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Abstract
Although the problem of locked-in deep stall is well documented over many years, there currently exists no con-
sistent procedure that can guarantee recovery. Past studies have suggested that it might be possible to rock the
aircraft in pitch to destabilise the statically stable deep stall trim point, thereby gaining enough momentum to push
the nose down. However, the methods used in these studies are either of preliminary or empirical nature and can-
not guarantee recovery. In this paper, we use bifurcation analysis to derive a recovery manoeuvre, specifically by
assessing the aircraft’s nonlinear frequency response under an elevator forcing. The ensuing nonlinear Bode plot
detects unstable (divergent) solutions near resonance that contribute to a successful deep stall recovery. Moreover,
the nonlinear resonant frequency is slightly lower than the result obtained using linear analysis, and time simula-
tion shows that relying on the linear result does not lead to a successful recovery. It is also found that at the high
angles of attack associated with deep stall, the frequency separation between the short period and phugoid mode is
significantly reduced, leading to only one visible peak in the frequency response. This feature is also reflected in
the time-domain step response.

Nomenclature
A forcing amplitude (deg)
Cl, Cm, Cn total body-axes rolling, pitching, and yawing moment coefficients
Cx, Cy, Cz total body-axes force coefficients
p, q, r body-axis roll, pitch, and yaw rates (deg/s)
t time (s)
V velocity (m/s)
Y general y-coordinate
α angle-of-attack (deg)
β sideslip angle (deg)
δe, δa elevator and aileron deflections (deg)
θ pitch angle (deg)
ω forcing frequency (rad/s)
φ bank angle (deg)

1.0 Introduction
Deep stall (also known as super stall) is a dangerous phenomenon in which the aircraft is locked into a
high angle-of-attack attitude that results in a steep descending trajectory, despite a full nose-down input
from the pilot. It is known that the following features can make an aircraft more susceptible to a deep
stall:
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Figure 1. A T-tail aircraft in (a) normal flight (b) and deep stall.

Figure 2. Typical pitching moment coefficient plot for the T-tail configuration. Negative slope indicates
positive static stability in pitch.

− A T-tail configuration, for which the airflow at the elevator and tailplane is blocked by the
wing/fuselage wake at high angles of attack, rendering them ineffective (see Fig. 1).

− An aft centre of gravity, which reduces the elevator/tailplane moment arm. This feature is usually
found in statically unstable fighter aircraft for improved manoeuvrability, controllability in the
presence of shock waves and reduced trim drag. Consideration of centre of gravity movement is
also relevant in terms of ensuring safe flight of an airliner over the full range of possible loading
conditions.

A deep stall can be predicted by examining the pitching moment coefficient plot such as the one shown
in Fig. 2, specifically by locating the stable trim points (Cm = 0) with negative slopes at high angles of
attack. This information can be used to design safety devices that prevent the aircraft from excursing into
the deep stall region, most commonly stick shaker and stick pusher [1] and digital angle-of-attack lim-
iter in full-authority fly-by-wire systems [2, 3]. Nevertheless, research into deep stall recovery has not
attracted much attention. Some past studies have highlighted a ‘dynamic recovery’ technique, which
involves rocking the aircraft in pitch at or near a natural rigid-body frequency (short-period). This
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manoeuvre can potentially induce a large-amplitude oscillation, allowing the pilot to push the nose
down past the critical angle-of-attack (see [4] at the 06:20 mark for a recorded example on a real flight).
Past studies on this technique, however, either involve simplified (second-order) flight dynamics models
[5–9] or empirical methods that require high pilot workload in order to observe and match the stick-
pumping frequency with the aircraft’s natural frequency [3, 10]. The high workload can be attributed
to the fact that upon entering a deep stall, there is a limited window to observe the aircraft’s transient
motion and figure out an input frequency before the motion damps out [3]. Furthermore, when using a
mathematical model to determine a suitable pilot response, the nonlinearities in the aerodynamic data
and the equations of motion will also affect the frequency characteristics: Depending on how the aircraft
entered the deep stall, the ensuing oscillation may have different and varying frequencies, therefore mak-
ing it more challenging to observe the motion and provide an appropriate forcing term [11]. Relying on
visual cues to devise an escape manoeuvre can therefore be hit or miss, especially when the psychologi-
cal and physical stresses on the pilot are considered. Therefore, it is desirable to know if a particular stick
pumping frequency will guarantee recovery – regardless of how the aircraft entered and responded to
the deep stall (i.e. an open-loop-like approach that requires no active monitoring by the pilot or feedback
signal to the flight control system).

The use of bifurcation analysis and continuation methods has proven to be a powerful tool for non-
linear flight dynamics analysis in the past four decades [12–15]. Recent developments in the field saw
the use of a harmonic forcing function to generate a ‘nonlinear Bode plot’, which facilitates assess-
ments of the non-stationary nonlinear elements like sub/super-harmonic resonances [16] and actuator
rate limiting [17] while also providing information on resonance and stability – none of which is avail-
able in linear-based frequency analysis. In an earlier study on the frequency-domain dynamics of an
unstable fighter aircraft model at high angles of attack, we discovered that a simple harmonic elevator
input can lead to nonlinear resonances with diverging amplitudes [11]. This phenomenon destabilises
the statically stable deep stall trim point, which allows the pilot to do the pitch rocking manoeuvre in an
open-loop manner with a higher chance of recovery. The deep stall observed in [11] is caused by the aft
centre-of-gravity position – commonly seen in high performance fighter jets – so the feasibility of the
pitch rocking method on a T-tail aircraft has not been discussed.

