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Regulators of an Infinite Family of the
Simplest Quartic Function Fields

Jungyun Lee and Yoonjin Lee

Abstract. We explicitly ûnd regulators of an inûnite family {Lm} of the simplest quartic function
ûelds with a parameter m in a polynomial ring Fq[t], where Fq is the ûnite ûeld of order q with
odd characteristic. In fact, this inûnite family of the simplest quartic function ûelds are subûelds of
maximal real subûelds of cyclotomic function ûelds having the same conductors. We obtain a lower
bound on the class numbers of the family {Lm} and some result on the divisibility of the divisor
class numbers of cyclotomic function ûelds that contain {Lm} as their subûelds. Furthermore, we
ûnd an explicit criterion for the characterization of splitting types of all the primes of the rational
function ûeld Fq(t) in {Lm}.

1 Introduction

Gras [4,5], Lehmer [13], and Shen [19] found families ofmonic irreducible polynomi-
als with integral coeõcients and constant term one whoseGaussian periods have de-
gree 3, 4, 5, 6, and 8, respectively; thesepolynomials are called the simplest cubic, quar-
tic, quintic, sextic and octic polynomials, respectively. Lazarus [11], Louboutin [15],
andWashington [22] studied a family of simplest quartic number ûelds. _ey were
interested in ûnding regulators and class numbers of the family of simplest quartic
number ûelds, and they found simplest quartic number ûelds with small class num-
bers. In the case of function ûelds, Bae [1] and Feng and Hu [3] obtained the criteria
for class numbers one or two for some family of quadratic function ûelds, and they
found all quadratic function ûelds in the family with class numbers one or two. More-
over,Wu and Scheidler [24] considered a quartic function ûeld K that is biquadratic,
and they characterized splitting types of all the rational places in K and found their
invariants such as genus, integral basis, and discriminant.

Let k = Fq(t) be a rational function ûeld, where Fq is the ûnite ûeld of order q
with odd characteristic. We study an inûnite family {Lm} of cyclic quartic function
ûelds given by Lm = k(αm), where αm is a root of x4 −mx3 − 6x2 +mx + 1 and m is
amonic polynomial in Fq[t] such that m2 + 16 is square free in Fq[t].

We explicitlyûnd regulators of an inûnite family {Lm} of the simplest quartic func-
tion ûelds with a parameter m in a polynomial ring Fq[t], where Fq is the ûnite ûeld
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of order q with odd characteristic (_eorem 1.1). In fact, this inûnite family of the
simplest quartic function ûelds are subûelds of maximal real subûelds of cyclotomic
function ûeldswith the same conductors. In fact, computation of regulators canmake
some contribution to ûnding class numbers of the family {Lm}. We obtain a lower
bound on the class numbers of the family {Lm} (Section 6) and some result on the
divisibility of the divisor class numbers of cyclotomic function ûelds which contain
{Lm} as their subûelds (Section 8). We ûnd all the cyclic quartic function ûelds in the
family {Lm}whose class numbers are less than or equal to 20 with the positive degree
of m (Table 3). Furthermore, we ûnd an explicit criterion for the characterization of
splitting types of all the primes of k in {Lm} (_eorem 7.2); this is very useful due to
its important role in computing the class numbers of Lm and zeros of zeta functions
of Lm as mentioned in [17].

Our main result is the following theorem.

_eorem 1.1 Let m be a monic polynomial in Fq[t] such that m2 + 16 is square free
in Fq[t]. _en the regulator R(Lm) of Lm is a factor of 2(degm)3 and

R(Lm) ≥
1
2
(degm)

3 .

Moreover, if deg(m) is an odd prime or q ≡ 3 (mod 4), then the regulator of Lm is
explicitly given by R(Lm) = (degm)3.

Table 1 and Table 2 in the appendix present some lists of m and q satisfying our
conditions to determine R(Lm). We prove the existence of an inûnite family {Lm}

satisfying the conditions of _eorem 1.1 in Section 5. Moreover, we determine all q
and m for which the class numbers of Lm in the family are less than or equal to 20 in
Section 6. _e same types of quartic ûelds are discussed for the number ûeld case in
[11,15]. _ere is a signiûcantdiòerence between thenumberûeld case and the function
ûeld case in determining the index QLm ∶= [U(Lm) ∶ U(Km)U(Lm/Km)], where Km
is the unique intermediate quadratic subûeld of Lm/k, U(Lm) (respectively, U(Km))
is the unit group of themaximal order of Lm (respectively, Km), and

U(Lm/Km) ∶= {є ∈ U(Lm) ∣ NLm/Km(є) = єσ 2
(є) ∈ F∗q}.

2 Preliminary

Let k = Fq(t) and let Lm = k(αm) be a quartic extension of k that is generated by a
root αm of x4 − mx3 − 6x2 + mx + 1, where m is a monic polynomial in Fq[t] such
that m2 + 16 is square free in Fq[t]. _en the unique intermediate quadratic subûeld
Km of Lm/k is in fact k(

√
m2 + 16). It is known that Lm is a cyclic extension of k such

that Gal(Lm/k) = ⟨σ⟩ and Gal(Lm/Km) = ⟨σ 2⟩, where

σ(αm) =
αm − 1
αm + 1

.

