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Abstract
We study the timelike asymptotics for global solutions to a scalar quasilinear wave equation satisfying the weak null
condition. Given a global solution u to the scalar wave equation with sufficiently small 𝐶∞

𝑐 initial data, we derive
an asymptotic formula for this global solution inside the light cone (i.e. for |𝑥 | < 𝑡). It involves the scattering data
obtained in the author’s asymptotic completeness result in [75]. Using this asymptotic formula, we prove that u
must vanish under some decaying assumptions on u or its scattering data, provided that the wave equation violates
the null condition.
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1. Introduction

This paper is devoted to the study of the long time dynamics for a scalar quasilinear wave equation in
R1+3, of the form

𝑔𝛼𝛽 (𝑢)𝜕𝛼𝜕𝛽𝑢 = 0 (1.1)

with small, smooth, and localized initial data

(𝑢, 𝑢𝑡 ) |𝑡=0 = (𝜀𝑢0, 𝜀𝑢1), for fixed 𝑢0, 𝑢1 ∈ 𝐶∞
𝑐 (R3), and for 𝜀 � 1. (1.2)

Here, we use the Einstein summation convention, with the sum taken over 𝛼, 𝛽 = 0, 1, 2, 3 with 𝜕0 = 𝜕𝑡 ,
𝜕𝑖 = 𝜕𝑥𝑖 , 𝑖 = 1, 2, 3. We assume that the 𝑔𝛼𝛽 (𝑢) are smooth functions of u, such that 𝑔𝛼𝛽 = 𝑔𝛽𝛼 and
(𝑔𝛼𝛽 (0)) = (𝑚𝛼𝛽) = diag(−1, 1, 1, 1). Since we expect |𝑢 | � 1, without loss of generality, we also
assume that 𝑔00 ≡ −1.
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2 D. Yu

The equation (1.1) satisfies the weak null condition introduced by Lindblad and Rodnianski [47].
Moreover, Lindblad [45] proved that the Cauchy problem (1.1) and (1.2) has a unique global solution
if the 𝜀 in (1.2) is sufficiently small. We refer to [44, 2] for earlier works on the global existence for
(1.1), and to [37] for an alternative proof of the global existence using the 𝑟 𝑝-weighted energy method
introduced in [16].

Recently, the author [73, 72, 75] studied the asymptotic behaviors of global solutions to (1.1) near the
light cone. We first identified a new notion of asymptotic profile and an associated notion of scattering
data for (1.1) by deriving a new reduced system called the geometric reduced system. Then, we proved
the existence of the modified wave operators and the asymptotic completeness for (1.1). In summary,
the modified scattering for (1.1) was established.

In this paper, we seek to study the asymptotic behaviors of global solutions to (1.1) in the interior
of the light cone (i.e., for |𝑥 | < 𝑡). Our main result (Theorem 1) is an asymptotic formula for a global
solution to (1.1). If 𝑢 = 𝑢(𝑡, 𝑥) is a global solution to the Cauchy problem (1.1) and (1.2), we have

𝑢(𝑡, 𝑥) =
𝜀

2𝜋

∫
S2
𝐴(𝑥 · 𝜃 − 𝑡, 𝜃) 𝑑𝑆𝜃 +𝑂 (〈𝑡 − |𝑥 |〉−2𝑡𝐶𝜀) (1.3)

whenever 𝑡 ≥ 𝑒𝛿/𝜀 and |𝑥 | < 𝑡.1 Here, 𝛿 ∈ (0, 1) is a fixed parameter, and 𝐴 = 𝐴(𝑞, 𝜔)2 is the scattering
data obtained from the asymptotic completeness result in [75]. We refer to Section 1.2.3 for the definition
of 𝐴. Here, one can view 𝐴 as a nonlinear version of the Friedlander radiation field for 𝜕𝑢.

As a corollary of (1.3), if the equation (1.1) violates the null condition,3 then the scattering data
𝐴(𝑞, 𝜔) of a nonzero global solution u to (1.1) and (1.2) cannot decay arbitrarily fast in all directions
(i.e., for all 𝜔 ∈ S2) as 𝑞 → −∞ (see Footnote 2). In this paper, we will prove that if the null condition
is violated, then the only global solution u to (1.1) and (1.2) satisfying

|𝐴(𝑞, 𝜔) | � 〈𝑞〉−1−, ∀(𝑞, 𝜔) ∈ R × S2 (1.4)

is the zero solution as long as 𝜀 � 1. One can also obtain similar results for the pointwise decay rates
of u and 𝜕𝑢. For example, assuming that

| (𝑢𝑡 − 𝑢𝑟 ) (𝑡, (𝑡 − 𝑡
1/2)𝜔) | � 𝜀𝑡−3/2−, ∀𝑡 ≥ 1, 𝜔 ∈ S2,

we have (1.4). As a result, if the null condition is violated, under the pointwise bound for 𝜕𝑢 above, we
have 𝑢 ≡ 0 as long as 𝜀 � 1. We refer to Theorems 2 and 3 for the precise statements of these results.

1.1. Background

Let us consider a generalization of the equation (1.1) in R1+3

�𝑢𝐼 = 𝐹 𝐼 (𝑢, 𝜕𝑢, 𝜕2𝑢), 𝐼 = 1, 2, . . . , 𝑀. (1.5)

The nonlinear terms are assumed to be smooth with the Taylor expansions

𝐹 𝐼 (𝑢, 𝜕𝑢, 𝜕2𝑢) =
∑

𝑎𝐼𝛼𝛽,𝐽𝐾 𝜕
𝛼𝑢𝐽 𝜕𝛽𝑢𝐾 +𝑂 (|𝑢 |3 + |𝜕𝑢 |3 + |𝜕2𝑢 |3). (1.6)

The sum is taken over all 1 ≤ 𝐽, 𝐾 ≤ 𝑀 and all multiindices 𝛼, 𝛽 with |𝛼 | ≤ |𝛽 | ≤ 2, |𝛽 | ≥ 1 and
|𝛼 | + |𝛽 | ≤ 3. Besides, the coefficients 𝑎𝐼𝛼𝛽,𝐽𝐾 ’s are all universal constants.

1Though the estimate (1.3) holds for all |𝑥 | < 𝑡 , it is useful only when |𝑥 | < 𝑡 − 𝑡1/2+. See Remark 1.2.
2In [75], the variable q corresponds to an optical function and 𝜔 corresponds to the usual angular coordinate. Note that we

take 𝑞 ≈ |𝑥 | − 𝑡 , so for a fixed t, we have 𝑞 → −∞ as |𝑥 | → 0.
3Since 𝑔00 ≡ −1, we can equivalently assume that there exist 𝛼, 𝛽 ∈ {0, 1, 2, 3} such that 𝑑

𝑑𝑢 𝑔
𝛼𝛽 (𝑢) |𝑢=0 ≠ 0.
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There have been several results on the lifespans of solutions to the Cauchy problem (1.5) with 𝐶∞
𝑐

initial data of size 𝜀 � 1. For example, John [29, 28] proved that (1.5) does not necessarily have a
global solution. There he proved finite time blowup results for �𝑢 = 𝑢2

𝑡 and �𝑢 = 𝑢𝑡𝑢𝑡𝑡 . We also refer to
[1, 68, 23, 12, 70, 60, 69] for the blowup mechanisms for several quasilinear wave equations. For arbitrary
nonlinearities, we expect to have almost global existence: the solution exists for all 𝑡 ∈ [0, 𝑒𝑐/𝜀] where
𝑐 > 0 is a small constant. We refer to [43, 30, 40, 24, 26, 36, 35] for several cases where this expectation
holds, but we remark that it has not been proved for the most general system (1.5); see the discussions
in [58, 56].

To obtain global existence, one needs extra assumptions on the system (1.5). It was proved by
Klainerman [41, 39] and Christodoulou [11] that the null condition is sufficient for global existence. We
say that (1.5) satisfies the null condition if for each 1 ≤ 𝐼, 𝐽, 𝐾 ≤ 𝑀 and for each 0 ≤ 𝑚 ≤ 𝑛 ≤ 2 with
𝑛 ≥ 1 and 𝑚 + 𝑛 ≤ 3, we have

𝐴𝐼𝑚𝑛,𝐽𝐾 (𝜔) :=
∑

|𝛼 |=𝑚, |𝛽 |=𝑛

𝑎𝐼𝛼𝛽,𝐽𝐾𝜔
𝛼𝜔𝛽 = 0, whenever 𝜔 = (−1, 𝜔) ∈ R × S2. (1.7)

We also refer to [67, 57, 65] and the references therein for extensions of this global existence result to
systems of nonlinear wave equations with multiple wave speeds.

The null condition is not necessary for global existence. In [45, 48], two examples that violate the null
condition in general but admit global existence were presented. One example is the scalar equation (1.1),
and the other is the Einstein vacuum equations in wave coordinates. These examples instead satisfy the
weak null condition introduced in [47]. Note that the null condition implies the weak null condition and
that both �𝑢 = 𝑢2

𝑡 and �𝑢 = 𝑢𝑡𝑢𝑡𝑡 violate the weak null condition. There is a conjecture that the weak
null condition is sufficient for global existence,4 and we refer to [37, 38, 32] for recent progress on it.

To define the weak null condition, we introduce a type of asymptotic equations derived by Hörmander
[24, 25, 26]. Suppose that u is a global solution to (1.5) and we make the ansatz

𝑢𝐼 (𝑡, 𝑥) ≈ 𝜀𝑟−1𝑈 𝐼 (𝑠, 𝑞, 𝜔), 𝑟 = |𝑥 |, 𝜔 = 𝑥/𝑟, 𝑠 = 𝜀 ln 𝑡, 𝑞 = 𝑟 − 𝑡, 1 ≤ 𝐼 ≤ 𝑀. (1.8)

Assuming that 𝑡 = 𝑟 → ∞, we substitute this ansatz into (1.5) and compare the coefficients of terms of
order 𝜀2𝑡−2. We thus obtain the following asymptotic PDE’s (called Hörmander’s asymptotic equations
for (1.5)) for𝑈 = (𝑈 𝐼 (𝑠, 𝑞, 𝜔)):

2𝜕𝑠𝜕𝑞𝑈 𝐼 =
∑

𝐴𝐼𝑚𝑛,𝐽𝐾 (𝜔)𝜕𝑚𝑞 𝑈
𝐽 𝜕𝑛𝑞𝑈

𝐾 . (1.9)

Here, 𝐴𝐼𝑚𝑛,𝐽𝐾 is defined by (1.7), and the sum in (1.9) is taken over 0 ≤ 𝑚 ≤ 𝑛 ≤ 2 with 𝑛 ≥ 1
and 𝑚 + 𝑛 ≤ 3. We say that (1.5) satisfies the weak null condition if the corresponding (1.9) has a
global solution for all 𝑠 ≥ 0 and if the solution and all its derivatives grow at most exponentially in s,
provided that the initial data decay sufficiently fast in q. For example, for the scalar equation (1.1), the
corresponding asymptotic equation (1.9) becomes

2𝜕𝑠𝜕𝑞𝑈 = 𝐺 (𝜔)𝑈𝜕2
𝑞𝑈, (1.10)

where

𝐺 (𝜔) := 𝑔𝛼𝛽0 𝜔𝛼𝜔𝛽 , 𝑔
𝛼𝛽
0 =

𝑑

𝑑𝑢
𝑔𝛼𝛽 (𝑢) |𝑢=0, 𝜔 = (−1, 𝜔) ∈ R × S2. (1.11)

One can prove the global existence and growth control for (1.10), so (1.1) satisfies the weak null
condition.

4To be more precise, we have different versions of this conjecture. Some of them have been disproved, while others remain
open. We refer to [74, Section 1.1] for a discussion on the current status of this conjecture.
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1.2. The modified scattering for (1.1)

Following the global existence result in [45], we are interested in the long time dynamics for the equation
(1.1). Recently, the modified scattering for (1.1) was established. In this subsection, we give an overview
of the results in [75, 73, 72] and discuss some related works on the long time dynamics for general
quasilinear wave equations in R1+3.

1.2.1. The geometric reduced system
Instead of Hörmander’s asymptotic equation (1.10), we used a new system of asymptotic equations for
(1.1) to study its long time dynamics in [75, 73, 72]. It is called the geometric reduced system, and it is
expected to describe the asymptotic behaviors of global solutions to (1.1) more accurately than (1.10)
does.

To derive the geometric reduced system, we return to the ansatz (1.8) (with 𝑀 = 1) used in the
derivation of (1.10). We still make the ansatz

𝑢(𝑡, 𝑥) ≈ 𝜀𝑟−1𝑈 (𝑠, 𝑞, 𝜔), 𝑟 = |𝑥 |, 𝜔 = 𝑥/𝑟, 𝑠 = 𝜀 ln 𝑡, (1.12)

but now we let 𝑞(𝑡, 𝑥) be an optical function that is close to 𝑟 − 𝑡 to some extent. By an optical function,
we mean that q solves the eikonal equation

𝑔𝛼𝛽 (𝑢)𝜕𝛼𝑞𝜕𝛽𝑞 = 0. (1.13)

Eikonal equations have been widely used in the study of nonlinear wave equations and the Einstein
equations; see, for example, [2, 45, 13, 46, 66, 42, 37]. Our new ansatz is related to the geometry of the
null cone with respect to the Lorentzian metric (𝑔𝛼𝛽) that is the inverse of the 4 × 4 matrix (𝑔𝛼𝛽 (𝑢)).
Since the geometric information from (1.1) is considered in our derivation, we expect to obtain a more
accurate type of asymptotic equations for (1.1).

When substituting the ansatz above into (1.1), we obtain an equation involving 𝜕𝑞. However, the
optical function has no explicit formula because the eikonal equation is fully nonlinear. Alternatively,
we define an auxiliary function 𝜇 = 𝑞𝑡 − 𝑞𝑟 and express 𝜕𝑞 approximately in terms of 𝜇 and U using
the eikonal equation. By sending 𝑡 = 𝑟 → ∞ and considering terms of order 𝜀2𝑡−2 in (1.1), we obtain
the following reduced system for (𝜇,𝑈) (𝑠, 𝑞, 𝜔):{

𝜕𝑠 (𝜇𝑈𝑞) = 0,

𝜕𝑠𝜇 =
1
4
𝐺 (𝜔)𝜇2𝑈𝑞 .