Accordingly, this paper investigates the deep stall dynamics of an airliner model with a T-tail using
both classical (linear-based) methods and harmonically forced bifurcation analysis. The flying qualities
in the deep stall regime are discussed in depth, followed by an evaluation of the aircraft’s responses
in the frequency domain near resonance using nonlinear analysis. Our discussion focuses on how these
nonlinear characteristics can be exploited during the pitch rocking manoeuvre and ensure recovery from
a locked-in deep stall. Furthermore, we show that for the GTT, this method of escaping a deep stall is
immune to aerodynamic symmetries while also being safer than relying on lateral-directional perturba-
tion, which can potentially send the aircraft into dangerous upsets and loss-of-control situations [18, 19].
The discussion on the flying qualities at such high angles of attack is also relevant to researchers working
on small unmanned aerial vehicles (UAVs) because there are various studies on deliberately bringing
the UAV into a deep stall to minimise landing distance (i.e. a perched landing) [20–22]. Most of these
small vehicles have enough pitch control authority to exit the deep stall flight regime. Nevertheless, it is
known that a better understanding of the flying dynamics characteristics at such a high angle-of-attack
is required to further refine the perched landing to operational level.

The aircraft model and the methods used in this study are described in sections 2 and 3. Section 4
presents the main result, followed by concluding remarks in section 5. All bifurcation analyses were
done in the MATLAB/Simulink environment using the Dynamical Systems Toolbox [23], which is a
MATLAB/Simulink implementation of the numerical continuation software AUTO [24].

2.0 Aircraft model
The NASA’s Generic T-Tail Transport model (GTT) is used for this study – see Fig. 3. As the name
suggests, this model represents a generic mid-size regional jet airliner with a T-tail configuration. Its
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Figure 3. The NASA GTT.

aerodynamic data was collected from a series of low-speed sub-scale wind tunnel and water tunnel
tests, and some preliminary studies have been reported in recent conferences [25–27]. Computational
fluid dynamics simulations were also done by NASA to estimate the influence of Reynolds number on
the measured aerodynamic data, allowing corrections to the pitching moment and pitch damping data
to be implemented to represent the equivalent full-scale aircraft. These Reynolds-corrected data was
used here to construct a fourth-order (longitudinal) model and an eighth-order (6 degrees of freedom)
model without flaps and spoilers, which are deemed adequate for our purpose. In the fourth-order imple-
mentation, the model contains aerodynamics tables that are 1D and 2D functions of angle-of-attack and
α/elevator deflections. Pitch control is achieved by moving the elevator and/or the all-moving horizontal
tailplane. The latter is fixed at full nose-up (–10 deg) in this study to facilitate the most serious locked-in
deep stall conditions, which can be encountered during a runaway trim. Aerodynamic data is valid for
angles of attack between –8o and 60o.

Using standard flight dynamics notations and sign conventions, the fourth-order longitudinal equa-
tions of motions are

α̇ = 1

mV

[
1

2
ρV2S(Cx cos α − Cx sin α) − T sin α + mg cos(θ − α)

]
+ q (1)

V̇ = 1

m

[
1

2
ρV2S(Cz sin α + Cx cos α) + T cos α − mg sin(θ − α)

]
(2)

q̇ = 1

2
ρV2Sc

Cm

Iy

− The

Iy

(3)

θ̇ = q (4)

in which the coefficients of aerodynamic force along the body x and z axes Cx and Cz and the moment
coefficient in pitch Cm are represented as follows:

Ci = Ci0(α) + Ci1(α, δe) + Ci2(α)
cq

2V
(5)

where i = [x, z, m]. The first, second and third coefficients in (5) reflect the contribution of the airframe,
elevator deflection (δe), and aerodynamic damping, respectively. These coefficients are plotted in Fig. 4,
and the remaining terms in (1-4) are constants listed in Table 1. We assume zero thrust for our analysis
(T = 0 N) due to the lack of an engine model for the GTT. This is a reasonable assumption because at
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Figure 4. Aerodynamic coefficients at full nose-up tailplane.

the high angles of attack involved in a deep stall, any civil engines will be susceptible to significant
performance degradation, so the zero thrust assumption corresponds to the worst-case scenario. This
also ensures that no nose-down moment is generated by the high-mounted engines on the GTT, which
can affect the outcomes concerning deep stall recovery.

It has been reported in [25] that a locked-in deep stall is possible when the centre of gravity is at
40% mean aerodynamic chord (MAC) and the horizontal tailplane is in full nose-down position (–10o).
This is confirmed in Fig. 5, which shows a map of all the static trim points as functions of the elevator
deflection (δe) projected onto three longitudinal states α (angle-of-attack), V (velocity), and θ (pitch
angle). Stability of the trim solutions, obtained from local linearisation of the equations of motion, are
indicated by line type. The diagram for pitch rate q is not shown in Fig. 5 since all equilibrium solutions
have zero pitch rate. It can be seen that the stable deep stall branch at high angles of attack (above 30o)
extends all the way to δe = 20o – the maximum nose-down elevator position – which is indicative of a
locked-in deep stall that agrees with sub-scale experimental results [25].

The existence of locked-in deep stall can be further explained by examining the values of pitching
moment coefficient Cm against the angle-of-attack at different elevator positions (Fig. 6). For a deep stall
around α = 45o (elevator close to neutral), there is nose-down elevator power available; but as the pilot
or autopilot pushes the stick forward, the locked-in deep stall will move to a lower angle-of-attack (37o

at δe = +20o). In this state, no further nose-down moment can be produced.