Let U(Lm) (respectively, U(Km)) be the maximal order of Lm (respectively, Km) as
before. Let U(Lm/Km) ∶= {є ∈ U(Lm) ∣ NLm/Km(є) = єσ 2(є) ∈ F∗q}. It is known [4]
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that there is ηm ∈ Lm such that U(Lm/Km) = F∗q × ⟨ηm , σ(ηm)⟩, and we call ηm a
relative fundamental unit of Lm over Km .

_e inûnite prime ℘∞ of k splits completely in Lm . _erefore, there are four em-
beddings of Lm into k∞ = Fq((t−1)) associated with the inûnite primes Pi of Lm
lying over ℘∞ with i = 1, 2, 3, 4, where k∞ denotes the completion of k at ℘∞. We ûx
one of the embeddings associated with P1 to deûne the degree of an element of Lm
throughout this paper. For a nonzero element a = ∑∞i=−m c i t−i ∈ k∞, where m ∈ Z,
c i ∈ Fq(i ≥ −m), and c−m /= 0, we have the valuation v℘∞(a) = −m, so we deûne the
degree of a to be deg a = m. Let R(Lm) (respectively, R(Km)) denote the regulator of
Lm (respectively, the regulator of Km) and for є i ∈ U(Lm) (i = 1, 2, 3),

R(є1 , є2 , є3) ∶=
⎛
⎜
⎝

deg є1 deg є2 deg σ(є3)
deg σ(є1) deg σ(є2) deg σ 2(є3)
deg σ 2(є1) deg σ 2(є2) deg σ 3(є3).

⎞
⎟
⎠

_roughout this paper let DLm/Km (respectively, DLm/k) be the discriminant of Lm
over Km (respectively, Lm over k).

3 Determination of Relative Regulators

In this section we show that the relative fundamental unit ηm of Lm over Km is equal
to a root αm of x4 − mx3 − 6x2 + mx + 1 up to a constant in F∗q , under one of the
following two conditions:
● deg(m) is an odd prime,
● q ≡ 3 (mod 4).

It is known [4] that QLm ∶= [U(Lm) ∶ U(Km)U(Lm/Km)] equals 1 or 2 and

R(єKm , ηm , σ(ηm)) = QLmR(Lm).

_us, for a determination of R(Lm) and the relative fundamental unit ηm , we need
a lower bound and an upper bound of R(єm , ηm , σ(ηm)). We note that for α ∈

U(Lm/Km) and β ∈ U(Km), we have

R(β, α, σ(α)) = 2deg(β)((deg α)2
+ (deg σ(α))2) .

Proposition 3.1 Let ηm ∈ Lm and єm ∈ Km such that U(Lm/Km) = F∗q×⟨ηm , σ(ηm)⟩

and U(Km) = F∗q × ⟨єm⟩. _en we have (degm)3 ≤ R(єm , ηm , σ(ηm)) ≤ 2(degm)3.

Proof Since αm ∈ U(Lm/Km), we have

R(єm , ηm , σ(ηm)) ≤ R(єm , αm , σ(αm)) = 2deg(єm)((deg αm)
2
+ (deg σ(αm))

2) .

We note that αm = m+ 5
m +⋅ ⋅ ⋅, σ(αm) = 1+ 5

m +⋅ ⋅ ⋅ , and єm = m+
√

m2 + 16 = 2m+⋅ ⋅ ⋅

(see [3, proof _eorem 4.1]). _us, we have deg єm = degm, deg αm = degm, and
deg σ(αm) = 0. Finally, we obtain that

R(єm , ηm , σ(ηm)) ≤ 2deg єm((deg αm)
2
+ (deg σ(αm))

2) = 2(degm)
3 .

Nowwe note that DLm = NKm/k(DLm/Km)D2
Km

= (m2+ 16)3. Since DKm = m2+ 16,we
note that NKm/k(DLm/Km) = m2 + 16. Moreover, DLm/Km divides (ηm − σ 2(ηm))2 in
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Km . _us (m2+16) divides (ηm−σ 2(ηm))2(σ(ηm)−σ 3(ηm))2 in k. Since σ 2(ηm) =

1/ηm and σ 3(ηm) = 1/σ(ηm), we have

deg(m2
+ 16) ≤ 2∣deg ηm ∣ + 2∣deg σ(ηm)∣ ≤ 2

√
2((deg ηm)

2
+ (deg σ(ηm))

2
)

1
2 ;

this is because a + b ≤
√

2(a2 + b2) for positive numbers a, b. It thus follows that
(deg(m2 + 16))2 ≤ 8((deg ηm)2 + (deg σ(ηm))2).

3.1 Determination I

In this section, we determine a relative fundamental unit of Lm over Km under the
ûrst condition that deg(m) is an odd prime.

_eorem 3.2 If deg(m) is an odd prime, then αm is a relative fundamental unit of
Lm over Km up to a constant in F∗q .

Proof We note that

QLmR(Lm) = R(єKm , ηm , σ(ηm)) ∣ R(єKm , αm , σ(αm)) = 2(degm)
3

and (degm)3 ≤ R(єKm , ηm , σ(ηm)) = QLmR(Lm) ≤ 2(degm)3.
If QLm = 2, we have R(Lm) ∣ (degm)3 and 1/2(degm)3 ≤ R(Lm) ≤ (degm)3. If

degm is an odd prime, then we have R(Lm) = (degm)3 and

R(єKm , ηm , σ(ηm)) = R(єKm , αm , σ(αm)) = 2(degm)
3 .