(1.14)

Here,𝐺 (𝜔) is defined by (1.11). The system (1.14) is the geometric reduced system for (1.1). By setting
(𝜇,𝑈𝑞) |𝑠=0(𝑞, 𝜔) = (𝐴1, 𝐴2) (𝑞, 𝜔), we obtain an explicit solution to (1.14):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜇(𝑠, 𝑞, 𝜔) = 𝐴1(𝑞, 𝜔) · exp(

1
4
𝐺 (𝜔) (𝐴1 · 𝐴2) (𝑞, 𝜔)𝑠),

𝑈𝑞 (𝑠, 𝑞, 𝜔) = 𝐴2 (𝑞, 𝜔) · exp(−
1
4
𝐺 (𝜔) (𝐴1 · 𝐴2) (𝑞, 𝜔)𝑠).

(1.15)

In fact, the first equation in (1.14) yields 𝜇𝑈𝑞 = 𝐴1𝐴2 for all 𝑠 ≥ 0, so the second equation in (1.14)
is reduced to a linear ODE. From this perspective, the reduced system (1.14) is of a simpler form than
(1.10), which is a nonlinear PDE.

We finally remark that the derivation above can be extended. Given an arbitrary system of quasilinear
wave equations inR1+3, we can derive the corresponding geometric reduced system. See [72, Chapter 2]
and [74, (1.11)].
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1.2.2. Existence of modified wave operators
Making use of (1.14), we proved the existence of the modified wave operators for (1.1) in [73]. Given
an asymptotic profile, we seek to find a global solution to (1.1) such that this global solution matches
the given asymptotic profile at infinite time. Such a problem is sometimes referred to as a backward
scattering problem. To the best of the author’s knowledge, [73] seems to be the only result on the
modified wave operators for (1.1). We refer to Lindblad-Schlue [50, 49] for backward scattering for
semilinear wave equations satisfying the null condition or the weak null condition and some related
models. Also see [14, 10, 22, 9, 31, 27, 61] and the references therein for similar results for the Einstein
equations and other wave-type models.

Let us specify how the asymptotic profile is chosen in [73]. Fix an arbitrary 𝐴(𝑞, 𝜔) ∈ 𝐶∞
𝑐 (R × S2)

and suppose that supp 𝐴 ⊂ [−𝑅, 𝑅] × S2 for some constant 𝑅 > 0. Define (𝜇,𝑈𝑞) (𝑠, 𝑞, 𝜔) by (1.15)
with (𝐴1, 𝐴2) = (−2, 𝐴).5 That is, we set⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜇(𝑠, 𝑞, 𝜔) = −2 exp(−
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔)𝑠),

𝑈𝑞 (𝑠, 𝑞, 𝜔) = 𝐴(𝑞, 𝜔) · exp(
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔)𝑠).

(1.16)

We call this A the scattering data for the modified wave operator problem. To uniquely determine U, we
add a boundary condition lim𝑞→−∞𝑈 (𝑠, 𝑞, 𝜔) = 0.6 As a result, we obtain a solution (𝜇,𝑈) (𝑠, 𝑞, 𝜔) to
the geometric reduced system (1.14) for all 𝑠 ≥ 0.

We now fix 𝛿 ∈ (0, 1) which corresponds to the initial time when our reduced system starts to play a
role7 and 𝜀 � 1, which is the size of the global solution we will construct. We recover an approximate
optical function 𝑞(𝑡, 𝑥) by solving the transport equation introduced in the derivation of (1.14)

(𝑞𝑡 − 𝑞𝑟 ) (𝑡, 𝑥) = 𝜇(𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥), 𝑥/|𝑥 |).

We choose the boundary condition so that 𝑞 ≈ 𝑟 − 𝑡 to some extent. Motivated by the new ansatz (1.12),
we define

𝜀 |𝑥 |−1𝑈 (𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥), 𝑥/|𝑥 |) (1.17)

as the asymptotic profile in this problem. One can show that (1.17) is an approximate solution to (1.1)
whenever |𝑟 − 𝑡 | < 𝑡/2 and 𝑡 > 𝑒𝛿/𝜀 . In [73], we proved that there exists a global solution u to (1.1) for
all 𝑡 ≥ 0 such that u matches the asymptotic profile (1.17) at infinite time. See [73, Theorem 1]. For
example, we have

|𝑢 − 𝜀𝑟−1𝑈 | � 𝜀𝑡−3/2+𝐶𝜀 〈𝑟 − 𝑡〉1/2 (1.18)

for all 𝑡 � 1 and |𝑥 | ≤ 5𝑡/4. Note that 𝑢 | |𝑥 | ≤𝑡−𝑅 ≡ 0 and 𝑈 |𝑞≤−𝑅 ≡ 0, so the estimate (1.18) is trivial
for |𝑥 | ≤ 𝑡 − 𝑅. Recall that the constant R comes from the support of A. By comparing (1.18) with
the pointwise decay 𝑢 = 𝑂 (𝜀𝑡−1+𝐶𝜀), we conclude that the asymptotic profile (1.17) approximates the
global solution u well whenever |𝑟 − 𝑡 | � 𝑡1−.

In a recent work [74], the main theorem in [73] was extended in two different ways. First, the
assumption 𝐴 ∈ 𝐶∞

𝑐 is relaxed. To prove the existence of the modified wave operators for (1.1), we only
need to assume that 𝐴 ∈ 𝐶∞ and that

|𝜕𝑎𝑞 𝜕
𝑐
𝜔𝐴(𝑞, 𝜔) | �𝑎,𝑐 〈𝑞〉−𝛾−−𝑎 · 1𝑞<0 + 〈𝑞〉−𝛾+−𝑎 · 1𝑞≥0, ∀(𝑞, 𝜔) ∈ R × S2, 𝑎, 𝑐 ≥ 0 (1.19)

5We can take 𝜇 |𝑠=0 ≡ −2 because of the gauge freedom. In fact, one can prescribe 𝜇 |𝑠=0 freely using the fact that 𝑞𝑡 − 𝑞𝑟 =
𝐻𝑞 · (𝑞𝑡 − 𝑞𝑟 ) if 𝑞 = 𝐻 (𝑞, 𝜔) for some function H.

6Since 𝐴 |𝑞≤−𝑅 ≡ 0, we have𝑈 |𝑞≤−𝑅 ≡ 0. In a backward scattering problem, this property and the finite speed of propagation
imply that the corresponding global solution to (1.1) vanishes for 𝑟 − 𝑡 ≤ −𝑅. This is a key property used in the proof in [73].

7We will set 𝑠 = 𝜀 ln 𝑡 − 𝛿, so 𝑠 = 0 if and only if 𝑡 = 𝑒𝛿/𝜀 .
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where 𝛾− > 2 and 𝛾+ > 1 are two fixed parameters. See [74, Corollary 8.1]. Moreover, the method
in [73] can be applied to a larger class of quasilinear wave equations in three space dimensions. In
particular, one obtains nontrivial global solutions to �𝑢 = 𝑢2

𝑡 and �𝑢 = 𝑢𝑡𝑢𝑡𝑡 for all 𝑡 ≥ 0, despite the
finite time blowup results by John. See [74, Corollaries 8.3 and 8.9].

1.2.3. Asymptotic completeness
In [75], we proved the asymptotic completeness for (1.1). Given a global solution to (1.1) with initial
data (1.2), we seek to find the corresponding asymptotic profile. Before [75], Deng and Pusateri [17]
proved a partial scattering result for (1.1) using Hörmander’s asymptotic equation (1.10). They applied
the spacetime resonance method, and we refer to [64, 63] for some earlier applications of this method.
We also refer to [46, 9, 10, 8, 33, 34, 27] and the references therein for similar results for the Einstein
equations and other wave-type models.

We now briefly explain the proof. More details are provided in Section 3 below. Suppose that u
is the global solution to (1.1) with data (1.2) of size 𝜀 � 1. Let 𝑅 > 0 be a constant such that
supp(𝑢0, 𝑢1) ⊂ {|𝑥 | ≤ 𝑅}. We first construct a global optical function 𝑞(𝑡, 𝑥) by solving the eikonal
equation (1.13) for all |𝑥 | > 𝑡/2 and 𝑡 > 𝑒𝛿/𝜀 where 𝛿 ∈ (0, 1) is a small fixed parameter.8 The boundary
condition is chosen so that 𝑞 ≈ 𝑟 − 𝑡. In the proof, we apply both the method of characteristics and the
method from [13, 66]. The key step is to carefully estimate the second fundamental form (𝜒𝑎𝑏)𝑎,𝑏=1,2
with the help of the Raychaudhuri equation.

Next, motivated by the ansatz (1.12), we define (𝜇,𝑈) := (𝑞𝑡 − 𝑞𝑟 , 𝜀
−1𝑟𝑢). Both 𝜇 and U are

originally functions of (𝑡, 𝑥) for |𝑥 | > 𝑡/2 and 𝑡 > 𝑒𝛿/𝜀 , and can be viewed as functions of (𝑠, 𝑞, 𝜔) via
the inverse of the map

(𝑡, 𝑥) ↦→ (𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥), 𝑥/|𝑥 |) = (𝑠, 𝑞, 𝜔).

This (𝜇,𝑈) (𝑠, 𝑞, 𝜔) is an approximate solution to the geometric reduced system (1.14), and there is an
exact solution (𝜇,𝑈) (𝑠, 𝑞, 𝜔)9 to (1.14) matching (𝜇,𝑈) (𝑠, 𝑞, 𝜔) at infinite time; see (3.5) and (3.6)
below. Following the discussion in Section 1.2.2, we hope that (𝜇,𝑈) is also of the form (1.16), so we
can define the scattering data as the initial data of𝑈𝑞 at 𝑠 = 0. However, this is impossible since we may
have 𝜇 |𝑠=0 � −2. To handle this issue, we use the gauge freedom (see Footnote 5) to transform (𝜇,𝑈)
to an equivalent exact solution (𝜇,𝑈) to (1.14) with 𝜇 |𝑠=0 ≡ −2; see (3.15) and (3.16) below. This
new solution (𝜇,𝑈) is of the form (1.16) with A replaced by 𝐴 = 𝑈𝑞 |𝑠=0. This function 𝐴 is called the
scattering data in the asymptotic completeness problem10 and will play the same role as the scattering
data A in the modified wave operator problem. In general, one cannot show that 𝐴 is 𝐶∞. Instead, for
each integer 𝑁 ≥ 0, there exists an 𝜀𝑁 > 0 depending on N, such that for all 𝜀 ∈ (0, 𝜀𝑁 ),11 we have
𝐴 ∈ 𝐶𝑁 and

|𝜕𝑎𝑞 𝜕
𝑐
𝜔𝐴(𝑞, 𝜔) | �𝑎,𝑐 〈𝑞〉−1−𝑎+𝐶𝑎,𝑐 𝜀 , ∀(𝑞, 𝜔) ∈ R × S2, 𝑎, 𝑐 ≥ 0, 𝑎 + 𝑐 ≤ 𝑁. (1.20)

The constants 𝐶𝑎,𝑐 and the implicit constants in �𝑎,𝑐 are all uniform in 𝜀. We also show a gauge
independence result: for each fixed parameter 𝛿, the scattering data 𝐴 is independent of the choice of
the optical function; see Corollary 3.9.

Finally, we construct an approximate solution �̃� to (1.1) from (𝜇,𝑈)12 by following the construction
in [73, Section 4]. That is, we construct an approximate optical function 𝑞 by solving 𝑞𝑡 − 𝑞𝑟 = 𝜇,
and define �̃� by (1.17) with (𝑈, 𝑞) replaced by (𝑈, 𝑞). Then, �̃� is an approximate solution to (1.1) for

8Here, we use { |𝑥 | > 𝑡/2, 𝑡 > 𝑒𝛿/𝜀 } for simplicity. In the actual proof, we use a region defined by (3.2).
9There is a different boundary condition lim𝑞→∞𝑈 (𝑠, 𝑞, 𝜔) = 0. In a forward problem, we have 𝑢 ≡ 0 for 𝑟 − 𝑡 ≥ 𝑅 by the

finite speed of propagation.
10This definition of scattering data is different from the one in [75]. With this new definition, the gauge independence result

can be stated in a much cleaner way.
11Later, we will simply write 𝜀 �𝑁 1. See Section 2.2.
12Let 𝑢 be the approximate solution we obtain if we start from (𝜇,𝑈 ) and follow the construction below. By [75, Lemma 7.2]

and (3.22), we have 𝑢 = 𝑢. We will thus not distinguish 𝑢 from 𝑢 in this paper.
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|𝑥 | > 𝑡/2 and 𝑡 > 𝑒𝛿/𝜀 . In addition, we prove that �̃� offers a good approximation of u at least near the
light cone. See [75, Theorem 1] for a precise statement. For example, we have

|𝑢 − �̃� | �𝛾 𝜀𝑡−2+𝐶𝜀 〈𝑟 − 𝑡〉 (1.21)

whenever 𝑡 > 𝑒𝛿/𝜀 and |𝑥 | ≥ 𝑡 − 𝑡𝛾 , where 𝛾 ∈ (0, 1) is a fixed parameter. Note that 𝑢 ≡ �̃� ≡ 0 whenever
|𝑥 | ≥ 𝑡 + 𝑅 by the finite speed of propagation, so the estimate (1.21) is trivial for |𝑥 | ≥ 𝑡 + 𝑅. Recall that
the constant R comes from the support of the initial data (1.2).

1.2.4. More about the long time dynamics
From [75, 72, 73, 74], one may contend that the asymptotic behaviors of global solutions to (1.1) have
been fully understood. This is, however, not true. For example, the following question is not answered
in these papers.
Question 1.1. In both the modified wave operator problem and the asymptotic completeness problem,
can we give a full description of the asymptotic behaviors of the global solutions to (1.1)?

