

products," he says. However, he also notes that "we have a very good system in Germany for getting companies going with seed money... but conditions are worse than the US [United States] for venture capital funding."

Traditionally, European researchers have also been slower to commercialize their work than scientists in the United States. "University research in Germany is to some extent more fundamental, while in the US it is more application-driven," says Schierle-Arndt. By encouraging closer collaboration through funding streams like this latest one, the German government hopes to change that.

"I hope that it will also strengthen material science at universities in general," says Claudia Felser from the Max Planck Institute for Chemical Physics of Solids in Dresden. She observes that technical universities are the ones that tend to have materials science departments in Germany, but that there is much to be gained from the work of physicists and chemists, too. "A truly interdisciplinary approach will help to close the gap between classical materials science and modern materials science—in areas such as nanoscience, materials for modern electronics, and quantum materials-which will play a role in the future," she says.

The German government has been actively supporting materials science and engineering since the 1970s. "They have been quite successful over the years, but this is hard to measure," says Oliver Kraft from the Karlsruhe Institute of Technology and the 2015 President of the Materials Research Society. "Overall, the German economy is doing well based on mechanical, chemical, and electrical engineering, all being supported by progress in materials. So, I would state that the long-term effort has really helped to establish materials science and engineering as a key technology in Germany."

Angela Saini

NASA's MaterialsLab improves how research is conducted on Earth and in space www.nasa.gov

When companies try to "build a better mousetrap," the process can involve a lot of internal studies and tests on the kinds of materials to use and effective designs. It can be a time-consuming but necessary operation, which means less time for people to use the device to solve a particular problem.

NASA and the National Institute of Standards and Technology (NIST) are collaborating to help scientists and innovators build that new mousetrap by accelerating materials development, and make new discoveries using data from the hundreds of investigations on the International Space Station.

An initiative between the two government agencies has created MaterialsLab—a new approach to materials science research that will provide unprecedented worldwide collaboration. Each space station investigation provides scientists with a better understanding of the physical and chemical properties of materials, allowing insight on how they develop and behave without gravity affecting the results. The MaterialsLab approach enhances the way researchers in government, industry, and academia develop investigations and share information.

"We're creating a new opportunity to develop materials experiments in space that makes it easier for scientists to conduct these investigations and share their research and data widely with the scientific community," said Marshall Porterfield, NASA's Director of Space Life and Physical Sciences in the agency's Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington, DC. "The Open Science concept allows multiple researchers around the world ... to access data from station experiments and build on each other's work."

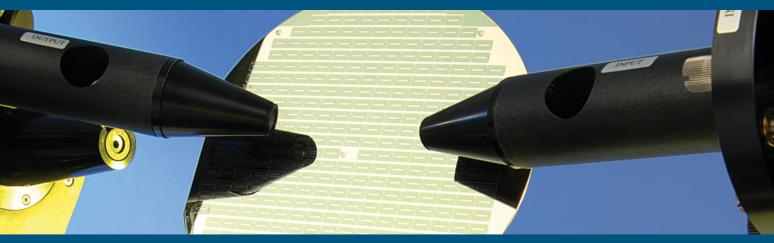
NASA and NIST recently signed a Memorandum of Understanding to foster collaboration among NASA's microgravity materials science program, the NIST Material Measurement Laboratory, and the multi-agency Materials Genome Initiative.

MaterialsLab will share data from past and present space station investigations through NASA's Physical Science Informatics system—a resource for processing and sorting data from physical science experiments performed aboard the orbiting laboratory. The goal is to promote an open-access approach to scientific data analysis and potentially guide hundreds of new, station-based scientific investigations.

With MaterialsLab, NASA is changing the way scientists conduct research by adding a slight twist. Now, space station

materials research will aim to solve engineering problems that not only relate to space travel, but also target a specific outcome or attack a materials problem identified by industry.

"We want to conduct new investigations that fulfill a specific industry need or could lead to a new commercial application," said John Vickers, the manager of the National Center for Advanced Manufacturing at NASA's Marshall Space Flight Center in Huntsville, Ala. "If the automobile industry is having a problem with a specific material, we may be able to study that material on the station and get an answer that they couldn't obtain through ground-based research. We are not only learning about the material, but also providing valuable data that immediately affects companies and consumers on Earth."


Through MaterialsLab, NASA is changing the way scientists share data and even their approach to proposing experiments. "It should be easy for investigators to access current data from experiments and use it to determine if there are gaps in knowledge that can be addressed with new investigations," Porterfield said.

NASA leaders want to continue scientific experiments to learn more about the world and the universe. They also want to change the way research is conducted by fostering a spirit of collaboration to share results from investigations on the orbiting laboratory as soon as possible.

J.A. Woollam Co., Inc.

Ellipsometry Solutionssm for your Thin Film Characterization.

J.A. Woollam Co. has the world's widest variety of **Spectroscopic Ellipsometers** with **8** different models to non-destructively characterize thin film thickness and optical constants. After twenty-four years, over **15,000** samples characterized in our lab, and over **140** patents – we are the Ellipsometry Experts.

Ellipsometry Solutions

alpha-SE®

A great solution for routine measurements of thin film thickness and refractive index. Designed for ease-of-use: simply mount a sample, choose the model that matches your film, and press "Measure". Results are yours within seconds.

AccuMap-SE®

Characterize thin film uniformity of large panels with ease. The AccuMap-SE combines a high-speed M-2000 ellipsometer, wide spectral range, and fast mapping for large panels. Perfect for photovoltaic or flat panel display thin films.

M-2000®

The M-2000 line of ellipsometers is engineered to meet the diverse demands of thin film characterization. An advanced optical design, wide spectral range, and fast data acquisition make it extremely powerful for in situ, in-line and ex situ applications.

VASF®

The VASE is our most accurate and versatile research ellipsometer for all types of materials: semiconductors, dielectrics, organics, metals, multi-layers, and more. Now available with the widest spectral range from ultraviolet to infrared.

www.jawoollam.com • 402.477.7501 • 645 M Street, Lincoln, Nebraska USA