If QLm = 1, then R(Lm) = R(єKm , ηm , σ(ηm)). We note that R(Lm) is an even
integer since R(єKm , ηm , σ(ηm)) is an even integer. Let R′(Lm) ∶= R(Lm)/2. Since
R(Lm) ∣ 2(degm)3 and (deg(m))3 ≤ R(Lm) ≤ 2(degm)3, we have

R′(Lm) ∣ (degm)
3

and 1/2(deg(m))3 ≤ R′(Lm) ≤ (degm)3. If deg(m) is an odd prime, then we have
R′(Lm) = (degm)3 and R(єKm , ηm , σ(ηm)) = R(єKm , αm , σ(αm)) = 2(degm)3.
Since αm ∈ U(Lm/Km), we have αm = cηamσ(ηm)b for a, b ∈ Z and c ∈ F∗q . We have
R(єKm , αm , σ(αm)) = (a2 + b2)R(єKm , ηm , σ(ηm)). Hence R(єKm , ηm , σ(ηm)) =

R(єKm , αm , σ(αm)) implies that αm = cη±1
m or cσ(ηm)±1; this implies that αm is a

relative fundamental unit up to constant in F∗q .

3.2 Determination II

In this section, we determine a relative fundamental unit of Lm over Km under the
second condition that q ≡ 3 (mod 4).

_eorem 3.3 If q ≡ 3 (mod 4), then αm is a relative fundamental unit of Lm over
Km up to a constant in F∗q .

Proof Our proof proceeds in a similarway as the proof of_eorem 3.5 in [18]. _ere
is ηm ∈ Lm such that U(Lm/Km) = F∗q × ⟨ηm , σ(ηm)⟩, so

E(Lm/Km) ∶= U(Lm/Km)/F∗q ≃ Z[σ]/⟨σ 2
+ 1⟩ ≃ Z[i]
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as Z[σ]-modules. _us there are β ∈ Z[i] and c ∈ F∗q such that αm = cηβm . Moreover,
E(αm) ∶= ⟨αm , σ(αm)⟩ ≃ βZ[i] as Z[σ]-modules.

_us [E(Lm/Km) ∶ E(αm)] = [Z[i] ∶ βZ[i]] = NQ(i)/Q(β). From Proposition 3.1,
we know that [E(Lm/Km) ∶ E(αm)] ≤ 2. If we assume that

[E(Lm/Km) ∶ E(αm)] = N(β) = 2,

then (1− i) divides β in Z[i]. _us, for an element τm ∈ E(Lm/Km), we have that for
c ∈ F∗q , αm = cτ(1−σ)

m . Now we consider a prime pm of k which is totally ramiûed in
Lm . In other words, ℘4

m = pm for a prime ℘m of Lm . Since

σ i
(τm) ≡ τm in OLm/℘m (i = 0, 1, 2, 3),

for c ∈ F∗q , we have σ i(αm) ≡ c in OLm/℘m , (i = 0, 1, 2, 3), where OLm is themaximal
order of Lm . _us we have that for c ∈ F∗q ,

x4
−mx3

− 6x2
+mx + 1 ≡ (x − c)4 in OLm/℘m .

_is implies that for c ∈ F∗q , c2 ≡ −1 in OLm/℘m . Since c is an element in F∗q , c2 ≡

−1 in OLm/℘m implies that −1 is a square in Fq . _us, we ûnd that if −1 is not a square
in Fq , then [E(Lm/Km) ∶ E(αm)] = 1. Moreover, we note that −1 is not a square in Fq
if and only if q ≡ 3 (mod 4). _is completes the proof.

4 Proof of the Main Result

In this section, we ûrst compute QLm and then complete the proof of _eorem 1.1.
For this we need the following three lemmas. Gras [4] found the method to deter-
mine QLm in the number ûeld case, and we develop its function ûeld analogue in this
section.

Lemma 4.1 QLm = 2 if and only if NLm/Km(U(Lm)) = U(Km), where NLm/Km

denotes the norm map from Lm to Km .

Proof We consider a map ϕ∶U(Lm) → U(Km)/U(Km)2, which is the composi-
tion of two maps NLm/Km ∶U(Lm) → U(Km) and the canonical map π∶U(Km) →

U(Km)/U(Km)2. _en we have ker ϕ = U(Lm/Km)U(Km). _us

[U(Lm) ∶ U(Km)U(Lm/Km)] ∣ [U(Km) ∶ U(Km)
2
] = 2.

Moreover, if NLm/Km(U(Lm)) = U(Km), then ϕ is surjective. _us, in this case we
have [U(Lm) ∶ U(Km)U(Lm/Km)] = [U(Km) ∶ U(Km)2] = 2.

_e following lemma is a criterion to determine if QLm is 2. A similar criterion in
the number ûeld case is given in [4].

Lemma 4.2 Let U(Km) = F∗q×⟨єm⟩ andU(Lm/Km) = F∗q×⟨ηm , σ(ηm)⟩. If єmη1−σ
m

is a square in U(Lm) up to a constant in F∗q , then QLm = 2.