In the modified wave operator problem, starting from a scattering data A, we construct an asymptotic
profile (1.17) and find the matching global solution u to (1.1). The estimate (1.18) suggests that
𝑢 ≈ 𝜀𝑟−1𝑈 for 𝑡 � 1 and 𝑟 ≤ 𝑡 + 𝑡1−. However, we do not have a good way to describe the asymptotic
behaviors of u outside the light cone. From [74, 73], we only know that |𝑢 | � 𝜀𝑡−1/2+𝐶𝜀𝑟−1/2 whenever
𝑡 � 1 and 𝑟 ≥ 5𝑡/4.

A similar issue arises in the forward problem. Let u be the global solution to the Cauchy problem
(1.1) and (1.2). In the asymptotic completeness problem, we find the scattering data 𝐴 and define an
approximate solution �̃� to (1.1). The estimate (1.21) suggests that 𝑢 ≈ �̃� for 𝑡 �𝜀 1 and 𝑟 ≥ 𝑡 − 𝑡1−.
The asymptotic behaviors of u inside the light cone (e.g., for 𝑟 < 𝑡/2), however, are not discussed in
[75, 17]. We only know from [45] that 𝑢 = 𝑂 (𝜀𝑡−1+𝐶𝜀).

Question 1.1 arises because of the limitations of Hörmander’s asymptotic equations and geometric
reduced systems. Both these asymptotic equations are derived under the assumption that 𝑟 = 𝑡 → ∞, so
they are expected to approximate the original wave equations well only at null infinity. It is thus necessary
to find a different way to describe the asymptotic behaviors of global solutions away from the light cone.

We now discuss some previous results related to Question 1.1. For simplicity, our discussions will
be restricted to the wave equations (e.g., (1.5)) in R1+3. For the backward problem, Lindblad and Schlue
[49] constructed a global solution to �𝑢 = 0 with prescribed radiation fields. Unlike the results in [50],
in [49, Theorem 1.5] they gave a complete characterization of the asymptotics of the solution towards
timelike and spacelike infinity.

In the forward problem, we first recall the strong Huygens principle: a solution to �𝑢 = 0 with
compactly supported data must vanish for |𝑟 − 𝑡 | � 1. This principle is, however, unstable [21, 55]. A
related result is Price’s law, which was first conjectured in [62]. It states that we have a 𝑡−3 local uniform
decay rate for linear waves on the Schwarzschild background, and we refer to [15, 19, 20, 71, 59] for its
proof. For a system (1.5) satisfying the null condition along with 𝐶∞

𝑐 data of size 𝜀 � 1, Christodoulou
[11] obtained a pointwise decay 𝑢 = 𝑂 (𝜀〈𝑟 − 𝑡〉−1〈𝑟 + 𝑡〉−1). This bound is not optimal for a scalar
semilinear or quasilinear wave equation satisfying the null condition with constant-coefficient null forms.
In those cases, we have 𝑢 = 𝑂 (𝜀〈𝑟 − 𝑡〉−2〈𝑟 + 𝑡〉−1); see [18, 54, 53]. However, if we pose the initial data
on a hyperboloid instead of a time slice, and if we do not assume that the data is compactly supported,
then the bound 𝑢 = 𝑂 (𝜀〈𝑟 − 𝑡〉−1〈𝑟 + 𝑡〉−1) is optimal; see [18]. A similar result on the sharp pointwise
decay for a semilinear wave equation with the null condition in nonstationary and asymptotically flat
spacetimes can be found in [51]. We also remark that a closely related topic is the late time tail for
solutions to wave equations on asymptotically flat spacetimes. In this direction, we refer to, for example,
[54, 4, 5, 6, 7, 52], and the references therein (in particular, see Luk-Oh [54, Section 1.3]).

Our final remark is that all the references listed in the previous two paragraphs do not apply to (1.1).
This is due to its weak null structure.
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1.3. The main theorems

In this paper, we will partially answer Question 1.1 by providing a description of the asymptotic
behaviors of a global solution u to the forward Cauchy problem (1.1) and (1.2) inside the light cone. We
will present an asymptotic formula for 𝑍 𝐼𝑢 for each multiindex I. Here, Z denotes one of the commuting
vector fields: translations 𝜕𝛼, scaling 𝑆 = 𝑡𝜕𝑡 + 𝑟𝜕𝑟 , rotations Ω𝑖 𝑗 = 𝑥𝑖𝜕 𝑗 − 𝑥 𝑗𝜕𝑖 , and Lorentz boosts
Ω0𝑖 = 𝑥𝑖𝜕𝑡 + 𝑡𝜕𝑖 . Besides, 𝑍 𝐼 denotes a product of |𝐼 | commuting vector fields for each multiindex I.

Fix (𝑢0, 𝑢1) ∈ 𝐶∞
𝑐 (R3). From [45], we know that the Cauchy problem (1.1) and (1.2) admits a

unique global 𝐶∞ solution u for all 𝑡 ≥ 0 as long as 𝜀 � 1. In Section 1.2.3, for a fixed 𝛿 ∈ (0, 1), we
explained how to construct the scattering data 𝐴 for the global solution u. For each multiindex I, we
define 𝐴𝐼 = 𝐴𝐼 (𝑞, 𝜔) inductively by 𝐴0 = −2𝐴 and

𝐴𝐼 (𝑞, 𝜔) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑞𝜕𝑞𝐴𝐼 ′ , 𝑍 𝐼 = 𝑆𝑍 𝐼

′ ;
(𝜔𝑖𝜕𝜔 𝑗 − 𝜔 𝑗𝜕𝜔𝑖 )𝐴𝐼 ′ , 𝑍 𝐼 = Ω𝑖 𝑗𝑍

𝐼 ′ , 1 ≤ 𝑖 < 𝑗 ≤ 3;
−𝑞𝜔𝑖𝜕𝑞𝐴𝐼 ′ + 𝜕𝜔𝑖 𝐴𝐼 ′ − 2𝜔𝑖𝐴𝐼 ′ , 𝑍

𝐼 = Ω0𝑖𝑍
𝐼 ′ , 1 ≤ 𝑖 ≤ 3;

0, 𝑍 𝐼 = 𝜕𝑍 𝐼
′ ;

(1.22)

This definition comes from Proposition 3.3. We also recall from Section 1.2.3 that for each integer
𝑁 ≥ 0, we have 𝐴 ∈ 𝐶𝑁 as long as 𝜀 �𝑁 1 and the estimate (1.20). Thus, we can define 𝐴𝐼 as long as
𝜀 �|𝐼 | 1. Moreover, the estimate (1.20) holds with 𝐴 replaced by 𝐴𝐼 .

We now explain the meanings of 𝐴𝐼 and (1.22). By Proposition 3.3, we have

(𝜕𝑡 − 𝜕𝑟 )𝑍
𝐼 �̃� = 𝜀𝑟−1𝐴𝐼 (𝑟 − 𝑡, 𝜔) + an error term, ∀𝑡 �𝛿,𝜀 1, 𝑡/2 < 𝑟 < 𝑡 + 𝑅.

where �̃� is the approximate solution constructed from the scattering data 𝐴 in Section 1.2.3. Moreover,
given two multiindices I such that 𝑍 𝐼 = 𝑍𝑍 𝐼 ′ , we seek to prove

𝑍 (𝜀𝑟−1𝐴𝐼 ′ (𝑟 − 𝑡, 𝜔)) = 𝜀𝑟
−1𝐴𝐼 (𝑟 − 𝑡, 𝜔) + an error term.

Apply the chain rule to compute the left-hand side. This gives us (1.22).
We are ready to state the first main theorem.

Theorem 1. Fix (𝑢0, 𝑢1) ∈ 𝐶
∞
𝑐 (R3). Let u be the global 𝐶∞ solution to (1.1) with initial data (1.2) for

𝜀 � 1. Fix a small constant 𝛿 ∈ (0, 1), and let 𝐴 be the scattering data corresponding to u. Then, for
each multiindex I, as long as 0 < 𝜀 �𝛿, |𝐼 | 1, we have

𝑍 𝐼𝑢(𝑡, 𝑥) = −
𝜀

4𝜋

∫
S2
𝐴𝐼 (𝑥 · 𝜃 − 𝑡, 𝜃) 𝑑𝑆𝜃 +𝑂 |𝐼 | (〈𝑡 − |𝑥 |〉−2𝑡𝐶|𝐼 | 𝜀), ∀𝑡 ≥ 𝑒𝛿/𝜀 , |𝑥 | < 𝑡. (1.23)

The function 𝐴𝐼 is defined inductively by 𝐴0 = −2𝐴 and (1.22).

Remark 1.1. The scattering data 𝐴 describes the asymptotic behaviors of a global solution u to (1.1)
and (1.2) near the light cone. Thus, the formula (1.23) connects the asymptotic behaviors of u in the
interior of the light cone with the asymptotics of u at null infinity. The reason for this will be clear later
when we discuss the proofs of the main theorems.

Remark 1.2. The estimate (1.23) holds whenever 𝑡 ≥ 𝑒𝛿/𝜀 and |𝑥 | < 𝑡. However, we recall from [45]
that 𝑍 𝐼𝑢 = 𝑂 (𝜀𝑡−1+𝐶𝜀) for each multiindex I as long as 𝜀 �|𝐼 | 1. Thus, it provides a good approximation
for 𝑍 𝐼𝑢 only if the remainder term𝑂 (〈𝑡 − |𝑥 |〉−2𝑡𝐶𝜀) is far less than 𝜀𝑡−1+𝐶𝜀 . For example, in the region
where |𝑥 | < 𝑡 − 𝑡𝛾 for a fixed constant 𝛾 > 1/2, we have 〈𝑡 − |𝑥 |〉−2𝑡𝐶𝜀 ≤ 𝑡−2𝛾+𝐶𝜀 � 𝜀𝑡−1+𝐶𝜀 .
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Remark 1.3. It is natural to ask whether (1.23) is a real asymptotic formula for 𝑍 𝐼𝑢. For simplicity, we
only discuss the case when |𝐼 | = 0 here. In Theorem 1, we do not exclude the possibility that

|

∫
S2
𝐴(𝑥 · 𝜃 − 𝑡, 𝜃) 𝑑𝑆𝜃 | � 〈|𝑥 | − 𝑡〉−2𝑡𝐶𝜀 , ∀𝑡 ≥ 𝑒𝛿/𝜀 , |𝑥 | < 𝑡. (1.24)

In fact, if the equation (1.1) satisfies the null condition, then the estimate (1.24) always holds; see
Remark 2.1 below. In this case, the estimate (1.23) reduces to a pointwise bound |𝑢 | � 〈𝑟 − 𝑡〉−2𝑡𝐶𝜀 and
is therefore not accurate enough.

One can ask whether this is also the case when the null condition is violated. The answer is no. Later
we will prove that, if u is a nonzero global solution to (1.1) (violating the null condition) and (1.2) with
𝜀 � 1, then (1.24) fails for a sequence of points {(𝑡𝑛, 𝑥𝑛)} with 𝑡𝑛 ↑ ∞ and |𝑥𝑛 | < 𝑡𝑛. This is a corollary
of Theorem 3, and we refer to Remark 3.2 below.

Remark 1.4. By (1.22), we have 𝐴𝐼 ≡ 0 whenever 𝑍 𝐼 contains a translation 𝜕. This does not indicate
that we cannot approximate terms like 𝜕𝑍 𝐼𝑢. Given a multiindex I, we apply [45, (3.1)]

𝜕𝑡 =
𝑡𝑆 −

∑3
𝑖=1 𝑥𝑖Ω0𝑖

(𝑡 − 𝑟) (𝑡 + 𝑟)
, 𝜕 𝑗 =

∑3
𝑖=1 𝑥𝑖Ω𝑖 𝑗 + 𝑡𝜔 𝑗Ω0 𝑗 − 𝑥𝑖𝑆

(𝑡 − 𝑟) (𝑡 + 𝑟)

to replace each translation in 𝑍 𝐼 with a finite sum of 𝑆,Ω𝑖 𝑗 ,Ω0𝑖 multiplied by an explicit function of
(𝑡, 𝑥). By Leibniz’s rule, one can write

𝑍 𝐼𝑢 =
∑

|𝐽 | ≤ |𝐼 |, 𝑘𝐽=0
𝑐𝐼 ,𝐽 (𝑡, 𝑥)𝑍

𝐽𝑢, (1.25)

where 𝑘𝐽 denotes the number of translations in 𝑍 𝐽 and 𝑐𝐼 ,𝐽 (𝑡, 𝑥) can be computed explicitly from
the coefficients in [45, (3.1)]. Combining this expression and (1.23), we thus obtain a more accurate
asymptotic formula for 𝑍 𝐼𝑢 when 𝑍 𝐼 contains translations.

We also remark that 𝑐𝐼 ,𝐽 = 𝑂 ((𝑡 − 𝑟)−𝑘𝐼 ) whenever 𝑟 < 𝑡 − 1 and 𝑡 � 1. In other words, by setting
�̃�𝐼 ,𝐽 = (𝑡 − 𝑟)𝑘𝐼 𝑐𝐼 ,𝐽 = 𝑂 (1), we obtain

(𝑡 − 𝑟)𝑘𝐼 𝑍 𝐼𝑢(𝑡, 𝑥) = −
𝜀

4𝜋

∑
|𝐽 | ≤ |𝐼 |, 𝑘𝐽=0

�̃�𝐼 ,𝐽 (𝑡, 𝑥)

∫
S2
𝐴𝐽 (𝑥 · 𝜃 − 𝑡, 𝜃) 𝑑𝑆𝜃 +𝑂 |𝐼 | (〈𝑡 − |𝑥 |〉−2𝑡𝐶|𝐼 | 𝜀)

(1.26)

for all 𝑡 ≥ 𝑒𝛿/𝜀 and |𝑥 | < 𝑡 − 1. When 𝑍 𝐼 contains translations, the estimate (1.26) is a more accurate
asymptotic formula for 𝑍 𝐼𝑢. For simplicity, we do not present the formulas for �̃�𝐼 ,𝐽 here, but we
emphasize that they can be computed explicitly.