3.0 Nonlinear frequency response
Unlike the classical linear-based method, bifurcation analysis and numerical continuation can be used to
generate the Bode plot of a nonlinear-harmonically forced system. This approach is implemented on the
full nonlinear equations of motion (1-5), thereby allowing us to assess the dynamics without neglecting
the contribution of the nonlinear terms as done in classical methods. The steps to implement bifurcation
analysis on a nonlinear harmonically forced system are now presented. In general, the equations of
motion must be written as autonomous first-order ordinary-differential equations. The harmonic forcing
term sin ωt (or other equivalent) can be generated in such an environment by the addition of two ‘dummy
states’ x5 and x6 in the system:

ẋ5 = x5 + ωx6 − x5

(
x2

5 + x2
6

)
(6)
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Table 1. GTT parameters in Equations (1–4)

c mean aerodynamic chord 3.37 m
g gravitational acceleration 9.81 m/s2

he thrust line distance above CG 2.02 m
Iy pitch moment of inertia 1,510,624 kg/m−2

m mass 25,332 kg
S wing area 70.1 m2

T thrust 0 N
ρ air density (at 10,000 ft) 0.905 kg/m3

Figure 5. Static trim point map as function of elevator deflection (obtained using equilibrium
bifurcation analysis). Assume zero thrust and full nose-up tailplane.

Figure 6. Pitching moment coefficients for three elevator positions at full nose-up tailplane.

ẋ6 = −ωx5 + x6 − x6

(
x2

5 + x2
6

)
(7)

It can be shown that x5 = sin ωt and x6 = cos ωt are asymptotically stable solutions of (6-7). We now
couple the elevator input in equation (5) to the state x5

δe = Ax5 (8)

giving δe = A sin ωt, where A is the forcing amplitude in degree. The whole plant is now a sixth-
order self-oscillating autonomous system, for which steady-state periodic solutions can be found by
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Figure 7. Example of a nonlinear harmonic solution obtained using continuation.

continuation in the same way as an autonomous (non-forced) system can be solved for limit-cycle
solutions. The numerical continuation solver AUTO is used in this paper; details of its algorithm can be
found in [28, 29].

An example of a non-sinusoidal response due to nonlinearities is shown in Fig. 7. To construct the
nonlinear Bode diagram, we approximate the gain in dB as

gain in dB = 20 log10

(
Y3 − Y4

Y1 − Y2

)
(9)

where Yi refers to the y-coordinate of the point i in Fig. 7. Specifically, points 1 and 3 are the peaks and
points 2 and 4 are the troughs. This method of analysing the frequency response of a nonlinear system
tends to give identical results to the classical (linear) method when the forcing amplitude is small. In the
pitch rocking manoeuvre, a large amplitude is almost certainly used, and this can result in a frequency
response that differ significantly from its linear counterpart.

Stability information is provided by the continuation algorithm by analysing the Floquet multipliers
– another feature that is not present in in classical linear-based analysis. A periodic solution is marked as
unstable when a Floquet multiplier crosses the unit circle. In this paper, the unstable solutions encoun-
tered result in large-amplitude oscillations that diverge to infinity. We consider this divergence a desirable
feature for dynamic deep stall recovery.

It should be noted that because continuation only solves for the steady-state response, the Bode dia-
gram (both linear and nonlinear) does not provide any indication of the transient dynamics, including
how quickly the system converges to the steady-state solution observed on the Bode plot. We therefore
do not discuss the phase relationship in the context of deep stall recovery. An understanding of this lim-
itation is important when analysing the asymmetric full-order implementation of the GTT, as discussed
in section 4.4.

4.0 Result and discussion
4.1 Frequency analysis: Linear
We begin our discussion by examining the changes in flying qualities when the aircraft is in a deep stall
using classical methods. By linearising the GTT at 5o and 44o angles of attack – representing normal and
deep stall conditions – we obtain two sets of state-space models listed in the appendix. Their frequency
responses are plotted in Fig. 8. Two distinct features are noted:

− The deep stall frequency responses have lower gains across all four states, reflecting a consider-
able loss of pitch control authority at such a high angle-of-attack.

https://doi.org/10.1017/aer.2022.43 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.43


The Aeronautical Journal 239

(a) (b)

(c) (d)

Figure 8. Linear frequency responses at normal flight (α = 5o) and deep stall (α = 44o) for all four
longitudinal states. Natural frequencies at deep stall: 0.23 and 0.68 rad/s. The linear transfer functions
are listed in the appendix.

− Only one apparent peak is visible in the deep stall frequency response as opposed to the two con-
ventional phugoid and short period peaks at low angle-of-attack. This indicates that the frequency
separation between those two modes is reduced in deep stall conditions.

The pole positions of these two sets of frequency responses are shown in Fig. 9. As the angle-of-attack
increases, the short period and phugoid roots approach each other and reduce their frequency separation
in the process. At 44o angle-of-attack, these two modes have frequencies that are of the same order of
magnitude (0.23 and 0.68 rad/s) with almost identical damping, making them barely able to be discerned
on the α frequency response. The time-domain responses in Fig. 10 also reflect the unconventional
dynamics: in the second plot, a single-mode-like response is observed as opposed to the distinctly visi-
ble short period and phugoid motions in the first plot. Therefore, any controller designed for normal flight
will be much less effective in this deep stall region due to the unconventional dynamics that does not fol-
low the traditional short-period and phugoid model, upon which the design of most controllers is based.

For future work, the transition to the ‘single-mode’ dynamics observed in the deep stall region can
be studied using the eigenvector similarity metric outlined in reference [30], which is the first appli-
cation of the method in a flight dynamics context. The insight gained from this methodology can
improve our understanding of the flight dynamics at high angles of attack and potentially be used to
aid controller design. The use of a fourth-order longitudinal model will also provide a simple example
for demonstrating the eigenvector analysis framework because the test case provided in reference [30]
involves lateral-directional coupling, which made the stall and post-stall upset behaviours more difficult
to interpret.

To conclude, there is effectively one resonance frequency at deep stall, which is beneficial for the pitch
rocking manoeuvre. If the pilot pumps the stick at this frequency, it may be possible to induce a large
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Figure 9. Pole positions: normal flight vs deep stall.