Proof Since є1+σ
m , η−1−σ 2

m ∈ F∗q , u2 = cєmη1−σ
m , (c ∈ F∗q) implies that

u2(1+σ)
= cє1+σ

m η1−σ 2

m = c′η2
m (c′ , c ∈ F∗q).
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_us ηm = c1u1+σ
m , єm = c2u1+σ 2

m , for (c1 , c2 ∈ F∗q). _is implies that єm = c3NLm/Km(u)
for u ∈ U(Lm) and c3 ∈ F∗q . Hence fromLemma 4.1we can conclude thatQLm = 2.

We ûrst show that єmη1−σ
m is a square in U(Lm) up to a constant in F∗q . _en we

have by Lemma 4.2 that QLm = 2. It follows that R(Lm) = (degm)3. It is thus enough
to show that єmη1−σ

m is a square in U(Lm) up to a constant in F∗q . To check if єmη1−σ
m

is a square in U(Lm) up to a constant in F∗q , we need the following lemma.

Lemma 4.3 Let E be a quadratic extension of F and τ ∈ E. If NE/F(τ) is a square in
F and TrE/F(τ) + 2

√
NE/F(τ) or TrE/F(τ) − 2

√
NE/F(τ) is a square up to a constant

of F∗q in F, then τ is a square in E up to a constant in F∗q .

Proof Suppose that NE/F(τ) = w2, TrE/F(τ) + 2
√

NE/F(τ) = au2 for a ∈ F∗q , and
u,w ∈ E. _en we can see that

NE/F(aτ) = a2NE/F(τ) = (aw)
2 ,

TrE/F(aτ) + 2
√

NE/F(aτ) = (au)2 .

From [14, Proposition 3.1], we have

√
aτ =

aτ +
√

NE/F(aτ)
√

TrE/F(aτ) + 2
√

NE/F(aτ)
.

It thus follows that τ is square in E up to a constant in F∗q . Similarly, we can prove
the same conclusion in the latter case that NE/F(τ) and TrE/F(τ) − 2

√
NE/F(τ) are

square in F.

Proof of_eorem 1.1 In _eorem 3.2 and _eorem 3.3, we ûnd that if degm is an
odd prime or q ≡ 3 (mod 4), then ηm = cαm for c ∈ F∗q . _us we have τm ∶=

єmηm/σ(ηm) = єmαm/σ(αm). We note that

NLm/Km(τm) = є2m ,

TrLm/Km(τm) + 2
√

NLm/Km(τm) = єm(4 +
√

m2 + 16),

TrLm/Km(τm) − 2
√

NLm/Km(τm) = єm(
√

m2 + 16).

We note that one of

TrLm/Km(τm) + 2
√

NLm/Km(τm) and TrLm/Km(τm) − 2
√

NLm/Km(τm)

is given by єm(4 +
√

m2 + 16) ∈ Km . Moreover, δm ∶= єm(4 +
√

m2 + 16) ∈ Km is
square in Km if either TrKm/k(δm)+ 2

√
NKm/k(δm) or TrKm/k(δm)− 2

√
NKm/k(δm)

is square in k. We note that

NKm/k(δm) = 16m2 ,

TrKm/k(δm) + 2
√

NKm/k(δm) = (2m2
+ 8m + 32 + 8m),

TrKm/k(δm) − 2
√

NKm/k(δm) = (2m2
+ 8m + 32 − 8m).
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Either TrKm/k(δm) + 2
√

NKm/k(δm) or TrKm/k(δm) − 2
√

NKm/k(δm) is 2(m + 4)2.
Hence, from Lemma 4.3,we have that δm is a square in Km up to a constant in F∗q and
τm is a square in Lm up to a constant in F∗q . _is completes the proof.

5 Infinitely Many Families of Quartic Function Fields

In this section, we show that there are inûnitelymany primes q such that h(t)2 + 16 is
square free in Fq[t], where h(t) is a given monic polynomial in Z[t]. Consequently,
_eorem 1.1 holds for inûnitely many families of the simplest quartic function ûelds.

Proposition 5.1 (i) Let h(t) be of the type tk+c ∈ Fq[t]with c ∈ F∗q . _en h(t)2+

16 is square free in Fq[t] for all but ûnitely many primes q.
(ii) Let h(t) = tk + atk−1 ∈ Z[t] and α ∶= − a(k−1)

k . If h(α)2 + 16 /= 0, then h(t)2 + 16
is square free in Fq[t] for all but ûnitely many primes q.

Proof (i)We easily ûnd that a nonzero polynomial f (t) ∈ Q[t] is square free if and
only if f (t) is relatively prime to f ′(t) in Q[t]. Since h(t)2 + 16 = (tk + c)2 + 16 and
2h(t)h′(t) = 2k(tk + c)tk−1 are relatively prime in Q[t], h(t)2 + 16 is square free in
Q[t]. Now we claim that for f (t), g(t) ∈ Z[t], if f (g(t)) is square free inQ[t], then
f (g(t)) ∈ Fq[t] is square free for all but ûnitely many prime q, where α denotes the
reduction of coeõcients of α ∈ Z[t]modulo q. If f (g(t)) is square free inQ[t], then
f (g(t)) and f (g(t))′ are relatively prime inQ[t]. Hence, there exist h1(t) and h2(t)
in Q[t] such that f (g(t))h1(t) + f (g(t))′h2(t) = 1. _us for q such that

(5.1) f (g(t)) /= 0, h1(t) /= 0, f (g(t))′ /= 0, h2(t) /= 0,

we have f (g(t))h1(t) + f (g(t))′h2(t) = 1. Equivalently, f (g(t)) and f (g(t))′ are
relatively prime. Since there are ûnitely many primes q that do not satisfy the condi-
tion of (5.1), it thus follows that f (g(t)) is squarefree in Fq[t] for all but ûnitelymany
primes q. Consequently, we obtain the result.