Remark 1.5. We now have a full description of the asymptotic behaviors of the global solution u to
(1.1) and (1.2). First, Theorem 1 provides a good approximation for 𝑍 𝐼𝑢 for 𝑡 �𝛿,𝜀 1 and |𝑥 | < 𝑡− 𝑡1/2+.
Moreover, we obtain from [75] an approximation for u whenever 𝑡 �𝛿,𝜀 1 and |𝑥 | > 𝑡 − 𝑡1−. For each
multiindex I, we have

𝑍 𝐼𝑢(𝑡, 𝑥) = 𝑍 𝐼 �̃�(𝑡, 𝑥) +𝑂𝛾, |𝐼 | (𝜀𝑡
−2+𝐶𝐼 𝜀 〈𝑟 − 𝑡〉)

whenever 𝑡 ≥ 2𝑒𝛿/𝜀 and |𝑟 − 𝑡 | � 𝑡𝛾 for each fixed 𝛾 ∈ (0, 1). Also see (3.14) in Section 3.4. Here, �̃�
is defined in both Section 1.2.3 and Section 3.4. We also recall that 𝑢 ≡ 0 whenever 𝑟 − 𝑡 ≥ 𝑅, where
𝑅 > 0 is a constant such that the initial data (1.2) vanishes for |𝑥 | ≥ 𝑅. In other words, for all (𝑡, 𝑥) with
𝑡 �𝛿,𝜀 1, we have at least one way to approximate 𝑍 𝐼𝑢(𝑡, 𝑥).

Remark 1.6. The proof of (1.23) is robust and does not only work for (1.1). Let 𝜙 = 𝜙(𝑡, 𝑥) be a 𝐶2

function defined for all 𝑡 > 0 and |𝑥 | < 𝑡. If �𝜙 satisfies a good pointwise bound, and if we have a
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good way to approximate (−𝜕𝑡 + 𝜕𝑟 ) (𝑟𝜙) near the light cone 𝑟 = 𝑡 for all 𝑡 � 1, then we can prove
an asymptotic formula for 𝜙 similar to (1.23). In fact, approximately, one can apply Proposition 4.1 to
show that

𝜙(𝑡, 𝑥) ≈ −
1

4𝜋

∫
S2
A0(𝑥 · 𝜃 − 𝑡, 𝜃) 𝑑𝑆𝜃 , ∀|𝑥 | < 𝑡, 𝑡 � 1. (1.27)

Here, A0 is the radiation field for 𝜙𝑡 − 𝜙𝑟 in the sense that

𝜙𝑡 − 𝜙𝑟 ≈ 𝑟
−1A0(𝑟 − 𝑡, 𝜔), whenever |𝑟 − 𝑡 | � 𝑡.

For a nonrigorous derivation of this approximate identity, we refer to the discussion above (1.35) in
Section 1.4. The form of the error term in (1.27) depends on the pointwise bounds for 𝜙 and �𝜙, and
we will not discuss it in detail here for simplicity.

Remark 1.7. We now discuss how (1.27) is related to [49, Theorem 1.5]. Recall that the authors of
[49] constructed a global solution 𝜙 to �𝜙 = 0 with a prescribed radiation field and then described the
interior and exterior asymptotics of 𝜙. In particular, they mentioned that 𝜙 has the interior homogeneous
asymptotics [49, (1.11)]:

𝜙(𝑡, 𝑥) ≈
1

4𝜋

∫
S2

𝑁 (𝜃)

𝑡 − 𝑥 · 𝜃
𝑑𝑆𝜃 , for |𝑥 |/𝑡 < 1 fixed, 𝑡 → ∞. (1.28)

Interestingly, given the radiation field of 𝜙𝑡 in [49, Theorem 1.5], one can nonrigorously derive (1.28)
to the leading order by (1.27). In [49, Remark 1.3], it was mentioned that 𝜙𝑡 has the radiation field

𝜙𝑡 ≈ 𝑟
−1G0 (𝑟 − 𝑡, 𝜔), with G0 = 𝑁01 (𝜔)𝑞〈𝑞〉

−2 − 𝜕𝑞F01 (𝑞, 𝜔).

Both 𝑁01 and F01 are from the statement of [49, Theorem 1.5]. When 𝑞 < −1, we have 𝜕𝑞F01 =
𝑂 (〈𝑞〉−2), which is a lower order term compared to 𝑁01 (𝜔)𝑞〈𝑞〉

−2. Since 𝜙𝑡 + 𝜙𝑟 is a tangential
derivative, we expect 𝜙𝑟 ≈ −𝜙𝑡 , so 𝜙𝑡 − 𝜙𝑟 ≈ 2G0 ≈ 2𝑁01𝑞

−1 whenever 𝑞 < 0 and |𝑞 | � 1. Plug this
into (1.27), and we obtain

𝜙 ≈ −
1

2𝜋

∫
S2

𝑁01 (𝜃)

𝑥 · 𝜃 − 𝑡
𝑑𝑆𝜃 .

Remark 1.8. The formula (1.23) can also be extended to a scalar quasilinear wave equation satisfying
the null condition:

𝑔𝛼𝛽 (𝑢, 𝜕𝑢)𝜕𝛼𝜕𝛽𝑢 = 𝑓 (𝑢, 𝜕𝑢). (1.29)

The Cauchy problem (1.29) and (1.2) admits a global solution u. One can also show that the following
limit exists and is a continuous function:

𝐵(𝑞, 𝜔) := lim
𝑟→∞

(−𝜕𝑡 + 𝜕𝑟 ) (𝑟𝑢) (𝑟 − 𝑞, 𝑟𝜔).

By Proposition 4.1, we can show not only (1.27) but also a more precise estimate

𝑢(𝑡, 𝑥) =
1

4𝜋

∫
S2
𝐵(𝑥 · 𝜃 − 𝑡, 𝜃) 𝑑𝑆𝜃 +𝑂 (𝑡−1〈𝑡 − |𝑥 |〉−3), ∀𝑡 > 1, |𝑥 | < 𝑡. (1.30)

This estimate is weaker than the results in [18, 54, 53], but it provides a potentially different way to
prove the results in those papers. To recover, for example, [18, (1.12)], one needs an asymptotic formula
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for B as follows:

𝐵(𝑞, 𝜔) = 𝑐0𝑞
−2 +𝑂 (|𝑞 |−3), ∀𝑞 < −1, for some constant 𝑐0. (1.31)

If it is true, then we have

𝑢(𝑡, 𝑥) =
1

4𝜋

∫
S2
𝑐0 (𝑥 · 𝜃 − 𝑡)

−2 +𝑂 (|𝑥 · 𝜃 − 𝑡 |−3) 𝑑𝑆𝜃 +𝑂 (𝑡−1〈𝑡 − |𝑥 |〉−3)

= 𝑐0 (𝑡
2 − |𝑥 |2)−1 +𝑂 (𝑡−1〈𝑡 − |𝑥 |〉−2)

for all 𝑡 > 1 and |𝑥 | < 𝑡−1. If one can furthermore prove that 𝑐0 = 0, then we obtain the better pointwise
decay rate 𝑢 = 𝑂 (𝑡−1〈|𝑥 | − 𝑡〉−2) in [18, 54, 53]. It is, however, unclear to the author whether one can
show the asymptotics (1.31) and 𝑐0 = 0, so we do not claim in this paper that we have given different
proofs of those results.

By (1.23), we can show several interesting properties of global solutions to (1.1) when the null
condition is violated. All but one of them fail if the null condition is satisfied.

Recall that the null condition was defined for a general system (1.5) in Section 1.1. By (1.10), the
equation (1.1) satisfies the null condition if and only if 𝐺 (𝜔) ≡ 0 on S2, with 𝐺 (𝜔) defined by (1.11).
Since 𝑔00 ≡ −1, we claim that 𝐺 (𝜔) ≡ 0 on S2 if and only if 𝑔𝛼𝛽0 = 0 for all 𝛼, 𝛽 = 0, 1, 2, 3. In fact, if
𝐺 (𝜔) ≡ 0 on S2, we have a decomposition

(𝑔
𝛼𝛽
0 ) = 𝑔00

0 diag(1,−1,−1,−1) + (an asymmetric matrix).

Since (𝑔𝛼𝛽) is symmetric, so is (𝑔𝛼𝛽0 ). Thus, the asymmetric part in this decomposition vanishes. And
since 𝑔00 ≡ −1, we have 𝑔00

0 = 0 and thus 𝑔𝛼𝛽0 = 0.
We first state a theorem related to the scattering data.

Theorem 2. Suppose that the equation (1.1) violates the null condition. Fix (𝑢0, 𝑢1) ∈ 𝐶
∞
𝑐 (R3). Let u

be the global solution to (1.1) with initial data (1.2) for 𝜀 � 1. Fix a small 𝛿 ∈ (0, 1) and let 𝐴 be the
corresponding scattering data.

Moreover, suppose that one of the following assumptions holds:

a) We have min(𝑞,𝜔) ∈R×S2 𝐴(𝑞, 𝜔) ≥ 0 or max(𝑞,𝜔) ∈R×S2 𝐴(𝑞, 𝜔) ≤ 0;
b) We have min𝜔∈S2 𝐺 (𝜔) ≥ 0 and min{𝐴, 0} ∈ 𝐿1

𝑞,𝜔 (R × S2), or we have max𝜔∈S2 𝐺 (𝜔) ≤ 0 and
max{𝐴, 0} ∈ 𝐿1

𝑞,𝜔 (R × S2);
c) Let 𝐶0 > 0 be a constant uniform in all 𝜀 � 1 such that

𝐶0 ≥ sup
(𝑞,𝜔) ∈R×S2

|
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔) |.

Such a 𝐶0 always exists because of (1.20). Suppose that there exists a constant 𝐵0 > 𝐶0 that is also
uniform in all 𝜀 � 1, such that

lim
𝑞→−∞

〈𝑞〉1+𝐵0 𝜀 sup
𝜔∈S2

|𝐴(𝑞, 𝜔) | = 0.

Then, as long as 𝜀 � 1 (depending on the constant 𝐵0 in part c)), we have 𝐴 ≡ 0 and thus 𝑢 ≡ 0.

Remark 2.1. The assumption a) implies 𝐴 ≡ 0 and 𝑢 ≡ 0 no matter whether (1.1) satisfies the null
condition. We refer to Section 6.2.1 and Footnote 15. However, for b) and c), it is necessary to assume
that the null condition is violated. Suppose that (1.1) satisfies the null condition, and let u be a global
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solution to (1.1) and (1.2). One can check that∑
|𝐼 | ≤𝑁

|𝑍 𝐼 𝑢(𝑡, 𝑥) | � 𝜀𝑡−1〈|𝑥 | − 𝑡〉−1, as long as 𝜀 �𝑁 1. (1.32)

The case 𝑁 = 0 has been proved in Christodoulou [11]. For 𝑁 > 0, one can apply the estimates in [26,
Section 6.6] and [3, Proposition 3.1]. Following the proofs in [75, Section 5.4], from these pointwise
bounds we obtain |𝐴(𝑞, 𝜔) | � 〈𝑞〉−2. In other words, the assumptions b) and c) hold in general.

Remark 2.2. Let us compare the assumption c) with the pointwise bound (1.20) for 𝐴. By (1.20), we
have |𝐴(𝑞, 𝜔) | � 〈𝑞〉−1+𝐶𝜀 for all (𝑞, 𝜔) ∈ R×S2. Part c) of Theorem 2 indicates that if the null condition
is violated and if |𝐴(𝑞, 𝜔) | � 〈𝑞〉−1−𝐵0 𝜀 everywhere for a large constant 𝐵0 > 1, then 𝑢 ≡ 0 as long as
𝜀 � 1. In other words, if the null condition is violated, the scattering data cannot decay arbitrarily fast
in all directions as 𝑞 → −∞. Besides, the exponent −1 + 𝐶𝜀 in |𝐴(𝑞, 𝜔) | � 〈𝑞〉−1+𝐶𝜀 is almost sharp.

We also compare the assumption c) with the assumption (1.19) in the modified wave operator
problem. There we assume that |𝐴| � 〈𝑞〉−2−, so the global solutions constructed in [74, 73] cannot
have compactly supported initial data if the null condition is violated. It is unclear whether one can
further relax the assumption (1.19) in the modified wave operator problem. For example, can we assume
𝛾− > 1 instead of 𝛾− > 2?

The scattering 𝐴 satisfies an extra decaying property. By Proposition 6.1, we have

|

∫
S2
𝑈 (𝜀 ln 𝑡 − 𝛿,−2𝑡, 𝜔)𝑑𝑆𝜔 | � 𝜀−1𝑡−1/3+𝐶𝜀 , ∀𝑡 ≥ 2𝑒𝛿/𝜀 ,

where (recall that 𝑅 > 0 is chosen so that the data (1.2) vanishes for |𝑥 | ≥ 𝑅)

𝑈 (𝑠, 𝑞, 𝜔) = −

∫ 𝑅

𝑞
𝐴(𝑝, 𝜔) exp(

1
2
𝐺 (𝜔)𝐴(𝑝, 𝜔)𝑠) 𝑑𝑝.

In contrast, from 𝐴 = 𝑂 (〈𝑞〉−1+𝐶𝜀), we only have 𝑈 (𝑠, 𝑞, 𝜔) = 𝑂 (𝜀−1〈𝑞〉𝐶𝜀𝑒𝐶𝑠) and 𝑈 (𝜀 ln 𝑡 −
𝛿,−2𝑡, 𝜔) = 𝑂 (𝜀−1𝑡𝐶𝜀). Because of part c), we cannot improve this bound for𝑈 if we only rely on the
pointwise bounds for 𝐴. Thus, to relax the assumption (1.19) in the modified wave operator problem,
we may also need to take such a decaying property into account.

We now state a corollary of Theorem 2. Here, we focus on the pointwise decay for the solutions and
their first derivatives.

