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1. Introduction. In this paper, we consider linear spaces and algebras 
with real scalars. It is well known that if X is a Banach space and 23 is the 
set of all bounded linear operators which map X into itself, then 23 is a Banach 
algebra. In this paper we shall show that 23 can be partially ordered so that it 
becomes a partially ordered algebra in which norm convergence is equivalent 
to order convergence. This motivates a study of Banach algebras of operators 
in which one uses the order structure to obtain various results. In addition, 
it encourages a study of partially ordered algebras in general, since our result 
shows that among such algebras one finds all real Banach algebras of opera­
tors. Of course, there are many other real algebras which are naturally par­
tially ordered and which have been studied from that point of view. In the 
final section we obtain various results to illustrate the value of using the 
order structure of a partially ordered algebra. For a general discussion of 
partially ordered linear spaces and algebras the reader may refer to (1, 4-9). 

2. Basic definitions. The definition of a partially ordered linear space 
(p.o.l.s.) which we use here is that given by Nakano; see (7, p. 23) and note 
that Nakano uses the term "semi-ordered linear space" instead of "p.o.l.s." 
We also use the definition of a partially ordered algebra (p.o.a.) given by 
Nakano; see (7, p. 112) and note that Nakano uses the term "semi-ordered 
ring" instead of "p.o.a." Real numbers will always be denoted by small Greek 
letters. 

If X is a p.o.l.s., then the subset X+ = {x: x > 0} is called the positive 
cone in X. An element u G X+ is called an order unit if for every x £ X there 
exists a real number a such that — au < x < au. A linear operator A : X —> X 
is said to be positive if A(X+) C X+. A linear operator B: X —> X is said to 
be regular if B = Ai — A2l where Ai and A2 are positive. Thus, if 21 denotes 
the set of all regular linear operators which map X into itself, then 31 is a 
p.o.a. We use I to denote the identity operator. It is clear that I is positive. 

Definition 1. A sequence {xn) of elements from a p.o.l.s. X is said to be 
directed to 0 if X\ > x2 > . . . > 0 and if inf{xw} = 0. 

Definition 2. A sequence {yn} of elements from a p.o.l.s. X is said to order-
converge (o-converge) to 0 if there exists a sequence {xn} which is directed 
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to 0 such that — xn < yn < xn for all n. In this case we write o-lim yn = 0; 
more generally, we write o-lim yn = y if and only if o-lim (yn — y) = 0. 

Definition 3. A p.o.l.s. X is said to be Dedekind c-complete if for every 
sequence {xn}, where xi > x2 > . . . > 0, inf{xw} exists (6, pp. 9-11). 

3. The main theorem. We begin with the following lemmas. 

LEMMA 1. Let X be a p.o.l.s. If {xn} and {yn\ are sequences of elements from 
X and o-lim xn = x and o-lim yn = y, then o-lim (xn + yn) = x + y. If a is 
any real number, then o-lim 

Proof. See (7, p. 36). 

LEMMA 2. Let X be a Dedekind a-complete p.o.l.s. If 21 is the p.o.a. of all 
regular linear operators which map X into itself, then 21 is a Dedekind a-com­
plete p.o.a. 

Proof. If Ai, A2 G 21, then Ai > A2 is defined to mean that Ax — A2 is 
a positive linear operator. Now let us take a sequence \An) of operators from 
21 such that A i > yl 2 > . . . > 0, the latter symbol 0 denoting the zero opera­
tor. For each x G X+ we have A\(x) ^ A2(x) > . . . > 0 Ç X; hence, 
F(x) = inî{An(x)} exists for each x G X+. From Lemma 1 we have F (ax) 
= aF(x) and F(x + y) = ^(x) + F(y) for all x, y G X+ and all a > 0. Since 
X = X+ — X+, we may define a positive linear operator A such that 
A (x) = F(x) for all x G X+ . It is easy to verify that A = ini{An}. Therefore, 
21 is Dedekind c-complete. 

From this result it follows that if a\ > a2 > . . . and inf{a;w} = 0 and if 
A e 21 and A > 0, then inî{anA} = 0 G 21. 

THEOREM. Let X be a Banach space and let 53 denote the Banach algebra of all 
norm-bounded linear operators which map X into itself. It is possible to partially 
order 93 so that it becomes a Dedekind a-complete p.o.a. in which norm convergence 
and o-convergence are equivalent. 