(a)

(b)

Figure 10. Nonlinear simulation of a 1o elevator step response in: (a) normal flight and (b) deep stall.

oscillation to push the nose down. The manoeuvre will almost certainly involve large stick movement.
This is where the validity of linear-based analysis could be questioned since the method is only accurate
locally (i.e. at a small forcing frequency). In the next section, nonlinear frequency analysis is employed
to uncover further changes in dynamics at deep stall due to large-amplitude forcing and to help devise a
successfully recovery manoeuvre.

4.2 Frequency analysis: Nonlinear
Because the frequency responses of most nonlinear systems exhibit a dependency on the forcing ampli-
tude, we first examine the impact of changing A in δe = A sin ωt using continuation. Figure 11 shows
that as A increases, the resonance peak (defined here as the point with the highest gain) increases in
amplitude and moves to the left. These two phenomena are properties of a softening system, in which
the stiffness reduces with increasing oscillation amplitude. In the context of dynamic deep stall recovery,
this further validates the feasibility of the pitch rocking manoeuvre (stiffness reduces with increasing
forcing amplitudes, thereby facilitating recovery) while also underlining the fact that the response is
nonlinear. The movement of the resonance peak as a function of A up to 18o is illustrated in Fig. 12,
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Figure 11. Nonlinear α-to-δe frequency responses at different forcing amplitudes. All solutions are
stable. The frequency response at A = 0.1o is identical to the linear one.

Figure 12. Impact of forcing amplitude on the frequency and gain at resonance of the α frequency
response. All solutions are stable.

noting that the colour reflects how much the oscillation deviates from the trim point at α = 44o (as in
Y3 − Y4 based on the definition in Fig. 7). It is evident that the amplitude dependency is strong, which
causes the resonance frequency to reduce as the forcing amplitude increases.

The forcing amplitude is now further increased to 18.48 deg. Examining its frequency response in
Fig. 13a shows that there has been a qualitative change in the system dynamics. Firstly, the resonance
peak bends strongly to the left, creating a very small region where three solutions exist (two stable and
one unstable). Secondly, an unstable isola (a separate family of solutions that is not connected to the
main branch) was detected around the area. Increasing A further causes the isola to merge with the main
branch as seen in Fig. 13b – noting that 20 deg is the maximum possible forcing amplitude for this
aircraft model. At this stop-to-stop stick pumping amplitude, only unstable solutions exist between 0.29
and 0.51 rad/s, and forcing the aircraft at a frequency within this range leads to oscillations of growing
amplitude that diverge to infinity.

To verify the stability information derived from continuation, we compare the time simulations of the
aircraft forced at two different frequencies: 0.68 rad/s (the resonance frequency as predicted by linear
analysis) and 0.40 rad/s (one of the unstable solutions at A = 20o). Figure 14 confirms that the forced
response at 0.40 rad/s is divergent, which crashed the simulation after the 57s mark due to the ensuing
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(a)

(b)

Figure 13. α frequency responses at very large forcing amplitudes. Insets show magnified views.

Figure 14. Forced responses. δe = −20 sin ωt (deg).
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Figure 15. Example recovery attempts.

large-amplitude oscillation. On the other hand, the response at the linear resonant frequency of 0.68 rad/s
is verified to be stable and does not give the highest oscillation amplitude as suggested by the linear
analysis. Large oscillations with growing amplitude like in the 0.40 rad/s case are beneficial for deep
stall recovery because the aircraft can gain considerable momentum, making it easier to push the nose
down and bring the angle-of-attack back to the low-α regime. The divergent response at 0.40 rad/s also
causes large variation in the total velocity V as seen in Fig. 14 as well as in the pitch angle θ (not shown).
Therefore, it can be inferred that past studies that only considered the short-period dynamics and ignored
variations in V and θ [7–9] cannot accurately reflect the aircraft dynamics in this high-α regime, making
them unsuitable for analysing dynamic deep stall recovery. It is also worth noting that no subharmonic
resonance (additional peaks at low frequencies) is detected in the GTT frequency response, unlike in
the unstable fighter jet example [11].

Finally, the movement of the resonance peak in Fig. 12 suggests that even when a divergent response
cannot be achieved, such as when an actuator fault prevents the pilot from achieving stop-to-stop ele-
vator travel (resulting in a frequency response resembling those shown in Fig. 11), a reasonably large
oscillation can still occur with a good chance of recovery. The key point here is that the stick pumping
frequency should be lower than the resonance frequency predicted by linear analysis.

4.3 Recovery procedure
It has been established using nonlinear frequency analysis that the resonance frequency at a large forcing
amplitude is lower than the predicted value using linear analysis, and that the oscillation near resonance
can be divergent. To leverage this phenomenon in a deep stall recovery, the pilot should pump the stick
at a frequency in the unstable region to build up momentum, then push nose-down once the oscillation
amplitude is large enough. Two example recovery attempts are presented in Fig. 15 using the two forcing
frequencies discussed previously. In both cases, the pilot forces the aircraft for 1.25 cycles (initiated by
a nose-up input), then applies a full nose-down elevator step at the top of the second nose-up pull. It can
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be seen that the 0.40 rad/s forcing results in a much larger oscillation. When the nose-down step was
applied, the angle-of-attack of the 0.40 rad/s response quickly ‘overtakes’ (having lower α) the 0.68 rad/s
one at the 25s mark thanks to the large built-up momentum from the preceding harmonic forcing, despite
the large 8s gap between their nose-down inputs. Both examples converge to the same low-α attitude
at around the same time, but the time from nose-down input to recovery is far shorter in the 0.4 rad/s
case. Therefore, the divergence observed in Fig. 14 is beneficial for deep stall recovery. It can also be
inferred that an aircraft with more serious deep stall characteristics may not recover if the pilot relies on
the linear resonance frequency (that turns out to be stable on the nonlinear Bode plot). To prevent this,
nonlinear frequency analysis should be employed to identify the unstable (diverging) frequencies that
guarantee large-amplitude oscillations that contribute to a successful recovery.