Theorem 3. Suppose that (1.1) violates the null condition. Fix (𝑢0, 𝑢1) ∈ 𝐶
∞
𝑐 (R3). Let u be the global

solution to (1.1) with initial data (1.2) for 𝜀 � 1. Suppose that there exist constants 𝐵0, 𝐵1 > 0
depending on 𝑢0, 𝑢1 (but not on 𝜀), such that one of the following assumptions holds:

i) Fix 0 < 𝜈0 < 1. For all 𝑡 ≥ 1 and 𝜔 ∈ S2, we have

| (𝑢𝑡 − 𝑢𝑟 ) (𝑡, (𝑡 − 𝑡
𝜈0)𝜔) | � 𝜀𝑡−1−𝜈0−𝜈0𝐵0 𝜀;

ii) Fix 0 < 𝜈0 < 1. For all 𝑡 ≥ 2 and 𝑥 ∈ R3 with |𝑥 | ∈ [𝑡 − 2𝑡𝜈0 , 𝑡 − 𝑡𝜈0/2], we have

|𝑢(𝑡, 𝑥) | � 𝜀𝑡−1−(𝜈0𝐵0+𝐵1) 𝜀;

iii) Suppose that u is a spherically symmetric solution with respect to x and that

|𝑢(𝑡, 0) | � 𝜀𝑡−1−𝐵0 𝜀 ∀𝑡 ≥ 1.

Then, as long as 𝜀 � 1, which may depend on the constants in each of the assumptions, we have
𝑢 ≡ 0.
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Remark 3.1. Note that the assumptions i) and ii) are related to the pointwise decays of u and 𝜕𝑢 for
|𝑟 − 𝑡 | � 𝑡𝜈0 . Recall from [45] that |𝜕𝑢 | � 𝜀𝑡−1〈𝑟 − 𝑡〉−1+𝐶𝜀 and |𝑢 | � 𝜀𝑡−1+𝐶𝜀 . Thus, both the exponents
−1 + 𝐶𝜀 in these estimates are almost sharp if the null condition is violated.

If the null condition is satisfied, then as shown in (1.32) in Remark 2.1, we have |𝜕𝑢 | � 𝜀𝑡−1〈𝑟 − 𝑡〉−2

and |𝑢 | � 𝜀𝑡−1〈𝑟 − 𝑡〉−1. That is, the assumptions i) and ii) hold in general.

Remark 3.2. We now prove the fact stated in Remark 1.3. Suppose that the null condition is violated.
Let u be a nonzero global solution to (1.1) and (1.2) with 𝜀 � 1. If we take 𝜈0 = 3/4 (or any number in
(1/2, 1)) in part ii) of Theorem 3, we obtain a sequence of points {(𝑡𝑛, 𝑥𝑛)} with

𝑡𝑛 ↑ ∞, 0 < 𝑡𝑛 − |𝑥𝑛 | ∼ 𝑡
3/4, |𝑢(𝑡𝑛, 𝑥𝑛) | ≥ 𝜀𝑡

−1−𝐶𝐵0 ,𝐵1 𝜀 .

We also have

〈|𝑥𝑛 | − 𝑡𝑛〉
−2𝑡𝐶𝜀

𝑛 � 𝑡−3/2+𝐶𝜀
𝑛 � 𝜀𝑡

−1−𝐶𝐵0 ,𝐵1 𝜀
𝑛 , ∀𝑡 ≥ 𝑒𝛿/𝜀 .

In other words, the estimate (1.24) must fail for this sequence of points.

Remark 3.3. Part iii) of Theorem 3 suggests that, if the null condition is violated, and if the solution is
spherically symmetric with respect to x, then 𝑢(𝑡, 0) cannot decay arbitrarily fast as 𝑡 → ∞. Unlike the
assumptions i) and ii), here we make an assumption on the decay rate of u along the time-axis which
is far inside the light cone. In Proposition 6.6 below), we can replace the spherical symmetry condition
with an assumption on the decay rate of 𝜕Ω𝑖 𝑗𝑢 near the light cone.

It is, however, unclear to the author whether the spherical symmetry condition and the assumption
on the decay rate of 𝜕Ω𝑖 𝑗𝑢 can be completely removed. For example, assuming

|𝑢(𝑡, 𝑥) | � 𝜀𝑡−1−, ∀𝑡 ≥ 1, |𝑥 | ≤ 𝑡/2,

can we show 𝑢 ≡ 0 for 𝜀 � 1?

1.4. Structure of this paper

We now explain how this paper is organized. We also invite our readers to check the beginning of each
of Sections 3–6 for an overview of that specific section.

In Section 2, we introduce the notation and several preliminary lemmas. We emphasize that a special
convention involving 𝜀 is made in Section 2.2.

In Section 3, we present an overview of the asymptotic completeness result for (1.1). We follow the
discussion in Section 1.2.3 and provide more details. We will also prove several results that did not
appear in [75]. For example, in Proposition 3.3, we provide an asymptotic formula for higher derivatives
of �̂� which was constructed from our scattering data in [75, Section 7]. In Section 3.6, we provide a new
gauge independence result which is stated in a much cleaner way than [75, Proposition 6.1].

In Section 4, we study a general inhomogeneous wave equation �𝜙 = 𝐹 inside the light cone |𝑥 | = 𝑡.
Assuming that

|𝐹 (𝑡, 𝑥) | � 〈𝑡〉−𝛾1 〈𝑟 − 𝑡〉−𝛾2 , in O = {𝑡 > 0, |𝑥 | < 𝑡}, with 𝛾1, 𝛾2 > 0, (1.33)

we derive an asymptotic formula for 𝜙: whenever (𝑡, 𝑥) ∈ O and whenever 𝑇 > 2𝑡, we have

𝜙(𝑡, 𝑥) =
1

4𝜋

∫
S2
Φ(𝑇, 𝑥 − (𝑇 − 𝑡)𝜃) 𝑑𝑆𝜃 + (a remainder term), with Φ := (−𝜕𝑡 + 𝜕𝑟 ) (|𝑥 |𝜙).

(1.34)

See Proposition 4.1. In its proof, we view 𝜙 as a solution to the backward Cauchy problem �𝜙 = 𝐹
with initial data assigned at 𝑡 = 𝑇 , so we can express 𝜙(𝑡, 𝑥) explicitly as a sum of an integral of F and
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an integral of (𝜙, 𝜙𝑡 ) |𝑡=𝑇 . We use (1.33) to control the integral of F, so 𝜙 is approximated well by the
solution to �𝑤 = 0 with data (𝜙, 𝜙𝑡 ) |𝑡=𝑇 at 𝑡 = 𝑇 . Direct computations yield (1.34).

The formula (1.34) is useful in this paper because one can relate the integral ofΦwith the asymptotics
of 𝜙 at null infinity. In fact, we will prove in Lemma 5.1 that

lim
𝑇→∞

(|𝑥 − (𝑇 − 𝑡)𝜃 | − 𝑇,
𝑥 − (𝑇 − 𝑡)𝜃

|𝑥 − (𝑇 − 𝑡)𝜃 |
) = (−𝑡 − 𝑥 · 𝜃,−𝜃), ∀𝑡 > |𝑥 | > 0, 𝜃 ∈ S2.

In other words, the curve 𝑇 ↦→ (𝑇, 𝑥 − (𝑇 − 𝑡)𝜃) converges to the straight line 𝑇 ↦→ (𝑇, (𝑥 + 𝑡 · 𝜃 − 𝑇)𝜃)
as 𝑇 → ∞. If the radiation field of 𝜙𝑡 − 𝜙𝑟

A0 (𝑞, 𝜔) = lim
𝑟→∞

𝑟 (𝜙𝑡 − 𝜙𝑟 ) (𝑟 − 𝑞, 𝑟𝜔)

exists for all (𝑞, 𝜔) ∈ R × S2, then we expect

lim
𝑇→∞

∫
S2
Φ(𝑇, 𝑥 − (𝑇 − 𝑡)𝜃) 𝑑𝑆𝜃 = −

1
4𝜋

∫
S2
A0(−𝑡 − 𝑥 · 𝜃,−𝜃) 𝑑𝑆𝜃 .

If one can also control the remainder term (1.34) when 𝑇 → ∞, then we have

𝜙(𝑡, 𝑥) = −
1

4𝜋

∫
S2
A0(𝑥 · 𝜃 − 𝑡, 𝜃) 𝑑𝑆𝜃 + (a remainder term), ∀(𝑡, 𝑥) ∈ O. (1.35)

Unfortunately, if u solves (1.1), 𝑢𝑡 − 𝑢𝑟 does not necessarily admit a radiation field in the usual sense. In
other words, we cannot apply (1.35) directly to finish the proof of Theorem 1. We thus require a more
delicate analysis of the asymptotic behaviors of u near the light cone.

In Section 5, we prove Theorem 1 by combining Proposition 4.1 with the results in Section 3. For
each multiindex I, we first prove a pointwise estimate for �𝑍 𝐼𝑢. Then, by Proposition 4.1, we notice
that it remains to estimate the integral∫

S2
[(−𝜕𝑡 +

𝑦

|𝑦 |
· 𝜕𝑦) (|𝑦 |𝑍

𝐼 𝑢)] (𝑇, 𝑦(𝑡, 𝑥, 𝑇, 𝜃)) 𝑑𝑆𝜃 .

Here, 𝑦(𝑡, 𝑥, 𝑇, 𝜃) = 𝑥 − (𝑇 − 𝑡)𝜃. In our proof, we set 𝑇 = 𝑡3 (or a sufficiently large power of t) and take
𝑡 �𝛿,𝜀 1 and |𝑥 | < 𝑡. Under this setting, we have | |𝑦 | − 𝑇 | � 𝑇1/3, so one can apply Proposition 3.3 to
approximate the integrand.

In Section 6, we prove Theorems 2 and 3. We first notice that Theorem 3 follows from part c) of
Theorem 2. That is, we need to show 𝐴 = 𝑂 (〈𝑞〉−1−𝐵0 𝜀) under one of the assumptions i)–iii). To
achieve this goal, we apply either (3.14) or (1.23) to transfer the pointwise bounds for u or 𝜕𝑢 to the
bounds for 𝐴. For example, in the case when u is spherically symmetric in x, the scattering data 𝐴 is
independent of𝜔 (i.e., 𝐴 = 𝐴(𝑞)). By (1.23) and the bound |𝑢(𝑡, 0) | � 𝜀𝑡−1−𝐵0 𝜀 , we obtain immediately
that |𝐴(−𝑡) | � 𝑡−1−𝐵0 𝜀 . This is exactly what we want, so we conclude the proof of part iii). We also
refer our readers to Proposition 6.6, which is slightly stronger than Theorem 3.

We now explain how to prove Theorem 2. Let us focus on parts b) and c), since the proof of part
a) is similar and simpler. The proof relies on the explicit formula (1.16) of solutions to the geometric
reduced system (1.14). Recall that in Section 1.2.3, we defined 𝑈 by

𝑈𝑞 (𝑠, 𝑞, 𝜔) = 𝐴(𝑞, 𝜔) exp(
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔)𝑠), lim

𝑞→∞
𝑈 (𝑠, 𝑞, 𝜔) = 0.

We observe that |𝐴|𝑒−𝐶𝑠 � |𝑈𝑞 | � |𝐴|𝑒𝐶𝑠 and that lim𝑠→∞𝑈𝑞 · 1𝐺 (𝜔)𝐴<0 = 0. Besides, we can show
that a certain integral of 𝑈𝑞 decays to 0 as 𝑡 → ∞. For example, we have a decaying property in
Remark 2.2 or Proposition 6.1. In part c), we also have a pointwise decay for𝑈 in Lemma 6.4. Now we
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rewrite the integral of𝑈𝑞 as the sum of I+ + I− + I0, where I± denotes the integral of𝑈𝑞 · 1
±𝐺 (𝜔)𝐴>0

and I0 denotes the integral of𝑈𝑞 · 1𝐺 (𝜔)𝐴=0. We send 𝑡 → ∞ and study the asymptotics of these three
integrals. Under the assumptions of Theorem 2, we can show that I0 can be neglected (because the null
condition is violated), that I+ → 0 (because I− → 0 by the Lebesgue dominated convergence theorem),
and that 𝑒𝐶𝑠I− → 0 (because of the good decay rate of the integral of 𝑈𝑞). In summary, we can show
that 𝐴 ≡ 0 and thus 𝑢 ≡ 0. We refer to Section 6.2 for more details.

2. Preliminaries

2.1. Notation

We use C to denote universal positive constants. We write 𝐴 � 𝐵, 𝐵 � 𝐴, or 𝐴 = 𝑂 (𝐵) if |𝐴| ≤ 𝐶𝐵
for some 𝐶 > 1. The values of all constants in this paper may vary from line to line. We write 𝐴 ∼ 𝐵
if 𝐴 � 𝐵 and 𝐵 � 𝐴. We use 𝐶𝑣 , �𝑣 , or �𝑣 if we want to emphasize that the constant depends on a
parameter v. Moreover, if we make a statement such as ‘|𝐴| ≤ 𝐶𝐵 for all v in a certain set V’, then it
implies that the constant C can be chosen to be uniform for all 𝑣 ∈ 𝑉 .

Unless specified otherwise, we always assume that the Latin indices 𝑖, 𝑗 , 𝑘 take values in {1, 2, 3} and
the Greek indices 𝛼, 𝛽 take values in {0, 1, 2, 3}. We use subscript to denote partial derivatives unless
specified otherwise. For example, 𝑢𝛼𝛽 = 𝜕𝛼𝜕𝛽𝑢, 𝑞𝑟 = 𝜕𝑟𝑞, 𝐴𝑞 = 𝜕𝑞𝐴, etc. For a fixed integer 𝑘 ≥ 0,
we use 𝜕𝑘 to denote either a specific partial derivative of order k, or the collection of partial derivatives
of order k.

Given a function 𝑓 = 𝑓 (𝜔) defined on S2, in order to define angular derivatives 𝜕𝜔 , we first extend
f to R3 \ 0 by setting 𝑓 (𝑥) := 𝑓 (𝑥/|𝑥 |) and then set 𝜕𝜔𝑖 𝑓 := 𝜕𝑥𝑖 𝑓 |S2 . To prevent confusion, we will
only use 𝜕𝜔 to denote angular derivatives under the coordinate system (𝑠, 𝑞, 𝜔), and we will never use
it under the coordinate system (𝑡, 𝑟, 𝜔). For a fixed integer 𝑘 ≥ 0, we will use 𝜕𝑘𝜔 to denote either a
specific angular derivative of order k, or the collection of all angular derivatives of order k.