(ii) We proceed in the same way as (i). We note that h′(t) = katk−1(t − α). _us,
h(α)2 + 16 /= 0 implies that h(t)2 + 16 is relatively prime to 2h(t)h′(t) in Q[t]; so
h(t)2 + 16 is square free in Q[t]. _e result thus follows.

Remark 5.2 In Proposition 5.1, we ûnd inûnitely many m and q such that m2 + 16
is square free in Fq[t]. Moreover, Table 1 and Table 2 in the appendix present a list of
m and q satisfying our conditions to determine R(Lm).

6 A Lower Bound of Class Numbers of our Family and Determina-
tion of Small Class Numbers

Let R(K) be the regulator of K, h(K) the divisor class number (that is, the number
of divisor classes of degree zero of K), and h′(K) the ideal class number of K (that
is, the number of ideal classes of themaximal ideal OK of K), simply a so-called class
number of K throughout this paper. _en we have that h(K) = R(K)h′(K).
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Lemma 6.1 (Weil _eorem) Let K be a global function ûeld whose constant ûeld F
has q elements. Let N1(K) denote the number of prime divisors of degree 1 of K and let
gK be the genus of K. _en ∣N1(K) − q − 1∣ ≤ 2gK

√q.

Proof See [16, Proposition 5.11].

Let K be a function ûeld over Fq and K̃ be the constant ûeld extension of K with
an extension degree n. Since gK̃ = gK , we have

(6.1) N1(K̃) ≥ qn
+ 1 − 2gK

√
qn .

Lemma 6.2 Let K be a function ûeld over Fq and K̃ be the constant ûeld extension
of K with an extension degree n. Let P be a prime divisor of K. If degK(P) divides n,
then P splits into degK(P) primes of degree 1 in K̃.

Proof See [16, Proposition 8.13].

We thus can see that the number of integral divisors of degree n in K is at least
N1(K̃)/n.

Lemma 6.3 (Riemann–Roch _eorem) _e dimension d(C) of a divisor class C of
degree 2gK − 1 in K is d(C) = degC + 1 − gK .

Lemma 6.4 _e genus gLm of Lm is given by gLm = 3(degm − 1).

Proof Since the inûnite prime in k splits completely in Lm , we obtain the result due
to theHurwitz genus formula.

In the following theorem, we obtain a lower bound of the divisor class numbers of
{Lm}; cases of quadratic function ûelds have been treated in [3,_eorem 4.1].

_eorem 6.5 If degm > 1, then the divisor class number h(Lm) of Lm has a lower
bound given by

h(Lm) ≥
q − 1

qgLm − 1
q2gLm−1 + 1 − 2gLmq

2gLm −1
2

2gLm − 1
.

Moreover, if degm = 1, then h(Lm) = 1.

Proof If degm = 1, then the genus of Lm is 0 by Lemma 6.4, and so the divisor class
number of Lm is 1.

Nowwe consider the casewhen degm > 1. Let n = 2gLm−1. _en the number of di-
visor classes of degree n is h(Lm), and there are (qd(C) − 1)/(q − 1) integraldivisors in
each class C. _us the number of integral divisors in Lm is h(Lm)(qd(C) − 1)/(q − 1)
and it is greater than or equal to N1(L̃m)

n , where L̃m is a constant extension of Lm of an
extension degree n. It thus follows from (6.1) that

h(Lm)
qd(C) − 1

q − 1
≥

N1(L̃m)

n
≥

qn + 1 − 2gLmq
n
2

n
.
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_eorem 6.6 If degm > 1, then the ideal class number h′(Lm) of Lm has a lower
bound given by

h′(Lm) ≥
1

2(degm)3
q − 1

q3(deg m−1) − 1
q6(deg m)−7 + 1 − 6(degm − 1)q

6(deg m)−7
2

6(degm) − 7
.

Moreover, if degm = 1, then h′(Lm) = 1.

Proof We note that

n = 2gLm − 1 = 6(degm) − 7 and d(C) = gLm = 3(degm − 1).

From Proposition 3.1, we have R(Lm) ≤ 2(degm)3. _us we obtain the result from
_eorem 6.5.

Corollary 6.7 If h′(Lm) ≤ 20, then either degm = 1 or q ≤ 11 and degm ≤ 4.
Moreover, the list in Table 3 is a complete list of q and m for which the class numbers of
Lm are less than or equal to 20, where degm > 1, and the class number computation is
made by Magma.

7 Contribution to Computing Divisor Class Numbers of Cyclic
Quartic Function Fields

Let LLm(u) = ∏
g
j=1(1 − ω ju), where g is the genus of Lm . _en it is known that

h(Lm) = LLm(1) = qgLLm(1/q). For u = qs , we have LLm(u) = (1− u)(1− qu)ζLm(s),
where ζLm(s) = ∑a≥0 N(a)−s =∏

∞

v=1∏deg(p)=v
1

1−uv .
We note that

ζLm(s) =
∞

∏
v=1

∏
deg(p)=v

1
1 − uv = ζ∞Lm(u)ζ

x
Lm(u).