The proposed method of destabilising the deep stall trim point via harmonic forcing is effective
because there is always a region of unstable trimmed (equilibrium) conditions across the angles of attack
range between the deep stall and normal flight regions. This can be verified in the Cm plot (Fig. 6)
as well as the unforced bifurcation diagram (Fig. 5), both of which show that the aircraft is unstable
between 9o and 30o angles of attack. This type of pitching moment trend is a characteristic of deep stall
in general and T-tailed aircraft in particular. When the elevator travels across these unstable regions
under the harmonic oscillatory input, it becomes possible to induce a large-amplitude oscillation due
to the existence of the unstable trim points mentioned. The nonlinear frequency response approach,
derived from numerical bifurcation analysis, allows us to identify the forcing parameters that can excite
this resonance and increase the chance of a successful recovery.

Regarding the practical aspects our results presented so far, the resonance frequency of 0.40 rad/s
equals 0.064 Hz, which demands a very slow elevator travel rate of no more than 8 deg/s. In case the pitch
pumping frequency is higher and involves high risk of encountering actuator rate limiting, nonlinear
frequency analysis can still account for rate saturation as demonstrated in [17].

We now compare the pitch rocking method with the other alternative of invoking a lateral control
input (aileron in this case) to roll the aircraft about the body axis. In principle, a body-axis roll at high
angles of attack will covert α into sideslip β due to kinematic coupling. This may help reduce α to
regain control of the aircraft, but at a cost of potentially invoking large lateral-directional motions that
can take the aircraft into an upset/loss-of-control situation. To demonstrate, a recovery is now attempted
by rolling the deep-stalled eighth-order aircraft model (containing lateral-directional dynamics) using
maximum aileron (δa = 25o). Figure 16 compares the responses using two different elevator positions:
neutral (δe = 0o) and full nose-down (δe = 20o). The former enters a stable limit-cycle at high α, thereby
showing no signs of recovery. On the other hand, combining the nose-down and rolling inputs will
bring the angle-of-attack down to the normal range after around 30 seconds. Although this manoeuvre
successfully reduces α in a similar time frame to the pitch rocking example in Fig. 15, the aircraft is now
in an upset condition involving large bank and sideslip angles (φ approaching –90o and β around –50o),
thereby making it more susceptible to entering a spin, autorotation, or other loss-of-control situations.
This lateral-directional approach also incurs significant height loss, making it more dangerous compared
to the proposed pitch rocking method.

4.4 Influence of aerodynamic asymmetries
All real aircraft contain aerodynamic asymmetries, especially at high angles of attack. Therefore, it is
important to verify the dynamic recovery technique in the presence of these features. The analysis now
considers the eighth-order (6 degrees of freedom) asymmetric GTT model. The asymmetric data was
compiled by NASA from wind tunnel tests in the NASA Langley Research Center 12-Foot Low-Speed
Tunnel (12-Foot LST) and the Boeing North American Aviation Research Tunnel (NAART), yielding
two separate sets of data with the latter having smaller magnitude asymmetries. Data from the NAART
is considered more indicative and is used in this section, mainly because no detailed investigation into
aerodynamic asymmetry of this type of aircraft has been conducted. The contribution of asymmetries
to the total rolling moment Cl, yawing moment Cn, and side force Cy are shown in Fig. 17. Due to their
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Figure 16. Eighth-order time simulation at full left roll aileron (δa = 25o).

Figure 17. Asymmetric aerodynamic coefficients.

presence, the flight condition at deep stall for zero elevator, aileron, and rudder inputs becomes α = 44o,
V = 66 m/s, q = 0.58o/s, θ = –2.7o, β = 2.8o, p = –0.14o/s, r = –2.86o/s, and φ = –11.4o.

In this section, the following three different implementations of the eighth-order model are
considered:

− Symmetric: contains no aerodynamic asymmetries. The responses are equivalent to that of the
4th-order responses above as long as no lateral-directional input or perturbation is given. This
model is considered here for reference only.

− Asymmetric: contains aerodynamic asymmetries using the NAART dataset.
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Figure 18. Comparing deep stall recovery on the eighth-order models.

− Asymmetric – CL: same as above but with the addition of roll rate feedback to the aileron.
The addition of a roll damping controller allows us to ascertain that it is possible to overcome
aerodynamic asymmetries using conventional control methods, which is important for a safe
recovery.

The recovery manoeuvre using elevator movement as shown in Fig. 15 (oscillations at 0.40 rad/s)
is now tested on these three eighth-order models. Their responses are shown in Fig. 18, noting that all
longitudinal variables are placed in the first column. It can be seen that there is minimal variation in the
longitudinal responses in all three cases, indicating that our proposed deep stall recovery manoeuvre
is effective even in the presence of aerodynamic asymmetries. The main differences are in the lateral-
directional responses shown in the second column. Specifically:

− The symmetric model contains no lateral-directional motions (as expected).
− The open-loop asymmetric model invokes large bank angles (φ) that exceeded 40o during the

manoeuvre. Notably, φ did not vary much during the initial stick pumping phase, but then
increased rapidly when the nose-down push was initiated at the 19.6s mark.