2.2. Dependence on 𝜀

In this paper, the parameter 𝜀 always denotes the size of initial data in (1.2). We always assume that
𝜀 � 1 which means 0 < 𝜀 < 𝜀0 for some sufficiently small constant 0 < 𝜀0 < 1. We say that 𝜀 � 1
depends on v, or 𝜀 �𝑣 1, if we want to emphasize that this constant 𝜀0 depends on a parameter v.

The convention in the previous subsection allows us to write a constant depending on v as C without
the subscript v. However, we make a special exception for 𝜀. In this paper, if a constant depends on 𝜀,
then we must write it as 𝐶𝜀 . In other words, any constant without the subscript 𝜀 must be independent
of the choice of 𝜀. Similarly for �𝜀 , �𝜀 , or �𝜀 .

Note that most statements in this paper follow this format: For each integer 𝑁 ≥ 1, we have a certain
property (𝑃𝑁 ,𝜀) as long as 𝜀 �𝑁 1. For simplicity, later we will only say that we have (𝑃𝑁 ,𝜀) for
𝜀 � 1 without explicitly stating the dependence of 𝜀 on N. For example, we can say

(𝑃𝑁 ,𝜀) : 𝑡−1+𝐶𝑁 𝜀 ≤ 1, ∀𝑡 ≥ 1

as long as 𝜀 � 1. Note that (𝑃𝑁 ,𝜀) holds for all 𝜀 ∈ (0, 1
1+𝐶𝑁

).

2.3. Commuting vector fields

Let Z be any of the following vector fields:

𝜕𝛼, 𝛼 = 0, 1, 2, 3; 𝑆 = 𝑡𝜕𝑡 + 𝑟𝜕𝑟 = 𝑡𝜕𝑡 +
3∑
𝑖=1
𝑥𝑖𝜕𝑖;

Ω𝑖 𝑗 = 𝑥𝑖𝜕 𝑗 − 𝑥 𝑗𝜕𝑖 , 1 ≤ 𝑖 < 𝑗 ≤ 3; Ω0𝑖 = 𝑥𝑖𝜕𝑡 + 𝑡𝜕𝑖 , 𝑖 = 1, 2, 3.

(2.1)
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We write these vector fields as 𝑍1, 𝑍2, . . . , 𝑍11, respectively. For any multiindex 𝐼 = (𝑖1, . . . , 𝑖𝑚) with
length 𝑚 = |𝐼 | such that 1 ≤ 𝑖∗ ≤ 11, we set 𝑍 𝐼 = 𝑍𝑖1𝑍𝑖2 · · · 𝑍𝑖𝑚 . Then we have Leibniz’s rule

𝑍 𝐼 ( 𝑓 𝑔) =
∑

|𝐽 |+ |𝐾 |= |𝐼 |

𝐶 𝐼
𝐽𝐾 𝑍

𝐽 𝑓 · 𝑍𝐾 𝑔, where 𝐶 𝐼
𝐽𝐾 are constants. (2.2)

We have the following commutation properties:

[𝑆,�] = −2�, [𝑍,�] = 0 for other 𝑍; (2.3)

[𝑍, 𝑍] =
∑
|𝐼 |=1

𝐶𝑍,𝑍 ,𝐼 𝑍
𝐼 , where 𝐶𝑍,𝑍 ,𝐼 are constants; (2.4)

[𝑍, 𝜕𝛼] =
∑
𝛽

𝐶𝑍,𝛼𝛽𝜕𝛽 , where 𝐶𝑍,𝛼𝛽 are constants. (2.5)

We now recall several useful estimates involving the commuting vector fields. Their proofs are
standard and can be found in, for example, [67, 26, 45]. We start with the following pointwise estimates.

Lemma 2.1. For any function 𝜙 = 𝜙(𝑡, 𝑥), we have

|𝜕𝑘𝜙| ≤ 𝐶〈𝑡 − 𝑟〉−𝑘
∑
|𝐼 | ≤𝑘

|𝑍 𝐼 𝜙|, ∀𝑘 ≥ 0; (2.6)

3∑
𝑖=1

| (𝜕𝑖 + 𝜔𝑖𝜕𝑡 )𝜙| ≤ 𝐶〈𝑡 + 𝑟〉
−1 |𝑍𝜙|. (2.7)

For each 𝑥 ∈ R3, we set 𝑟 = |𝑥 | and 𝜔 = (𝜔𝑖)𝑖=1,2,3 = 𝑥/|𝑥 |. For each 𝑠 ∈ R, we define the Japanese
bracket 〈𝑠〉 :=

√
1 + |𝑠 |2. We also define |𝑍𝜙| :=

∑
|𝐼 |=1 |𝑍

𝐼 𝜙|.

In addition, we have the Klainerman-Sobolev inequality.

Proposition 2.2. For 𝜙 ∈ 𝐶∞(R1+3) which vanishes for large |𝑥 |, we have

〈𝑡 + |𝑥 |〉〈𝑡 − |𝑥 |〉1/2 |𝜙(𝑡, 𝑥) | ≤ 𝐶
∑
|𝐼 | ≤2



𝑍 𝐼 𝜙(𝑡, ·)


𝐿2 (R3)

. (2.8)

Moreover, we state a corollary of [74, Lemma 2.6]. It can be viewed as the estimates for Taylor’s
series adapted to the commuting vector fields. Note that the original lemma is stronger but unnecessary
for this paper.

Lemma 2.3. Fix two positive integer 𝑁, 𝑙0. Assume that 𝜙 = 𝜙(𝑡, 𝑥) is an R𝑘 -valued function satisfying∑
|𝐽 | ≤𝑁 |𝑍 𝐽𝜙| ≤ 1 at a certain point (𝑡0, 𝑥0). Also assume that 𝑓 ∈ 𝐶∞(R𝑘 ) and that 𝑓 (𝑠) = 𝑂 (|𝑠 |𝑙0 )

whenever s is near the origin. Then, at (𝑡0, 𝑥0) we have∑
|𝐽 | ≤𝑁

|𝑍 𝐽 ( 𝑓 (𝜙)) | � 𝑓 ,𝑁

∑
|𝐽 | ≤𝑁

|𝑍 𝐽𝜙|𝑙0 .

The implicit constant is independent of the choice of (𝑡0, 𝑥0).

We also recall [74, Lemma 2.1] on the commutator [𝜕𝑡 − 𝜕𝑟 , 𝑍 𝐼 ].

Lemma 2.4. For each multiindex I, we have

[𝜕𝑡 − 𝜕𝑟 , 𝑍
𝐼 ]𝐹 =

∑
|𝐽 |< |𝐼 |

(
𝑓0 · 𝑍

𝐽 (𝐹𝑡 − 𝐹𝑟 ) +
∑

𝑖=1,2,3
𝑓0 · (𝜕𝑖 + 𝜔𝑖𝜕𝑡 )𝑍

𝐽𝐹

)
.
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Here, 𝑓0 denotes an arbitrary finite sum of terms of the form 𝐶 ·
∏𝑝

𝑗=1 𝑍
𝐼 𝑗𝜔𝑖 𝑗 with 𝑖∗ ∈ {1, 2, 3}, and we

allow 𝑓0 to vary from line to line.

2.4. A function space

To simplify our computations, we make the following definition. Fix a small parameter 𝛿 ∈ (0, 1). For
each 𝜀 ∈ (0, 1), we suppose that there is a nonempty open setD𝜀 ⊂ {(𝑡, 𝑥) : 𝑡 ≥ 𝑒𝛿/𝜀 , |𝑥 |/𝑡 ∈ [1/2, 2]}.
Definition 2.5. Fix 𝑛, 𝑚, 𝑝 ∈ R. Suppose that we have a function 𝐹 = 𝐹 (𝑡, 𝑥; 𝜀) that is defined for all
(𝑡, 𝑥) ∈ D𝜀 as long as 𝜀 � 1. We say that 𝐹 ∈ 𝜀𝑛𝑆𝑚,𝑝D if for each integer 𝑁 ≥ 1, there exists an
𝜀𝑁 ∈ (0, 1) depending on {D∗}, 𝛿, 𝑁 , such that for all 𝜀 ∈ (0, 𝜀𝑁 ), we have 𝐹 (·; 𝜀) ∈ 𝐶𝑁 (D𝜀) and∑

|𝐼 | ≤𝑁

|𝑍 𝐼𝐹 (𝑡, 𝑥; 𝜀) | �𝑁 𝜀𝑛𝑡𝑚+𝐶𝑁 𝜀 〈𝑟 − 𝑡〉𝑝 , ∀(𝑡, 𝑥) ∈ D𝜀 . (2.9)

The constants in (2.9) depend on {D∗}, N, and 𝛿, but they are independent of 𝜀 ∈ (0, 𝜀𝑁 ).
Moreover, we say that 𝐹 ∈ 𝜀𝑛𝑆𝑚,𝑝ln,D if we add a factor (1 + ln〈𝑟 − 𝑡〉) on the right-hand side of (2.9).

Such a definition is useful in the proof of Proposition 3.3.
Finally, we will omit the subscript D for simplicity if it is clear what D𝜀 is according to the context.

That is, we can write 𝜀𝑛𝑆𝑚,𝑝 and 𝜀𝑛𝑆𝑚,𝑝ln . If we have 𝑛 = 0, then we will also omit 𝜀0 and write 𝑆𝑚,𝑝
and 𝑆𝑚,𝑝ln .

We summarize some useful properties in the next lemma. This lemma is essentially the same as
[74, Lemma 2.8], so we omit the proof here.
Lemma 2.6.
(a) We have 𝑟 − 𝑡 ∈ 𝑆0,1, 𝑟𝑚, 𝑡𝑚, (𝑡 + 𝑟)𝑚 ∈ 𝑆𝑚,0, and 𝜔 ∈ 𝑆0,0.
(b) For any 𝐹1 ∈ 𝜀𝑛1𝑆𝑚1 , 𝑝1 and 𝐹2 ∈ 𝜀𝑛2𝑆𝑚2 , 𝑝2 , we have

𝐹1 + 𝐹2 ∈ 𝜀min{𝑛1 ,𝑛2 }𝑆max{𝑚1 ,𝑚2 },max{𝑝1 , 𝑝2 }, 𝐹1𝐹2 ∈ 𝜀𝑛1+𝑛2𝑆𝑚1+𝑚2 , 𝑝1+𝑝2 .

(c) For any 𝐹1 ∈ 𝜀𝑛1𝑆𝑚1 , 𝑝1
ln and 𝐹2 ∈ 𝜀𝑛2𝑆𝑚2 , 𝑝2 , we have

𝐹1 + 𝐹2 ∈ 𝜀min{𝑛1 ,𝑛2 }𝑆max{𝑚1 ,𝑚2 },max{𝑝1 , 𝑝2 }
ln , 𝐹1𝐹2 ∈ 𝜀𝑛1+𝑛2𝑆𝑚1+𝑚2 , 𝑝1+𝑝2

ln .

(d) For any 𝐹 ∈ 𝜀𝑛𝑆𝑚,𝑝 , we have 𝑍𝐹 ∈ 𝜀𝑛𝑆𝑚,𝑝 , 𝜕𝐹 ∈ 𝜀𝑛𝑆𝑚,𝑝−1 and (𝜕𝑖 + 𝜔𝑖𝜕𝑡 )𝐹 ∈ 𝜀𝑛𝑆𝑚−1, 𝑝 .
We also present a key lemma that will be applied repeatedly in this paper.

Lemma 2.7. Let 𝜌 = 𝜌(𝑡, 𝑥; 𝜀) ∈ 𝑆0,1 such that 〈𝑟 − 𝑡〉 � 〈𝜌(𝑡, 𝑥; 𝜀)〉𝑡𝐶𝜀 in D𝜀 for 𝜀 � 1. Let
D̃𝜀 ⊂ [0,∞) × R × S2 be an open set such that

D̃𝜀 ⊃ {(𝜀 ln 𝑡 − 𝛿, 𝜌(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |) : (𝑡, 𝑥) ∈ D𝜀}.

Suppose that 𝐺 = 𝐺 (𝑠, 𝑞, 𝜔; 𝜀) is a function such that for each integer 𝑁 ≥ 0, as long as 𝜀 �𝑁 1, we
have 𝐺 (·; 𝜀) ∈ 𝐶𝑁 (𝐷 𝜀) and∑

𝑎+𝑏+𝑐≤𝑁

〈𝑞〉𝑎𝜀𝑏 |𝜕𝑎𝑞 𝜕
𝑏
𝑠 𝜕

𝑐
𝜔𝐺 (𝑠, 𝑞, 𝜔; 𝜀) | �𝑁 𝜀𝑛〈𝑞〉𝑝𝑒𝐶𝑁 𝑠+𝑚· 𝑠+𝛿𝜀 , (𝑠, 𝑞, 𝜔) ∈ D̃𝜀 . (2.10)

Then we have 𝐺 (𝜀 ln 𝑡 − 𝛿, 𝜌(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |; 𝜀) ∈ 𝜀𝑛𝑆𝑚,𝑝 .
Proof. We first notice that

〈𝑟 − 𝑡〉𝑡−𝐶𝜀 � 〈𝜌〉 � 𝑡𝐶𝜀 〈𝑟 − 𝑡〉, ∀(𝑡, 𝑥) ∈ D ∩ {𝑡 ≥ 𝑒𝛿/𝜀}.