Since an inûnite prime on Lm splits completely in Lm ,we have ζ∞Lm
(u) = 1

(1−u)4 . More-
over, for amonic irreducible p ∈ Fq[t],

ζxLm(u) =
∞

∏
v=1
∏

deg p=v
∏
p∣p

1
1 − udeg p

.

We note that for amonic irreducible p ∈ Fq[t] with deg p = v and p ∣ p,

∏
p∣p

1
1 − udeg p

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1 − uv)−4 if (e(p), f (p), g(p)) = (1, 1, 4),
(1 − u2v)−2 if (e(p), f (p), g(p)) = (1, 2, 2),
(1 − uv)−1 if (e(p), f (p), g(p)) = (4, 1, 1),
(1 − u4v)−1 if (e(p), f (p), g(p)) = (1, 4, 1),

where for the extension of Lm over k, e(p) is the ramiûcation index of the prime ideal
(p), f (p) is the residue class ûeld degree of (p), and g(p) is the number of the primes
of Lm lying above (p).
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_us by deûning

Z i(p) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if (e(p), f (p), g(p)) = (1, 1, 4),
(−1)i if (e(p), f (p), g(p)) = (1, 2, 2),
0 if (e(p), f (p), g(p)) = (4, 1, 1),
ζ i
4 if (e(p), f (p), g(p)) = (1, 4, 1),

we can rewrite

ζxLm(u) =
∞

∏
v=1
∏

deg p=v
(1 − uv

)
−1

3

∏
i=1

(1 − Z i(p)uv
)
−1 .

We deûne Sv(ℓ) ∶= ∑deg p=v ∑
3
j=1 Z i(p)ℓ . Since

∞

∏
v=1
∏

deg p=v
(1 − uv

)
−1
= (1 − qu)−1 ,

we can rewrite

log h(Lm) = g log q − 3 log( 1 − 1
q
) +

∞

∑
ℓ=1

1
ℓqℓ ∑v∣ℓ

Sv(
ℓ
v
) .

_us, we have h(Lm) = E(λ)eB(λ), where

log E(λ) = g log q − 3( 1 − 1
q
) +

λ

∑
ℓ=1

1
ℓqℓ ∑v∣ℓ

Sv(
ℓ
v
) ,

B(λ) =∑
ℓ≥λ

1
ℓqℓ ∑v∣ℓ

Sv(
ℓ
v
) ,

and ∣h(Lm) − E(λ)∣ ≤ ∣E(λ)∣ ∣(eB(λ) − 1)∣. Moreover, we have that

E(λ) < e g log q−3 log(1− 1
q )(

√q
√q − 1

)
2g
(

q
q − 1

)
3 ,

B(λ) < 2g
λ + 1

q−
λ+1
2 +

2g
λ + 2

√q
√q − 1

q−
λ+2
2 +

3
λ + 1

q
q − 1

q−λ+1

(see [17]).

Computation of E(λ) To compute E(λ),we need to calculate Sv(ℓ). In the follow-
ing, we represent Sv(ℓ) by using the number of primes p of k with a given signature
(e(p), f (p), g(p)) in Lm . We deûneN i(v) as follows: N i(v) ∶= thenumber ofprimes
p with degree v such that

(e(p), f (p), g(p)) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1, 4) if i = 1,
(1, 2, 2) if i = 2,
(4, 1, 1) if i = 3,
(1, 4, 1) if i = 4.

_en we have the following theorem.
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_eorem 7.1

Sv(ℓ) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3(N1(v) + N2(v) + N4(v)) if ℓ ≡ 0 (mod 4),
3N1(v) − (N2(v) + N4(v)) if ℓ ≡ 1 (mod 4),
3(N1(v) + N2(v)) − N4(v) if ℓ ≡ 2 (mod 4),
3N1(v) − (N2(v) + N4(v)) if ℓ ≡ 3 (mod 4).

Proof By the deûnitions of N i(v), Sv(ℓ), and Z i(p), we can obtain the result by
simple computation.

We can ûnd an explicit criterion for characterization of signature types of all the
primes of k in {Lm} since Sv(ℓ) is explicitly determined by signature types of all the
primes of k in {Lm}.

_eorem 7.2 Signature types of all the primes of k in {Lm} are explicitly determined
as follows:

(e(p), f (p), g(p)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1, 4) if ∆m /≡ 0 (mod p), ( ∆m
p ) = 1, ( ∆m−m

√

∆m
p ) = 1,

(1, 2, 2) if ∆m /≡ 0 (mod p), ( ∆m
p ) = 1, ( ∆m−m

√

∆m
p ) /= 1,

(4, 1, 1) if m ≡ 0 (mod p), ∆m ≡ 0 (mod p),
(1, 4, 1) if ∆m /≡ 0 (mod p), ( ∆m

p ) /= 1,

where ( ⋅p ) denotes the Legendre symbol.