− The roll-damping controller is very effective at reducing bank angle, and accordingly other
lateral-directional variables as well. In this example, the proportional stability-augmentation gain
was set to 2.0. This resulted in aileron movements that can be considered reasonable as seen in
the δa time history, showing a –7o peak in travel and 10o/s peak in rate. We can therefore conclude
that the control input required to keep the wing close to level throughout the manoeuvre can be
achieved, whether through the use of a controller or potentially via pilot input.

https://doi.org/10.1017/aer.2022.43 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.43


The Aeronautical Journal 247

Figure 19. Sinusoidal elevator forcing at 0.40 rad/s – open-loop asymmetric model.

Figure 20. Partial δe-to-α frequency response of the open-loop asymmetric implementation.

Nonlinear frequency analysis is unfortunately no longer effective in this instance. Since the nonlinear
Bode plot only shows the final steady-state response and provides no indication of the transient dynamics,
the unstable solutions may reflect a divergent response involving large lateral-directional oscillations,
which is detrimental for a safe recovery. This can be illustrated by continuing the stick-pumping at
0.40 rad/s on the open-loop asymmetric model as shown in Fig. 18 but without the nose-down push,
resulting in the response in Fig. 19. It can be seen that the dynamics is complex and involves large
lateral-directional components. The continuation algorithm will attempt to solve for these responses,
which is numerically intense and may not yield useful information.

We were able to partially generate the frequency response of the open-loop asymmetric model as
shown in Fig. 20. The diagram’s shape suggests that resonance still occurs around 0.40 rad/s as seen in
the 4th-order analysis. However, solutions around the resonance region exceed the available aerodynamic
data and involve heavy coupling between longitudinal and lateral-directional motions. Although spline
extrapolation can be used to solve beyond the existing data, this procedure is numerically intense and
may not yield valid results. Therefore, we decided not to pursue nonlinear frequency analysis on the
eighth-order model.

Figure 21 further illustrates the difficulties encountered when using nonlinear frequency analysis
in the presence of lateral-directional coupling due to aerodynamic asymmetries. Although the partial
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Figure 21. Open-loop asymmetric forced response at ω = 0.26 rad/s.

nonlinear Bode plot correctly predicted that 0.26 rad/s forced response is stable as shown in Fig. 21,
the dynamics is very complex and involves large lateral-directional components. Furthermore, we have
demonstrated that the pilot should initiate the nose-down push after around 1.5 forcing cycles. This is
too early for the forced response to converge to its final steady-state solutions as predicted by the nonlin-
ear asymmetric frequency analysis. Therefore, the use of continuation in the presence of aerodynamic
asymmetries is unnecessary for deriving a deep stall recovery manoeuvre for this aircraft model.

To sum up, the pitch rocking technique remains effective for deep stall recovery even in the presence
of aerodynamic asymmetries, although an upset/loss-of-control incident is possible if the lateral-
directional motions is not minimised. This can be prevented by damping the rolling (and potentially
also yawing) motions throughout the manoeuvre. In the GTT example considered, the stability aug-
mentation controller successfully stabilised the aircraft while also showing that the aileron movement
required to keep the wing close to level is reasonable. Such a control input can therefore be expected
from a pilot doing manual flying, at least after the stick-pumping phase.

5.0 Conclusion
In this paper, we have shown that bifurcation methods implemented in the form of nonlinear frequency
analysis can facilitate a systematic study to identify possible deep stall recovery manoeuvres in a T-tailed
aircraft. Despite the existence of the locked-in deep stall at full nose-down elevator, it is still possible to
initiate recovery by forcing the pitch control device at one of the nonlinear resonant frequencies. This
manoeuvre destabilises the statically stable trim point via a divergent pitch oscillation, which enables
the pilot to rock the aircraft out of a potentially unrecoverable deep stall without invoking large lateral-
directional motions that can lead to an upset and loss-of-control situation. The forcing frequencies that
result in these divergent responses can be identified using nonlinear frequency analysis, and were found
to be slightly lower than the resonance frequency predicted by classical methods. In other words, the
resonance frequency predicted by linear methods is insufficiently close to the true resonance peak, and
this can prevent a successful deep stall recovery. These results also present a rare example of unsta-
ble (divergent) solutions being beneficial in the context of flight dynamics and control. Furthermore,
the pitch rocking method is safer than recovery methods that induce lateral-directional motions, which
come with high risk of triggering an upset condition. The presence of aerodynamic asymmetries does
not preclude recovery because the aircraft considered here has enough control power to counteract the
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lateral-directional motions. However, aerodynamic asymmetries do reduce the effectiveness of the non-
linear frequency analysis method. Our approach for deriving a dynamic deep stall recovery manoeuvre
is therefore limited to fourth-order longitudinal analysis.

It was also found that at high angles of attack, the frequency separation between the conventional
short-period and phugoid modes is significantly reduced, leading to non-conventional dynamics that
resemble only one single mode. This further highlights the nonlinear nature of high angles of attack
behaviours that may have hindered previous studies of dynamic deep stall recovery, most of which were
also limited to empirical methods. The proposed nonlinear frequency approach provides not only a
systematic study of dynamic deep stall recovery, but also expands the nonlinear analysis toolbox to
account for both stationary and non-stationary nonlinearities.
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APPENDIX
A1. LINEAR APPROXIMATIONS
The linear state-space models and transfer functions for the aircraft trimmed in normal flight and deep
stall are presented in this section. In both cases, the following flight conditions apply: full nose-up
tailplane (–10o), T = 0 N, and cg = 40% MAC. The state and input vectors are x = [

α, V , q, θ
]T and

u = δe. Note that α, q, and θ have units rad/s or rad in the state-space matrices.