The first half is in the assumption of this lemma, and the second half follows from 𝜌 ∈ 𝑆0,1.
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Fix an integer 𝑁 ≥ 0. Choose 𝜀 �𝑁 1 so that 𝐺 (𝑠, 𝑞, 𝜔; 𝜀) ∈ 𝐶𝑁 (D̃𝜀), 𝜌(𝑡, 𝑥; 𝜀) ∈ 𝐶𝑁 (D𝜀), and
that both (2.9) (with F replaced by 𝜌 and (𝑛, 𝑚, 𝑝) = (0, 0, 1)) and (2.10) hold for this N. We need to
check (2.9) with F replaced by𝐺 (𝑡, 𝑥; 𝜀) := 𝐺 (𝜀 ln 𝑡−𝛿, 𝜌(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |; 𝜀) and𝑚 = 0. Fix a multiindex
I with |𝐼 | ≤ 𝑁 . If |𝐼 | = 0, then (2.10) implies that

|𝐺 | � 𝜀𝑛〈𝜌〉𝑝𝑡𝑚+𝐶𝜀 � 𝜀𝑛〈𝑟 − 𝑡〉𝑝𝑡𝑚+𝐶𝜀 ∀(𝑡, 𝑥) ∈ D𝜀 ,

so we are done. If |𝐼 | > 0, we write 𝑍 𝐼 (𝐺 (𝑡, 𝑥; 𝜀)) as a linear combination (with real constant coefficients
independent of 𝜀) of terms of the form

𝜕𝑎𝑞 𝜕
𝑏
𝑠 𝜕

𝑐
𝜔𝐺 (𝜀 ln 𝑡 − 𝛿, 𝜌(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |; 𝜀) ·

𝑏∏
𝑗=1
𝑍 𝐼 𝑗 (𝜀 ln 𝑡 − 𝛿) ·

𝑎∏
𝑗=1
𝑍 𝐽 𝑗 𝜌 ·

𝑐∏
𝑗=1
𝑍𝐾 𝑗𝜔.

Here, 𝑎 + 𝑏 + 𝑐 ≤ 𝑁 , each of 𝐼∗, 𝐽∗, 𝐾∗ is nonzero, and the sum of these multiindices is |𝐼 |. Since
|𝐼∗ | > 0, we have 𝑍 𝐼∗ (𝜀 ln 𝑡 − 𝛿) = 𝑂 (𝜀). Since 𝜌 ∈ 𝑆0,1 and 𝜔 ∈ 𝑆0,0, we have 𝑍 𝐽∗ 𝜌 = 𝑂 (𝑡𝐶𝜀 〈𝑟 − 𝑡〉)
and 𝑍𝐾∗𝜔 = 𝑂 (1) (we can show that there is no 𝑡𝐶𝜀 factor here). We also apply (2.10) to control the
derivatives of G. In summary, each term of the form above is controlled by

𝜀𝑛−𝑏 〈𝜌〉𝑝−𝑎𝑡𝑚+𝐶𝜀 · 𝜀𝑏 · 〈𝑟 − 𝑡〉𝑎𝑡𝐶𝜀 · 1 � 𝜀𝑛〈𝑟 − 𝑡〉𝑝𝑡𝑚+𝐶𝜀 .

Thus, we have 𝑍 𝐼𝐺 = 𝑂 (𝜀𝑛〈𝑟 − 𝑡〉𝑝𝑡𝑚+𝐶𝜀) in D𝜀 . �

3. A review on the asymptotic completeness result

The proofs of the main theorems rely heavily on the author’s previous paper [75] on the asymptotic
completeness for (1.1). In this section, we summarize the results in [75] that are necessary for the proofs
in this paper. In Section 3.1, we quickly review the global existence result in [45]. In Section 3.2, we
discuss the construction of the optical function q. In Sections 3.3 and 3.4, we define the scattering data
𝐴 for the asymptotic completeness problem and show that one can construct a matching approximate
solution �̃� to (1.1). Finally, in Section 3.6, we discuss a gauge independence result.

We also need some new results whose proofs rely on the computations in [75]. In Section 3.5, we
prove Proposition 3.3 on the higher derivatives of the approximate solution �̃� constructed in Section
1.2.3. The proof of Proposition 3.3 is lengthy, so we add a brief overview of its proof after its statement. In
Section 3.6, we present a new version of the gauge independence result. By changing the definition of the
scattering data, we show Corollary 3.9 which is of a much cleaner form than the one in [75, Section 6].

3.1. Global existence

Fix 𝑢0, 𝑢1 ∈ 𝐶∞
𝑐 (R3). Choose 𝑅 > 0 such that supp(𝑢0, 𝑢1) ⊂ {|𝑥 | ≤ 𝑅}, and we remark that the

meaning of R will remain unchanged in the rest of this paper. For 𝜀 � 1, the Cauchy problem (1.1) and
(1.2) admits a unique global 𝐶∞ solution 𝑢 = 𝑢(𝑡, 𝑥; 𝜀) for all 𝑡 ≥ 0. Sometimes we omit 𝜀 and write
𝑢(𝑡, 𝑥) for simplicity. Here, we first apply the global existence result for (1.1) in Lindblad [45] to get
a global 𝐶14 solution. Then, we apply [67, Theorems I.4.1 and I.4.2] to show that this 𝐶14 solution is
indeed the unique 𝐶∞ solution.

Moreover, for each nonnegative integer N, we have the following pointwise bounds as long as 𝜀 �𝑁 1:∑
|𝐼 | ≤𝑁

|𝑍 𝐼𝑢(𝑡, 𝑥; 𝜀) | �𝑁 𝜀〈𝑡〉−1+𝐶𝑁 𝜀 , ∀𝑡 ≥ 0, 𝑥 ∈ R3. (3.1)

There is a better bound for 𝜕𝑢: |𝜕𝑢 | � 𝜀〈𝑡〉−1. By the finite speed of propagation, we also have 𝑢 ≡ 0
for 𝑟 − 𝑡 ≥ 𝑅.
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3.2. The optical function

Fix a small parameter 𝛿 ∈ (0, 1). Define

Ω = Ω𝛿,𝑅,𝜀 := {(𝑡, 𝑥) ∈ (𝑒𝛿/𝜀 ,∞) × R3 : |𝑥 | >
1
2
(𝑡 + 𝑒𝛿/𝜀) + 2𝑅}. (3.2)

Heuristically, one can view Ω as {𝑡 > 𝑒𝛿/𝜀 , |𝑥 | > 𝑡/2}. Here, we use (3.2) for technical reasons; see
the discussion below (3.3). From now on, if we use the notation 𝜀𝑛𝑆𝑚,𝑝 or 𝜀𝑛𝑆𝑚,𝑝ln , we always take
D𝜀 = Ω𝛿,𝑅,𝜀 ∩ {𝑟 − 𝑡 < 2𝑅} in Definition 2.5. Thus, by (3.1), we have 𝑢 ∈ 𝜀𝑆−1,0.

In [75, Propositions 3.1 and 4.1], we applied the method of characteristics and proved that the eikonal
equation

𝑔𝛼𝛽 (𝑢)𝜕𝛼𝑞𝜕𝛽𝑞 = 0 in Ω; 𝑞 = |𝑥 | − 𝑡 on 𝜕Ω (3.3)

admits a unique global 𝐶2 solution 𝑞 = 𝑞(𝑡, 𝑥; 𝜀) in Ω. Because 𝜕Ω is not a smooth surface, it seems
that we need to carefully choose the boundary condition near the ‘corner’ of 𝜕Ω

{𝑡 = 𝑒𝛿/𝜀 , |𝑥 | = 𝑒𝛿/𝜀 + 2𝑅} ⊂ 𝜕Ω

to make q a 𝐶2 solution. However, it is not necessary here because of our choice (3.2) of Ω. We have
𝑢 |𝑟−𝑡≥𝑅 ≡ 0 and 𝑞 |𝑟−𝑡≥𝑅 = 𝑟 − 𝑡, so we only need to consider those characteristics emanating from a
smooth subset of 𝜕Ω (i.e., 𝜕Ω ∩ {𝑡 > 𝑒𝛿/𝜀}). Besides, we have 𝑞 ∈ 𝑆0,1 and 〈𝑟 − 𝑡〉 � 〈𝑞〉𝑡𝐶𝜀 in Ω, so
we can take 𝜌 = 𝑞 in Lemma 2.7. To see this, we apply [75, Lemma 3.8] to obtain |𝑞− (𝑟 − 𝑡) | � 𝑡𝐶𝜀 and
𝑡−𝐶𝜀 � 〈𝑞〉/〈𝑟−𝑡〉 � 𝑡𝐶𝜀 inΩ. Next, we apply [75, Proposition 4.1] to conclude that for each fixed integer
𝑁 ≥ 2, the 𝐶2 solution q is 𝐶𝑁 as long as 𝜀 �𝑁 1. We also have

∑
|𝐼 | ≤𝑁 |𝑍 𝐼 𝑞 | � 〈𝑞〉𝑡𝐶𝜀 � 〈𝑟 − 𝑡〉𝑡𝐶𝜀

in Ω.
Next, if we set

Ω′ := {(𝑠, 𝑞, 𝜔) ∈ [0,∞) × R × S2 : 𝑞 >
1
2
(1 − 𝑒𝑠/𝜀)𝑒𝛿/𝜀 + 2𝑅}, (3.4)

then the map

Ω → Ω′ : (𝑡, 𝑥) ↦→ (𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |)

is bijective and has an inverse map. As a result, any function defined for all (𝑡, 𝑥) ∈ Ω induces a function
of (𝑠, 𝑞, 𝜔). Again, for each fixed integer 𝑁 ≥ 2, both the map Ω → Ω′ and its inverse are 𝐶𝑁 as long
as 𝜀 �𝑁 1.

3.3. The geometric reduced system

In Ω, we set (𝜇,𝑈) (𝑡, 𝑥; 𝜀) := (𝑞𝑡 −𝑞𝑟 , 𝜀
−1𝑟𝑢) (𝑡, 𝑥; 𝜀) and obtain an induced function (𝜇,𝑈) (𝑠, 𝑞, 𝜔; 𝜀)

in Ω′. In [75, Section 5], we proved that (𝜇,𝑈) is an approximate solution to the geometric reduced
system (1.14). In addition, the following three limits exist for all (𝑞, 𝜔) ∈ R × S2:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝐴(𝑞, 𝜔; 𝜀) := −

1
2

lim
𝑠→∞

(𝜇𝑈𝑞) (𝑠, 𝑞, 𝜔; 𝜀),

𝐴1 (𝑞, 𝜔; 𝜀) := lim
𝑠→∞

exp(
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀)𝑠)𝜇(𝑠, 𝑞, 𝜔; 𝜀),

𝐴2 (𝑞, 𝜔; 𝜀) := lim
𝑠→∞

exp(−
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀)𝑠)𝑈𝑞 (𝑠, 𝑞, 𝜔; 𝜀).

(3.5)
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Note that 𝐴1𝐴2 ≡ −2𝐴. Since 𝑢 ≡ 0 whenever 𝑟 ≥ 𝑡 + 𝑅, we have (𝐴, 𝐴2) ≡ 0 and 𝐴1 ≡ −2 for 𝑞 ≥ 𝑅.
By setting ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜇(𝑠, 𝑞, 𝜔; 𝜀) := 𝐴1 exp(−
1
2
𝐺 (𝜔)𝐴𝑠),

𝑈𝑞 (𝑠, 𝑞, 𝜔; 𝜀) := 𝐴2 exp(
1
2
𝐺 (𝜔)𝐴𝑠),

lim
𝑞→∞

𝑈 (𝑠, 𝑞, 𝜔; 𝜀) = 0,

(3.6)

we obtain an exact solution (𝜇,𝑈) to the reduced system (1.14). We refer our readers to [75, Proposition
5.1] for more details. Since 𝐴, 𝐴1, 𝐴2 are defined for all (𝑞, 𝜔) ∈ R × S2, we emphasize that (𝜇,𝑈) is
defined for all (𝑠, 𝑞, 𝜔) ∈ R × R × S2. However, (𝜇,𝑈) is only defined in Ω′.

In [75, Proposition 5.1], we also proved several bounds for 𝐴, 𝐴1, 𝐴2 in the coordinate set (𝑞, 𝜔):

𝜕𝑎𝑞 𝜕
𝑐
𝜔 (𝐴, 𝐴2) = 𝑂𝑎,𝑐 (〈𝑞〉

−1−𝑎+𝐶𝑎,𝑐 𝜀), 𝜕𝑎𝑞 𝜕
𝑐
𝜔𝐴1 = 𝑂𝑎,𝑐 (〈𝑞〉

−𝑎+𝐶𝑎,𝑐 𝜀), ∀𝑎, 𝑐 ≥ 0. (3.7)

Here, we remind our readers of the convention introduced in Section 2.2. First, the estimates (3.7) should
be understood in the following way: for each integer 𝑁 ≥ 0, as long as 𝜀 �𝑁 1, the functions 𝐴, 𝐴1, 𝐴2
are 𝐶𝑁 and satisfy (3.7) for all 𝑎 + 𝑐 ≤ 𝑁 . Moreover, we emphasize that the constants in (3.7) can be
chosen to be uniform for all 𝜀 �𝑁 1.

In [75, Lemma 5.8], we proved that

|𝐴1 + 2| ≤ 〈𝑞〉−1+𝐶𝜀 , −3 ≤ 𝐴1 ≤ −1 < 0. (3.8)

Finally, we recall from [75, Proposition 5.1, (5.11), and (5.12)] that

𝜕𝑎𝑞 𝜕
𝑏
𝑠 𝜕

𝑐
𝜔 (𝜇 − 𝜇) = 𝑂𝑎,𝑏,𝑐 (𝜀

−𝑏 〈𝑞〉−𝑎𝑡−1+𝐶𝑎,𝑏,𝑐 𝜀), ∀𝑎, 𝑏, 𝑐 ≥ 0, (𝑠, 𝑞, 𝜔) ∈ Ω′;

𝜕𝑎𝑞 𝜕
𝑏
𝑠 𝜕

𝑐
𝜔 (𝑈 −𝑈) = 𝑂𝑎,𝑏,𝑐 (𝜀

−𝑏 〈𝑞〉1−𝑎𝑡−1+𝐶𝑎,𝑏,𝑐 𝜀), ∀𝑎, 𝑏, 𝑐 ≥ 0, (𝑠, 𝑞, 𝜔) ∈ Ω′;
(3.9)

𝜕𝑎𝑞 𝜕
𝑏
𝑠 𝜕

𝑐
𝜔 (𝜇,𝑈) = 𝑂𝑎,𝑏,𝑐 (𝜀

−𝑏 〈𝑞〉−𝑎𝑡𝐶𝑎,𝑏,𝑐 𝜀), ∀𝑎, 𝑏, 𝑐 ≥ 0, (𝑠, 𝑞, 𝜔) ∈ Ω′. (3.10)

All the functions above are defined for (𝑠, 𝑞, 𝜔) ∈ Ω′ ⊂ [0,∞) × R × S2 where Ω′ is defined by (3.4).
Besides, we set 𝑡 = 𝑒 𝑠+𝛿

𝜀 . Again, all the estimates above should be understood in the following way: for
each integer 𝑁 ≥ 0, we can choose 𝜀 �𝑁 1 so that these estimates hold for all 𝑎 + 𝑏 + 𝑐 ≤ 𝑁 .