Proof. We begin by partially ordering X as in (2, Theorem 1). This is 
done by selecting a fixed element u G X such that \\u\\ = 4. Define 

K = {\(u + x): X > 0 and ||x|| < 1} 

and then define x < y to mean that y — x G K. Clearly K = X+ and u is 
an order unit. As shown in (2, Theorem 1), norm convergence and o-con­
vergence in X are equivalent. Furthermore, X is Dedekind <7-complete. 

Now let 21 denote the p.o.a. of all regular linear operators which map X 
into itself. If A G 21 and A > 0, then for all y G X such that \\y\\ < 1 we 
have u + y > 0 and u — y > 0 so that 

2 | | 4 ( « ) | | = \\A(u + y)+A(u-y)\\ > \\A(u) - A(y)\\ 

>\\A(y)\\-\\A(u)\\. 

https://doi.org/10.4153/CJM-1967-057-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-057-6


638 RALPH DEMARR 

The first inequality in the latter expression comes from the fact that the 
norm is monotone on X + . Therefore, 3||<4(w)|| > ||-4(y)|| for all y G X such 
that ||y|| < 1; hence, i 6 S and \\A\\ < 3||^4(^)||. Since every operator in 
21 is the difference of two positive operators, we see that 21 CZ 93. 

We shall now show that 93 C 2Ï. By the Hahn-Banach theorem there exists 
a linear functional / defined on X such that f(u) = 20/3 and ||/|| = 5/3. 
Now if z G X+, then z = \(u + x), where X > 0 and ||x|| < 1. Hence, 

f(z) = \\f(u) + /(*)] > 5X > ||s|| for all z G X+. 

Now define U(x) = f(x)u for all x G X I t is clear that U G 21 and that 
U >0. Now take A G 93 and \\A\\ < 1 and z G X+ (z ^ 0); hence 

U(z)±A(z) =f(z)[u±f(zyiA(z)] 

a n d ^ i n c e H i / ^ ) - 1 ^ ^ ) ! ! < ||a;||-i \\A (z)\\ < 1, we have that U(z)±A (z) GX+. 
Hence, U ± A > 0 and since 2A = (U + A) - (U - A), we see that A G 21. 
Therefore, 93 C 21. 

Since 21 = 93, we may regard 93 as the p.o.a. of regular operators which map 
X into itself. By Lemma 2, 93 is Dedekind o--complete. Furthermore, U is an 
order unit in 93. The calculations given above show that if A G 93, then 
— 11̂411 £/ < A < | \A 11 U. From this and Lemma 2 it follows that in 53 norm 
convergence implies o-convergence. 

Let us now take A, B G 93 such that -A < B < A. Since 2A > A + B > 0 
and 2A > A — B > 0, we have from above that 

\\A +B\\ <3\\A(u) +B(u)\\ <6\\A(u)\\ 
and 

\\A -B\\ <3\\A{u) - 5 ( « ) | | < 6 | M ( « ) | | , 

where the second inequality in each expression comes from the fact that the 
norm is monotone on X+. Hence, 

2 | |5 | | = \\A +B+B -A\\ < \\A + B\\ + \\A - B\\ < l2\\A(u)\\ 
or 

PH<6P(«)||. 
Now let {Bn} be a sequence of elements from 93 which o-converges to 

0 G 93. There must be a sequence {An} of elements from 93 which is directed 
to 0 such that -An < Bn < An. Hence, | |£n | | < 6||^4n(«)||. Since 

inf{^n} = 0 6 » , 

we must have inî{An(u)} = 0 G X. But in X o-convergence is equivalent to 
norm convergence; hence, lim ||^4w(w)|| = 0 and, therefore, lim \\Bn\\ = 0. 
Thus, in 93 o-convergence implies norm convergence. 

We have shown that in 93 norm convergence and o-convergence are equi­
valent. This completes the proof of the theorem. 
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Remark. As a consequence of the fact that in S3 norm convergence and 
o-convergence are equivalent, we can assert that if {An} is a sequence of 
elements from S3 which is directed to 0 G S3 and B G S3, B > 0, then both 
of the sequences {AnB} and {BAn} are directed to 0. However, this might 
not be true if we choose a different way to partially order S3, as the following 
example shows. 

Let X be the Banach space of all bounded sequences of real numbers with 
supremum norm. Assume that X is partially ordered componentwise. Thus, 
X+ is the set of all sequences with non-negative components and u = ( 1 , 1 , . . . ) 
is an order unit. Furthermore, X is Dedekind c-complete. It is well known that 
S3 is the same as the p.o.a. of regular linear operators. 