Low-α flight:
δe = 17o, α = 4.86 deg, V = 107.4 m/s, q = 0 deg/s, θ = –0.22 deg

A =

⎡
⎢⎢⎢⎢⎣

−0.6609 −0.0017 0.9502 0.0081

2.8242 −0.0162 −0.0744 −9.7715

−1.6463 −8.083e−7 −0.4654 0

0 0 1 0

⎤
⎥⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎢⎣

−0.0008974

−0.0099916

−0.0235426

0

⎤
⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ D =

⎡
⎢⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎥⎦

α(s)

δe(s)
= −0.051416 (s + 25.37)

(
s2 + 0.02366s + 0.01726

)
(s2 + 0.01579 s + 0.01475) (s2 + 1.127 s + 1.862)

(
deg

deg

)

V(s)

δe(s)
= −0.0099916 (s − 3.739) (s + 4.035) (s + 0.9084)

(s2 + 0.01579 s + 0.01475) (s2 + 1.127 s + 1.862)

(
m/s

deg

)

q(s)

δe(s)
= −1.3489 s (s + 0.5877) (s + 0.02662)

(s2 + 0.01579 s + 0.01475) (s2 + 1.127 s + 1.862)

(
deg/s

deg

)

θ(s)

δe(s)
= −1.3489 (s + 0.5877) (s + 0.02662)

(s2 + 0.01579 s + 0.01475) (s2 + 1.127 s + 1.862)

(
deg

deg

)
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Deep stall:
δe = 0o, α = 44.2 deg, V = 64.5 m/s, q = 0 deg/s, θ = 0.87 deg

A =

⎡
⎢⎢⎢⎢⎣

−0.13858 −0.00343 0.92943 0.10426

−7.14144 −0.20869 −4.27044 −7.13799

−0.62887 2.74314e−6 −0.34515 −6.30705

0 0 1 0

⎤
⎥⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎢⎣

−0.00024411

−0.011471

−0.0035998

0

⎤
⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ D =

⎡
⎢⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎥⎦

α(s)

δe(s)
= −0.013986 (s + 13.77)

(
s2 + 0.3328s + 0.04953

)
(s2 + 0.3345 s + 0.05439) (s2 + 0.3579 s + 0.5347)

(
deg

deg

)

V(s)

δe(s)
= −0.011471 (s − 2.572) (s + 1.461) (s + 0.1019)

(s2 + 0.3345 s + 0.05439) (s2 + 0.3579 s + 0.5347)

(
m/s

deg

)

q(s)

δe(s)
= −0.20625 s (s + 0.2965) (s + 0.008109)

(s2 + 0.3345 s + 0.05439) (s2 + 0.3579 s + 0.5347)

(
deg/s

deg

)

θ(s)

δe(s)
= −0.20625 (s + 0.2965) (s + 0.008109)

(s2 + 0.3345 s + 0.05439) (s2 + 0.3579 s + 0.5347)

(
deg

deg

)

A2. DATA FOR THE FOURTH-ORDER LONGITUDINAL GTT

Cx0(α) Cz0(α) Cm0(α) Cx2(α) Cz2(α) Cm2(α)

α (deg) −8 0.001756 0.573304 0.432268 – – –
−4 −0.03202 0.158374 0.261432 0.681504 −13.8149 −40.643

0 −0.03678 −0.25651 0.097101 −0.37529 −18.1738 −43.356
2 – – – 0.545445 −17.2006 –
4 −0.00629 −0.62505 −0.0754 1.937841 −17.6061 −41.181
6 0.01381 −0.77965 −0.18194 1.31688 −31.494 –
8 0.022591 −0.92885 −0.28825 4.707579 −40.767 −34.745
9 – – −0.32747 – – –

10 0.024658 −1.02196 −0.31196 8.902535 −58.0184 −69.126
11 0.02303 −1.05948 −0.32356 – – –
12 0.017965 −1.07378 −0.33825 10.38419 −67.2923 −96.728
13 0.01317 −1.09069 −0.35346 – – –
14 0.009066 −1.10536 −0.36577 6.313846 −64.1955 −114.97
15 0.002488 −1.11635 −0.37268 – – –
16 −0.00356 −1.12605 −0.21655 5.502465 −69.2124 −112.37
17 −0.00821 −1.13737 −0.16443 – – –
18 −0.01083 −1.15242 −0.1382 5.978998 −64.8436 −25.745
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Cx0(α) Cz0(α) Cm0(α) Cx2(α) Cz2(α) Cm2(α)

19 −0.01369 −1.15662 −0.12153 – – –
20 −0.01642 −1.17081 −0.13459 1.620688 −47.6716 −0.43262
22 −0.02218 −1.16413 −0.1816 0.363719 −30.5866 −16.712
24 −0.02217 −1.2197 −0.18915 1.976721 −31.3621 −43.392
26 −0.01945 −1.29772 −0.1872 0.480189 −28.9413 −47.317
28 −0.01606 −1.35679 −0.19594 −1.23985 −31.8403 −44.361
30 −0.01263 −1.44425 −0.21354 0.52692 −33.8075 −45.17
35 −0.00051 −1.61095 −0.24148 0.300702 −37.0869 −57.502
40 0.008251 −1.7952 −0.33638 1.00132 −42.515 −52.381
45 0.019853 −1.97111 −0.55827 – – –
50 0.035626 −2.15076 −0.74842 0.547605 −50.4169 −50.576
55 0.047189 −2.18336 −0.83617 – – –
60 0.064759 −2.26355 −0.90179 −1.5126 −38.7345 −67.185

δe (deg)

Cx1 (α, δe) −20 −10 0 10 20
α (deg) −8 −0.06694 −0.04867 −0.03525 −0.02391 −0.01908

−4 −0.0557 −0.03486 −0.02201 −0.01002 −0.00647
0 −0.04621 −0.02518 −0.01148 −0.00356 −0.0049
4 −0.03592 −0.02016 −0.01061 −0.00464 −0.00584
6 −0.0372 −0.02266 −0.01149 −0.00333 −0.00462
8 −0.03848 −0.02326 −0.01164 −0.00271 −0.00438

