i£,4>2£ and

Then if we take an orthonormal basis {£,i,£,i,£,3,£,,U,<j)U,<l)\£,,4>2£,4>zt,} and any
vectors X in TXM, x G M orthogonal to this basis, the shape operator of a real
hypersurface M in G2(Cm + 2) is given by

A =

0
B

0

0.
where the matrices B and C are given in such a way that

B =
ax 0 0

0 a2 0
. 0 0 a 3 .

and

C =
a

/3
.0

7
0

0"
0

0.
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Now for any X,Y,Ze To the formula (3.6) gives that

g(AX, Y)g(Z, V) + g(AY, Z)g(X, V) + g(AZ, X)g(Y, V)

(3.9)

vX, 4>Y)

Now from this, we are going to prove that at = 0, i — 1,2,3. That is, the matrix B
should be zero.

In fact, by substituting X = £i, Y = ft and Z — V we have

Next we are able to show that the function 7 = g (AU, U) = 0 on the open set il in M.
In fact, by putting X = Y = U and Z = V in (3.6) we have

g(AU,U)g(V,V)=jp = O.

Otherwise by putting X = U and Y € 55 orthogonal to £, U, <j)U, <
Z = V in (3.6) we know that

g(AU,Y)=0

and

for any Y € 35 orthogonal to {£,£/, 4>U,<j>i£,

= g(U, A4>U) = g(U,

- Moreover, we know that

= g{<f>AU, U),

where we have used the formula (*) in the third equality. Prom this we know
g(AU,<f>U) = 0, which gives the matrix C. Summing up this situation, the shape
operator A is given by

A =

a 0

0
0

for the basis {£, t/,<££/, £1,62,6, <£i£,02£,<M} of Af in G2(Cm + 2) . Then on a distribu-
tion T0(x) = {X € TXM I X±£} the shape operator A of M in G2(Cm+2) satisfying
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the formula (*) and (**) is given by

AU = # ,

AX = 0

for any X orthogonal to £ and U. Prom such an expression for the shape operator we
know that the distribution To(x) is integrable.

On the other hand, Chen and Nagano [5] showed that the maximal totally geodesic
submanifolds of G2(Cm+2) are

G2(Cm+1), CPm, CPk x CPm~k , G2(R
m+2)

and HP" (if m = 2n). Among them the totally geodesic submanifold in G2(Cm+2)
with maximal dimension 4(m - 1) is G2(Cm+1). Then the integral submanifold is a
complex hypersurface with the distribution To given by

T0(x) = Tx (G2 ®U®<t>U,

where

f,U,dimG 2 (C m + 1 ) = 4(m - 1) = d imG 2 (C m ) -

and TV denotes the unit normal to M in G2 ( C m + 2 ) .

SUBCASE 1.2. U = </>£i is orthogonal to <fo£ and <£3£.

In this case we may put

By using a similar method to that given in Subcase 1.1 we are going to prove that

g(AX,Y) = 0

for any X,YL£,U — <£i£. Then for an orthonomal basis {£i,£2)£3,£,0i£,02£,
and any vectors X in TXM, x & M orthogonal to this basis, the shape operator A of
a real hypersurface M in G2 (C m + 2 ) is given by

E
0

A =

0 0
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where the matrices D and E are given in such a way that

D =

and

E =

"a

0
.0

0
. 0

p
d
0
0

0
a 2

0

0

0

a*
0

0 "
0

" 3 .

o -
0
0

C*3

Now if we put X - £i, Y = f2 and Z = V in (3.6), we have

and similarly by putting X = £2, Y = £2 (respectively X = £2, Y = £2) and Z — V in
(3.6) we know the following respectively

9(M2^2)9(V,V) = = 0,

which means c*2 = a3 = 0 in this Subcase. In such a case, the integral submanifold is
foliated by a complex hypersurface with the distribution

CASE II. ^ e D and £ is principal.
Then in this case by Theorem A due to Berndt and Suh [2] we assert that M is

locally congruent to a tube over totally geodesic G2 (<Cm+1) in G2 (Cm+2) or a tube over
a totally real totally geodesic HP", m = 2n in G2(Cm + 2) . If M is locally congruent
to a tube over G2(Cm+1), then its shape operator A commutes with the structure
tensor <j> (see Berndt and the second author [3]). From such a view point we know that
this type of hypersurface satisfies all the assumptions in our main theorem.

But when M is congruent to a tube over a totally real totally geodesic HIP",
m = 2n in G2(Cm + 2), the shape operator A satisfies the following:

For any X € Tcot r we know that AcpX = tan r<f>X, where Tcot r denotes the eigen
space of M with eigenvalue cotr. Then if this type satisfies the assumption (*), we
have

g((A<f> - <j>A)X, Y) = (tanr - cotr)g(<j>X, Y) = 0,

which gives a contradiction. So this type of real hypersurface cannot occur.
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CASE III. £ € 351- and £ is not principal.

Since we have assumed that £ is not principal, we may put

A£ = a£ + /3C7.

From this, together with the A-invariance of the distributions 35 and 35X, we have

U e 25X. Moreover, 0A£ = / W 6 35X and { ? i , f t , & , ^ . 0 2 4 , ^ } € S5X.

Now if we put V = Z = <f>A£ into (3.6) and use the above properties, we have for

any X, Y € 35

g(AX, Y)g(V, V) = J ^ r ^ M ^ X , Y)

Then by taking skew-symmetric part we have

7n(v)<K0iX, Y) + m(y)g{4>2x, Y) + m{v)g{<t>zx, Y) = o,

where we have used the formula (2.6) and the symmetric property

(3.10) =-g(4>v<l>X,Y)

= g(4>X,4>vY).

Then by putting Y = fcX € 15, i — 1,2,3, respectively, we have ^ ( V ) - 0, i = 1,2,3.
This means that ^ ( V ) = /3g(£i,(pU) = 0. Since the function ,9 ^ 0 on an open
set il = {p e M | /3(p) ^ 0 } , the vector <f>U e 35. But we akeady know that
4>A(; = /3U € 35-1. This implies 0C/ = 0, that is, the vector U should be zero, which
gives a contradiction. Accordingly, we conclude that this case cannot occur.

CASE IV. £ € D1- and £ is principal.

Then in such a case we may put £ = £i € 35X. Moreover, by virtue of Theorem

A due to Berndt and the present author [3] a real hypersurface M in G2(Cm + 2) is

congruent to a tube over a totally geodesic G2(Cm + 1) in G2(C m + 2 ) . Moreover this

type of hypersurface satisfies both formulas (*) and (**).

Then summing up all of Cases I, II, III and IV mentioned above, we give a complete

proof of our main theorem in the introduction. D
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