There is a positive linear functional/defined on X such that if x = («i, a2, . . •) 
and lim an — a, then fix) = a. Define B(x) = f(x)u. Define 

An(x) = (0, . . . , 0, an+i, an+2, . . .), where x = (au a2, . . .)• 

I t is clear that A\ > A2 > . . . > 0 and inf{^4n} = 0. However, it is easily 
seen that BAn = B for all n\ hence, mi{BAn) = B ^ 0. Nevertheless, it is 
true that mi{AnB] = 0; in fact, the following is true. 

PROPOSITION 1. Let X be a p.o.l.s. and let 2Ï be the p.o.a. of regular linear 
operators which map X into itself. If {An} is a sequence of elements from % 
which is directed to 0 and B G SI, B > 0, then the sequence {AnB} is directed 
to 0. 

Proof. We must have i n f j ^ ^ ) } = 0 G X for all y G X+. For each x £ X+ 
we have B(x) G X+; hence, inî{AnB(x)} = 0 G X. This means that 
ini{AnB} = 0 G S. 

COROLLARY. If {En) is a sequence of elements from 3t such that o-lim En = E 
and if F G 21, then o-lim En F = EF. 

4. Additional results. The preceding corollary states that in some p.o. 
algebras multiplication is "left-continuous" with respect to o-convergence. Of 
course, in other cases multiplication may not be continuous at all with respect 
to o-convergence. This lack of continuity may make certain desirable results 
untrue or impossible to prove. For example, suppose that SI is a p.o.a. and 
A G SI is such that 

o-lim ]£ 4* = K 

Is it true that (I + E)(I — A) = I, where / denotes the multiplicative 
identity? I do not know how to answer this question without using the fact 
that multiplication is left-continuous with respect to o-convergence. Never­
theless, it is possible to obtain some results on the existence of inverses, etc., 
without using the fact that multiplication is continuous in any sense. This 
we shall now do. 
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Assumption. In what follows 2t will denote a p.o.a. which is Dedekind 
o--complete. We use I to denote the multiplicative identity and assume that 
7 > 0 . 

PROPOSITION 2. / / A Ç 21, A > 0, and the sequence 

{,?/•} 
is bounded above, then I — A has an inverse and (I — A)~l > / . 

Proof. Define 
n 

Bn=I + Y,Ak and B = sup{Bn}. 

We note that mî{B - Bn} = 0. Now 

B(I-A) = (B-Bn)(I-A) +Bn(I-A) 

<B - Bn + I - An^ < / + B - Bn. 

Therefore, B(I — A) K I or B *C I + BA. Since A > 0, we can show by 
induction that B < Bn + BAn+l. If we put Hn = Bn + BAn+\ then it is 
easily verified that B < Hi < i72 < . . . < B + B2. Hence, we can define 
H = sup{Hn). Now let us define 

Dn = £ BAk < B\ 
k=l 

so that D = sup{Dn] can be defined. Note that inf{Z> — Dn} = 0 and that 
D - A* > BAn+l > 0. Therefore, 

Hi < H2 < . . . < B + D - D2 < B + D - Dlt 

which means that Hn < B + D — Dm for all m, n. Therefore, 

H = sup{Hn} < inf{B + D - Dm] = B. 

From above we have B < H\ hence, B = H. Also from above we have 

B<I + BA<H = B. 

Therefore, B = I + BA or B(I - A) = I. 
Similar arguments show that (I - A)B = I. Thus, B = (I - A)~K Clearly, 

B > I > 0. 

PROPOSITION 3. If E, F G 21, E < J, F > 0, and £ F > i" (or F £ > / ) , 

J/^rc £ ^as aw inverse and E~l > / . 

Proo/. Define 4 = I - E > 0. Thus, (/ - 4 ) P > J or P > J + 4 P . By 
induction it can be shown that 

F>I + ifA\ 
* = 1 
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Hence, by Proposition 2 we see that (/ — A)~l exists and (/ — A)~l > / . 
Since E = I — A, the proposition is proved. 

COROLLARY. / / 0 < a < /3 and ai < H < /37, /Aew H has an inverse and 
H'1 > /T1 / . 

Proof. Use Proposition 3 with E = fi~l H and F = fior1I. 

PROPOSITION 4. / / A, E G SI, ^ e r e — 4̂ < E < A, and if the sequence 

is bounded above, then I — E has an inverse. 

Proof. It is easy to show that — Ak < Ek < Ak for all k. Define 

Bn= I + Y,Ak and B = sup{Bn}. 