Proof We have
x4
−mx3

− 6x2
+mx + 1 = (x − α1,m)(x − α2,m)(x − α3,m)(x − α4,m)

with

α1,m =
1
2
(

m +
√
∆m

2
+

√
∆m +m

√
∆m

2
) ,

α2,m =
1
2
(

m −
√
∆m

2
+

√
∆m −m

√
∆m

2
) ,

α3,m =
1
2
(

m +
√
∆m

2
−

√
∆m +m

√
∆m

2
) ,

α4,m =
1
2
(

m −
√
∆m

2
−

√
∆m −m

√
∆m

2
) .

_e result thus follows immediately.

Complexity of Computation of E(λ) See [17, 4.1].
Let t(λ) be the time required for computing E(λ). For computing E(λ), we need

to calculate Sv(i) for v ≤ λ. We can represent Sv(i) using the number of primes in k
with a given signature type. _us t(λ) is approximately the product of the number of
irreducible polynomials and the running time T to determine the signature type of
the principal ideal (p(t)) for an irreducible polynomial p(t) ∈ Fq[t]. _erefore, the
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complexity of computation of E(λ) is given by O(
qλ

λ T). We note that the complex-
ity of computation of E(λ) depends on λ. If we have the exact value of the regulator
R(K), then we can possibly obtain a more eõcient algorithm for computing the di-
visor class number h(Lm) of Lm by the reduction of E(λ). We discuss more details
below.

Using the upper bound of E(λ) and B(λ), we can compute the error term of
h(Lm) − E(λ). _e fact that h(Lm) is an integer is importantly used for ûnding the
truncated point of λ to make the error term

(7.1) ∣E(λ)(eB(λ) − 1)∣ < 1/2.

Since h(Lm) is a multiple of R(Lm), if we know the exact value of R(Lm), then the
truncated point of λ is the smallest integer satisfying

(7.2) ∣E(λ)(eB(λ) − 1)∣ < R(Lm)/2.

Since E(λ)eB(λ) − 1 is a decreasing function on λ, the smallest integer satisfying (7.2)
is much smaller than the smallest integer satisfying (7.1).

8 Divisibility of Divisor Class Numbers of Cyclotomic Function
Fields

In this section, we study the divisibility of the divisor class numbers of cyclotomic
function ûelds which contain {Lm} as their subûelds.

Let E be a ûnite abelian extension of k. _en the conductor of E is the monic
polynomial N ∈ Fq[t] such that k(ΛN) is the smallest cyclotomic function ûeld con-
taining E. Recall that the cyclotomic function ûeld k(ΛN) is deûned via the Carlitz
module [16, Chapter 12].

If m2 + 16 is square free in Fq[t] for m ∈ Fq[t], then the discriminant D(Km)

(respectively, D(Lm)) of Km (respectively, Lm) over k is m2 + 16 (respectively,
(m2 + 16)3). Since Lm is a cyclic extension of k with the unique quadratic subûeld
Km , the conductor f (Lm/k) of Lm over k is equal to

f (Lm/k) = (D(Lm)/D(Km))
1
2 = m2

+ 16

[7, Corollary on p. 332]. It thus follows that Lm is a subûeld of the cyclotomic function
ûeld k(Λm2+16).

We note that for amonic polynomial m ∈ Fq[t], we have

Lm = k(

√

m2 + 16 +m
√

m2 + 16
2

) .

Moreover, for m = td + ad−1 td−1 + ⋅ ⋅ ⋅ + a0 ∈ Fq[t] and u = t−1,
√

m2 + 16 +m
√

m2 + 16
2

= u−d + b−(d−1)u−(d−1)
+ b−(d−2)u−(d−2)

+ ⋅ ⋅ ⋅ ∈ Fq((u)).

Since u = 1/t is a local parameter of the inûnite prime ℘∞ of k, ℘∞ splits completely
in Lm and Lm is a subûeld of themaximal real subûeld k(Λm2+16)

+ of the cyclotomic
function ûeld k(Λm2+16). _en the divisor class number h(k(Λm2+16)

+) is divisible
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by the divisor class number h(Lm) as k(Λm2+16)
+ is a geometric extension of Lm

[16, Corollary 1, p. 252]. We therefore obtain the following result.

_eorem 8.1 Let m ∈ Fq[t] be such that m2 + 16 is square free in Fq[t] and q ≡

3 (mod 4). Let k(Λm2+16)
+ be the maximal real subûeld of the cyclotomic function

ûeld k(Λm2+16). _en we have the following divisibility of the divisor class number
h(k(Λm2+16)

+):
(degm)

3
∣ h(k(Λm2+16)

+
).

We thus observe the following. For a given positive integer a and all but ûnitelymany
primes q with q ≡ 3 (mod 4), there are inûnitelymany m ∈ Fq[t] such that the divisor
class number h(k(Λm2+16)

+) is divisible by a3.

Proof _e ûrst assertion follows immediately from _eorem 1.1. For the second as-
sertion, let a be a given positive integer. Let m ∶= md = tad + c for a positive integer d
and c ∈ Fq . _en m2 + 16 is square free in Fq[t] for all but ûnitelymany q by Proposi-
tion 5.1. From _eorem 1.1, we ûnd that if q ≡ 3 (mod 4), then the regulator R(Lm)

of Lm is (degm)3 . _erefore, the divisor class number h(Lm) is divisible by the reg-
ulator R(Lm) = (degm)3 = d3a3, and so the divisor class number h(k(Λm2+16)

+) is
divisible by a3 because it is divisible by the divisor class number h(Lm). _is holds for
the inûnite family of m = tad + c with any positive integer d. _e result thus follows
as desired.