10 −0.03882 −0.02324 −0.0122 −0.00341 −0.003
11 −0.03705 −0.02166 −0.00926 −0.00115 −0.00204
12 −0.03874 −0.02219 −0.00951 −0.00158 −0.00338
13 −0.03884 −0.02237 −0.01003 −0.00208 −0.00287
14 −0.03977 −0.02331 −0.01009 −0.00223 −0.00403
15 −0.03936 −0.02339 −0.00979 −0.00258 −0.00435
16 −0.03902 −0.02328 −0.00957 −0.00332 −0.00481
17 −0.03965 −0.0227 −0.01002 −0.00189 −0.00354
18 −0.03871 −0.02225 −0.0101 −0.00253 −0.00339
19 −0.03724 −0.02021 −0.00849 −0.00201 −0.00251
20 −0.03614 −0.02064 −0.00782 −0.00151 −0.00102
22 −0.0311 −0.01724 −0.00548 0.001833 0.002747
24 −0.02608 −0.01278 −0.00243 0.003651 0.004542
26 −0.02065 −0.00976 −0.00057 0.003944 0.004448
28 −0.01699 −0.00755 0.000428 0.004406 0.004747
30 −0.01356 −0.00663 0.000938 0.004875 0.004046
35 −0.01045 −0.00482 0.000725 0.00465 0.003494
40 −0.00699 −0.00189 0.004697 0.006261 0.004732
45 −0.00706 0.001473 0.011849 0.012503 0.010597
50 −0.00328 0.006448 0.017819 0.020957 0.014611
55 0.006206 0.016745 0.029021 0.026619 0.020563
60 0.014154 0.023574 0.030077 0.027793 0.018647
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δe (deg)

Cz1(α, δe) −20 −10 0 10 20
α (deg) −8 0.132483 0.109126 0.080109 0.034874 −0.03212

−4 0.158259 0.131368 0.095109 0.041325 −0.0344
0 0.211822 0.186351 0.13575 0.056794 −0.02816
4 0.259968 0.220388 0.155453 0.065812 −0.00213
6 0.263041 0.211611 0.14721 0.048612 −0.01741
8 0.260209 0.22054 0.157436 0.056434 −0.00748

10 0.26989 0.219953 0.149982 0.068683 −0.02324
11 0.268262 0.21701 0.132912 0.05184 −0.01867
12 0.262347 0.199729 0.130679 0.05542 −0.01271
13 0.264113 0.206197 0.126217 0.050133 −0.02485
14 0.244049 0.197291 0.132894 0.04268 −0.03004
15 0.24873 0.192789 0.13868 0.033549 −0.02258
16 0.243716 0.190645 0.133882 0.042625 −0.02503
17 0.235976 0.191473 0.123993 0.042329 −0.03392
18 0.2319 0.188976 0.118089 0.055378 −0.02209
19 0.215836 0.179823 0.117448 0.049292 −0.02995
20 0.230695 0.182805 0.135622 0.072027 −0.02192
22 0.202552 0.146864 0.094765 0.032169 −0.01676
24 0.176827 0.138095 0.098046 0.035512 −0.01218
26 0.170254 0.141196 0.104579 0.032826 −0.01391
28 0.127114 0.128839 0.087652 0.019884 −0.01556
30 0.145601 0.109992 0.072914 0.060579 0.022069
35 0.127895 0.087692 0.051448 0.039069 0.017377
40 0.135045 0.091388 0.070557 0.03279 0.028652
45 0.146468 0.120365 0.055801 0.043267 −0.01268
50 0.149586 0.165258 0.08059 0.006591 0.043287
55 0.127524 0.109323 0.007271 0.010296 −0.03288
60 0.097676 0.0627 0.037962 −0.00345 −0.00168

δe (deg)

Cm1(α, δe) −20 −10 0 10 20
α (deg) −8 0.599929 0.496285 0.360396 0.165401 −0.09051

−4 0.727396 0.6063 0.453146 0.209627 −0.11065
0 0.882632 0.737964 0.531845 0.204653 −0.11927
4 1.019251 0.842174 0.581101 0.228223 −0.07715
6 1.052524 0.887267 0.602272 0.227272 −0.06158
8 1.091908 0.91249 0.605274 0.230106 −0.04692

10 1.089233 0.915819 0.613027 0.226843 −0.04188
11 1.095252 0.91482 0.618201 0.220547 −0.04392
12 1.097219 0.915501 0.611368 0.2171 −0.04082
13 1.090578 0.907631 0.612453 0.216307 −0.04625
14 1.100774 0.91114 0.600114 0.211275 −0.05055
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δe (deg)

Cm1(α, δe) −20 −10 0 10 20
16 1.055232 0.857304 0.561339 0.191742 −0.08064
17 1.042249 0.830016 0.545924 0.186884 −0.09103
18 1.017316 0.799976 0.526382 0.184602 −0.09576
19 0.995487 0.769238 0.504485 0.180434 −0.09639
20 0.955327 0.735492 0.482036 0.179241 −0.09046
22 0.854531 0.647987 0.429445 0.160814 −0.07753
24 0.762102 0.563335 0.37125 0.143026 −0.06387
26 0.662591 0.489183 0.334354 0.130198 −0.04861
28 0.589133 0.434342 0.286587 0.121218 −0.02999
30 0.508876 0.392271 0.273722 0.126029 0.00255
35 0.409975 0.313753 0.231067 0.118764 0.025011
40 0.407095 0.302035 0.233108 0.110704 0.045697
45 0.512455 0.374348 0.240365 0.10647 1.32E-05
50 0.564861 0.377184 0.231874 0.062937 −0.02644
55 0.513756 0.330379 0.147294 0.030879 −0.05165
60 0.43169 0.267761 0.144154 0.030797 −0.01758
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