Define 

k=l 

Clearly — Bn < Fn < Bn. Now put Hn — Bn + Fn\ it is easily verified that 
0 < H\ < H2 < . . . < 25 . We may therefore define H = sup{i7re} and then 
put F = H - 5 . Now 

H — Hn = sup{Hm — Hn : m > n + 1} 

= sup̂  f) (4* + E*) : m > * + 1 \ 
\lc=n+l J 

< supi X) 2Ak :m>n+l\ 
\k=n+l J 

= sup{2(5O T -5„) :m>n+l} 

= 2(5 - 5„). 

Therefore by writing 

F- Fn = (H-B) - (Hn- Bn) = (H - Hn) - (B - Bn), 

we see that 

- 2 ( 5 - BH) < F - Fn < 2 (5 - Bn). 

We now note that 

F(I - E) = (F - Fn)(I - E) + Fn(I - E) 
= F- Fn- (F- Fn)E + / - £ « + i 

< 2 (5 - 5 J + 2 (5 - Bn)A + I + An^ 

< / + 3 (5 - Bn) + 2 ( 5 - Bn+t) < I + 5 (5 - 5„). 
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In the next to last inequality we use the fact that An+1 < B — Bn, 

I + BnA = Bn+i, 

and BA = B - 7. Since inf{5(£ - Bn)} = 0, we have F (I - £ ) < 7. We 
may follow through inequalities similar to those given above to show that 
F (I - E) > 7 - 5(B - Bn); hence, F (I - £ ) > / . Therefore, 

F(I - £ ) = / . 

Finally, we may repeat the arguments of the preceding paragraph to show 
that (7 - E)F = I. Hence, F = (I - E)~K 

PROPOSITION 5. If A, U G SI and -U < An < U for all n and \a\ < 1, 

then I — aA has an inverse. 

Proof. The proof here is similar to that given for Proposition 4 and will 
therefore be omitted. 

Remark. By looking at the main theorem of this paper, the reader will 
note that Proposition 5 generalizes the well-known fact that if B is a bounded 
linear operator mapping a Banach space into itself and \\B\\ < 1, then I — B 
has an inverse. 

Finally, we obtain a result on the existence of "square roots." 

PROPOSITION 6. If E G §1 and 0 < E < / , then there exists a unique element 
A 6 SI such that 0 < A < I and A2 = E. 

Proof. Define A1 = I and then An+1 = An - 1/2 (An
2 - E) for all n. We 

note that An E = EAn for all n. Assume that for some k we have 

E<Ak*<Ak<I; 

this is at least true for k = 1. Thus Ak+i > Ak — ^ 2 + E > £ . I t can be 
shown that 

^ , + i 2 = E + l/HAk* - E)[(2I - Aky -E]> E. 

Since Ak+i < Ak < 7, we see that £ < ^ . ^ i 2 < Ak+1 < 7. Thus, we have 
shown by induction that E < 4̂W

2 < An < 7 for all n and, hence, 

E < . . . < A2 < Al9 

Therefore, we can define A = inf{^4n}. Now 

A' - E = A (A - An) + (A - An)An + A J - E. 

Therefore, since 2(An — A) > An
2 — E > 0, we have 

-2(An - A) <A* - E< 2(An - A). 

Since inf{.4w — A} = 0, we see that A2 = E. 
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To show that A is unique we proceed as follows. Assume that B Ç SI and 
0 < B < 7 and B2 = E. Therefore, if B < Ak, then 

2Ak+1 = 24* + £ 2 - Ak
2 = 2Ak + B(B - Ak) + (B - Ak)Ak 

>A2k + 2(B - Ak) =2B; 

hence, Ak+i > B. Since Ai = I ^ B, we have B < An for all w. Hence, 
B < A. 

Now 

0 = 4 2 - B2 = A (A - B) + (^ - B)B > 4 (4 - B) > 0, 

so that A (A — B) = 0. Similarly, we can show that (4 — i3)^4 = 0 and 
{A - B)2 = 0. If we put F = A + (A - B), then F2 = A2 = E and 

0 < .F = 2A - 5 < 2A - A2 = 7 - (7 - 4 ) 2 < I. 

By the arguments of the preceding paragraph, we must have F < A. Hence, 
A — B < 0. Therefore, we have 4 = 5 . 

Remark. The reader should note that not every positive element of 2Ï has 
a square root. Also note that even 7 may have more than one positive square 
root. Examples may be obtained by taking % to be the p.o.a. of 2 X 2 matrices 
with real entries. The positive elements of % are those matrices with only 
non-negative real entries. 
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