According to [6,_eorem 3.4], there is a lower bound on the p-part of h(k(ΛQn)+)

under the condition that p divides h(k(ΛQ)+), where p is the characteristic of k and
Q is an irreducible polynomial in k. As in the proof of_eorem 8.1, we can explicitly
ûnd irreducible polynomials Q with p ∣ h(k(ΛQ)+). By combining _eorem 8.1with
[6,_eorem 3.4], we thus obtain the following result.

Proposition 8.2 Let p be a primewith p ≡ 3 (mod 4) andm be amonic polynomial
in Fp[t] such that m2 + 16 is irreducible in Fp[t] with p ∣ degm. _en for any positive
integer n, we have pe(n) ∣ h(k(Λ(m2+16)n)+), where

e(n) ∶= [
p(n−1)2 deg m − 1

n(p − 1)
]

and [x] denotes the greatest integer that is less than or equal to x.

Remark 8.3 From Proposition 8.2, we can ûnd irreducible polynomials Q ∈ Fp[t]
such that the exponent of the p-part of h(k(ΛQn)+) is at least

[
p(n−1)2 deg m − 1

n(p − 1)
] .

For example, in the case when p = 3, we have that if m = t3 + t, t3 + t2, or t3 + 2t2,
then m2 + 16 is an irreducible polynomial in F3[t]. _us for such m, we obtain that

3[
3(n−1)6−1

2n ]
∣ h(k(Λ(m2+16)n)

+
).

https://doi.org/10.4153/CJM-2016-038-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-038-2


592 J. Lee and Y. Lee

Moreover, we see that ifm = t6 + t4 +2t2 + t, t6 + t5 +2t2 + t, or t6 + t4 +2t2 +2t, then
m2 + 16 is an irreducible polynomial in F3[t]. Consequently, for such m, it follows
that

3[
3(n−1)12−1

2n ]
∣ h(k(Λ(m2+16)n)

+
).

Appendix

Using _eorem 1.1 and Proposition 5.1, we ûnd Table 1, which is a list of regulators of
Lm , where degm is an odd prime, for all but ûnitely many primes q.

Table 1: Regulators of Lm , where degm is an odd prime

m R(Lm) m R(Lm)

t3 33 t3 + 3t2 + 2 33

t5 53 t5 + 3t4 + 2t3 + 2t 53

t7 73 t7 + 3t6 + 2t5 + 8t4 + 4t3 + 2t 73

t11 113 t11 + 3t10 + 2t9 + 8t5 + 4t3 + 2t 113

t13 133 t13 + t12 + t6 + 5t3 + 4t + 1 133

t17 173 t17 + t12 + t6 + 5t3 + 4t + 1 173

t19 193 t19 + t12 + t6 + 5t3 + 4t + 1 193

t23 233 t23 + 3t10 + t9 233

t29 293 t29 + 3t10 + t9 293

Table 2 is a list of regulators of Lm , where deg(m) is composite, for all but ûnitely
many primes q with q ≡ 3 (mod r).

Table 2: Regulators of Lm , where deg(m) is composite and q ≡ 3 (mod 4)

m R(Lm) m R(Lm)

t15 153 t15 + t12 + 3t4 + 5 153

t21 213 t21 + t12 + 3t4 + 5 213

t35 353 t35 + t12 + 3t4 + 5 353

t143 1433 t143 + t120 + 3t4 + 5 1433

t187 1873 t187 + t140 + 3t4 + 5 1873

t221 2213 t221 + t201 + 3t94 + 7 2213

t247 2473 t247 + t20 + 3t4 + 5 2473

t253 2533 t253 + t220 + 3t47 + 5 2533

t319 3193 t319 + 7t201 + 3t4 + 5 3193
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Table 3: A complete listwith ideal class numbers ≤ 20, except the casewhen degm = 1

h′(Lm) q m
1 3 t3 , t3 + 2, t3 + 1

t2 + 3t + 3, t2 + t + 2, t2 + 2,
2 5 t2 + t + 1, t2 + 3, t2 + 4t + 1,

t2 + 2t + 4, t2 + 3t + 4, t2 + 2t + 3,
t2 + 4t + 2

3 3 t2 + 2t, t2 + 2, t2 + t
4 3 t2 + t + 1, t2 , t2 + 2t + 1
5 3 t2 + 1, t2 + t + 2, t2 + 2t + 2

t2 + 4, t2 + 4t + 4, t2 ,
8 5 t2 + 2t + 1, t2 + 3t + 1
13 3 t3 + 2t + 1, t3 + 2t + 2

t2 + 4, t2 + 2t + 2, t2 + 4t + 3,
16 5 t2 + 1, t2 + t + 3, t2 + 3t,

t2 + 3t + 2, t2 + 2t, t2 + 4t,
t2 + t

t3 + t2 + 2, t3 + t2 + t + 2, t3 + t2 + 2t + 1,
20 3 t3 + 2t2 + 1, t3 + 2t2 + t + 1, t3 + 2t2 + 2t + 2

t2 + 5t + 5, t2 + 6t + 6, t2 + 4t + 1,
20 7 t2 + 2t + 5, t2 + 4, t2 + t + 6,

t2 + 3t + 1
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