As discussed in Section 3.2, every function of (𝑠, 𝑞, 𝜔) induces a function of (𝑡, 𝑥) via the map
(𝑡, 𝑥) ↦→ (𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |). Below (3.3), we mentioned that 𝑞 ∈ 𝑆0,1 and 〈𝑟 − 𝑡〉 � 〈𝑞〉𝑡𝐶𝜀 .
Thus, we can apply Lemma 2.7 with 𝜌 = 𝑞 to obtain the following lemma.

Lemma 3.1. We have 𝑢 − 𝜀𝑟−1𝑈 ∈ 𝜀𝑆−2,1, and 𝜕𝛼𝑢 − 𝜀𝜔𝛼𝑟
−1𝐴 ∈ 𝜀𝑆−2,0 for 𝛼 = 0, 1, 2, 3. Here,

𝜔0 = −1 and 𝜔 𝑗 = 𝜔 𝑗 for 𝑗 = 1, 2, 3. That is, for each fixed integer 𝑁 ≥ 0, as long as 𝜀 �𝑁 1, we have∑
|𝐼 | ≤𝑁

|𝑍 𝐼 (𝑢(𝑡, 𝑥) − 𝜀𝑟−1𝑈 (𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥), 𝑥/|𝑥 |)) | � 𝜀𝑡−2+𝐶𝜀 〈𝑟 − 𝑡〉,∑
|𝐼 | ≤𝑁

|𝑍 𝐼 (𝜕𝛼𝑢(𝑡, 𝑥) − 𝜀𝜔𝛼𝑟
−1𝐴(𝑞(𝑡, 𝑥), 𝑥/|𝑥 |)) | � 𝜀𝑡−2+𝐶𝜀

for all (𝑡, 𝑥) ∈ Ω. Note that the estimates hold trivially when 𝑟 − 𝑡 ≥ 𝑅 since 𝑢,𝑈, 𝐴 vanish there.

Proof. We apply Lemma 2.7 with 𝜌 = 𝑞,𝐺 = 𝑈 −𝑈, and (𝑛, 𝑚, 𝑝) = (0,−1, 1). Thus, we have𝑈 −𝑈 ∈

𝑆−1,1. By Lemma 2.6, we have 𝜀𝑟−1 ∈ 𝜀𝑆−1,0 and thus 𝑢−𝜀𝑟−1𝑈 = 𝜀𝑟−1(𝑈−𝑈) ∈ 𝜀𝑆−1,0 ·𝑆−1,1 ⊂ 𝜀𝑆−2,1.
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Next, by part (d) of Lemma 2.6, we have 𝜕𝛼 (𝑢−𝜀𝑟−1𝑈) ∈ 𝜀𝑆−2,0. It suffices to prove that 𝜕𝛼 (𝜀𝑟−1𝑈)−
𝜀𝜔𝛼𝑟

−1𝐴 ∈ 𝜀𝑆−2,0. By the chain rule and since 𝐴 = − 1
2 𝜇𝑈𝑞 , we have

𝜕𝛼 (𝜀𝑟
−1𝑈) − 𝜀𝑟−1𝜔𝛼𝐴

= 𝜀𝑟−1 (𝑈𝑞𝑞𝛼 − 𝜔𝛼𝐴) − 𝜀𝑟
−2(𝜕𝑟) ·𝑈 + 𝜀𝑟−1𝑈𝑠 · 𝜕 (𝜀 ln 𝑡) + 𝜀𝑟−1𝑈𝜔 · 𝜕𝜔

= 𝜀𝑟−1 (𝑞𝛼 +
1
2
𝜔𝛼𝜇)𝑈𝑞 + 𝜀𝑆

−2,0.

To obtain the last estimate, we first apply (3.10) and Lemma 2.7 to obtain𝑈,𝑈𝜔 ∈ 𝑆0,0 and𝑈𝑠 ∈ 𝜀
−1𝑆0,0.

By Lemma 2.6, we have 𝜀𝑟−2𝜕𝑟, 𝜀𝑟−1𝜕𝜔 ∈ 𝜀𝑆−2,0 and 𝜀𝑟−1𝜕 (𝜀 ln 𝑡) ∈ 𝜀2𝑆−2,0.
Finally, we need to show 𝜀𝑟−1(𝑞𝛼 + 1

2𝜔𝛼𝜇)𝑈𝑞 ∈ 𝜀𝑆2,0. We have 𝜀𝑟−1 ∈ 𝜀𝑆−1,0 and 𝑈𝑞 ∈ 𝑆0,−1 by
(3.10) and Lemma 2.7. Moreover, we have

𝑞𝑡 =
1
2
𝜇 +

1
2
(𝜇 − 𝜇) +

1
2
(𝑞𝑡 + 𝑞𝑟 ),

𝑞𝑖 = −
1
2
𝜇𝜔𝑖 −

1
2
(𝜇 − 𝜇)𝜔𝑖 + (𝑞𝑖 − 𝜔𝑖𝑞𝑟 ).

By (3.9) and Lemma 2.7, we have 𝜇 − 𝜇 ∈ 𝑆−1,0. Since 𝑞 ∈ 𝑆0,1, we apply part (d) of Lemma 2.6 to
obtain 𝑞𝑡 + 𝑞𝑟 , 𝑞𝑖 − 𝜔𝑖𝑞𝑟 ∈ 𝑆−1,1. As a result, we have 𝑞𝛼 + 1

2 𝜇𝜔𝛼 ∈ 𝑆−1,1. In summary, we have

𝜀𝑟−1 (𝑞𝛼 +
1
2
𝜔𝛼𝜇)𝑈𝑞 ∈ 𝜀𝑆−1,0 · 𝑆−1,1 · 𝑆0,−1 ⊂ 𝜀𝑆−2,0. �

3.4. Approximation

In [75, Section 7], we used the limits in (3.5) to generate an approximate solution to (1.1) that is
sufficiently close to the exact solution u in some sense. The construction is as follows. Recall from (3.6)
that we have an exact solution (𝜇,𝑈) (𝑠, 𝑞, 𝜔; 𝜀) to the geometric reduced system (1.14). Now, we define
a new function 𝑞 = 𝑞(𝑡, 𝑥; 𝜀) in Ω by solving

𝑞𝑡 − 𝑞𝑟 = 𝜇(𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |; 𝜀) in Ω; 𝑞 = |𝑥 | − 𝑡 for |𝑥 | − 𝑡 ≥ 2𝑅. (3.11)

We then define

�̃�(𝑡, 𝑥; 𝜀) = 𝜀 |𝑥 |−1𝑈 (𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |; 𝜀), ∀(𝑡, 𝑥) ∈ Ω. (3.12)

Once again, both 𝑞 and �̃� are 𝐶𝑁 as long as 𝜀 �𝑁 1. In [75, Proposition 7.1 and Lemma 7.7], we
proved that this �̃� is an approximate solution to (1.1), that for each integer 𝑁 ≥ 0, as long as 𝜀 �𝑁 1,∑

|𝐼 | ≤𝑁

|𝑍 𝐼 �̃�(𝑡, 𝑥; 𝜀) | � 𝜀𝑡−1+𝐶𝜀 , ∀(𝑡, 𝑥) ∈ Ω, (3.13)

and that for each 𝛾 ∈ (0, 1) and each integer 𝑁 ≥ 0, as long as 𝜀 �𝛾,𝑁 1,∑
|𝐼 | ≤𝑁

|𝑍 𝐼 (𝑢 − �̃�) (𝑡, 𝑥; 𝜀) | �𝛾,𝑁 𝜀𝑡−2+𝐶𝑁 𝜀 〈𝑟 − 𝑡〉, ∀(𝑡, 𝑥) ∈ Ω ∩ {|𝑟 − 𝑡 | � 𝑡𝛾}. (3.14)

We ask our readers to compare (3.14) with Lemma 3.1. First, the estimates (3.14) hold inΩ∩{|𝑟−𝑡 | � 𝑡𝛾},
and the implicit constants depend on 𝛾. From this point of view, the estimates in Lemma 3.1 are better
since they hold in Ω. However, we can construct �̃� from the functions 𝐴, 𝐴1, 𝐴2 without knowing what
the exact solution u to (1.1) and the exact optical function q are. Recall that we construct an approximate
optical function 𝑞 by solving a transport equation which does not depend on u and q. However, to apply
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Lemma 3.1, we need the exact optical function q which is determined by the eikonal equation (3.3)
involving u.

Here, we recall an alternative way to define �̃� from [75, Section 7.2] which will simplify our
computations. Define13

𝐹 (𝑞, 𝜔; 𝜀) := 2𝑅 −

∫ 𝑞

2𝑅

2
𝐴1(𝑝, 𝜔; 𝜀)

𝑑𝑝, ∀(𝑞, 𝜔) ∈ R × S2. (3.15)

Recall that 𝐴1 ∈ [−3,−1] everywhere, so F is well defined. In [75, Section 7.2], we proved that
〈𝐹 (𝑞, 𝜔; 𝜀)〉 ∼ 〈𝑞〉 for all (𝑞, 𝜔) ∈ R × S2. For each fixed 𝜔 ∈ S2, the map 𝑞 ↦→ 𝐹 (𝑞, 𝜔; 𝜀) has an
inverse 𝐹 (𝑞, 𝜔; 𝜀). Set⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝐴(𝑞, 𝜔; 𝜀) := 𝐴(𝐹 (𝑞, 𝜔; 𝜀), 𝜔; 𝜀),

𝜇(𝑠, 𝑞, 𝜔; 𝜀) := −2 exp(−
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀)𝑠),

𝑈 (𝑠, 𝑞, 𝜔; 𝜀) := −

∫ ∞

𝑞
𝐴(𝑝, 𝜔; 𝜀) exp(

1
2
𝐺 (𝜔)𝐴(𝑝, 𝜔; 𝜀)𝑠) 𝑑𝑝.

(3.16)

This 𝐴 is called the scattering data for the asymptotic completeness problem. Note that (𝜇,𝑈) is again
a solution to the geometric reduced system (1.14).

We summarize several estimates for 𝐴, 𝜇,𝑈 in the next lemma. We again remind our readers of the
convention in Section 2.2.

Lemma 3.2. For all 𝑎, 𝑐 ≥ 0, we have

𝜕𝑎𝑞 𝜕
𝑐
𝜔𝐴 = 𝑂𝑎,𝑐 (〈𝑞〉

−1−𝑎+𝐶𝑎,𝑐 𝜀), ∀(𝑞, 𝜔) ∈ R × S2. (3.17)

For all 𝑎, 𝑏, 𝑐 ≥ 0, we have

𝜕𝑎𝑞 𝜕
𝑏
𝑠 𝜕

𝑐
𝜔 (𝜇 + 2) = 𝑂𝑎,𝑏,𝑐 (〈𝑞〉

−max{1,𝑏}−𝑎+𝐶𝑎,𝑏,𝑐 𝜀𝑒𝐶𝑎,𝑏,𝑐𝑠);

𝜕𝑎𝑞 𝜕
𝑏
𝑠 𝜕

𝑐
𝜔𝑈𝑞 = 𝑂𝑎,𝑏,𝑐 (〈𝑞〉

−1−𝑎−𝑏+𝐶𝑎,𝑏,𝑐 𝜀𝑒𝐶𝑎,𝑏,𝑐𝑠);

𝜕𝑏𝑠 𝜕
𝑐
𝜔𝑈 = 𝑂𝑏,𝑐 ((𝜀

−1〈𝑞〉𝐶𝑏,𝑐 𝜀1𝑏=0 + 1𝑏>0)𝑒
𝐶𝑏,𝑐𝑠)

(3.18)

for all (𝑠, 𝑞, 𝜔) ∈ [0,∞) × R × S2. Finally, for all 𝑐 ≥ 0, 𝑠 ≥ 0, 𝜔 ∈ S2, and 𝑞 > 𝐶0𝑒
𝐶0𝑠 (𝑒𝛿/𝜀 −

𝑒 (𝛿+𝑠)/𝜀 − 1) for some constant 𝐶0 > 1, we have

𝜕𝑐𝜔𝑈 = 𝑂𝑐,𝐶0 (𝑒
𝐶𝑐,𝐶0 𝑠). (3.19)

Proof. The estimates (3.17) have been proved in [75, Proposition 7.3]. We now prove (3.18) for all
(𝑠, 𝑞, 𝜔) ∈ [0,∞) × R × S2. Since |𝑒𝑥 − 1| ≤ |𝑥 |𝑒 |𝑥 | , we have |𝜇 + 2| � |𝐺 (𝜔)𝐴𝑠 |𝑒𝐶𝑠 � 〈𝑞〉−1+𝐶𝜀𝑒𝐶𝑠 .
Next, for 𝑎 + 𝑐 > 0, we write 𝜕𝑎𝑞 𝜕𝑐𝜔𝜇 as a linear combination (with real constant coefficients depending
only on a and c) of terms of the form

exp(−
1
2
𝐺𝐴𝑠) ·

𝑘∏
𝑗=1
𝜕
𝑎 𝑗
𝑞 𝜕

𝑐 𝑗
𝜔 (−

1
2
𝐺𝐴𝑠),

∑
𝑎∗ = 𝑎,

∑
𝑐∗ = 𝑐, 𝑎 𝑗 + 𝑐 𝑗 > 0 for each 𝑗 .

The estimates for 𝐴 imply that

| exp(−
1
2
𝐺𝐴𝑠) ·

𝑘∏
𝑗=1
𝜕
𝑎 𝑗
𝑞 𝜕

𝑐 𝑗
𝜔 (−

1
2
𝐺𝐴𝑠) | � 𝑒𝐶𝑠 · 〈𝑞〉−1−

∑
𝑎 𝑗+𝐶𝜀𝑠𝑘 � 〈𝑞〉−1−𝑎+𝐶𝜀𝑒𝐶𝑠 .

13To motivate this definition, we recall that 𝑞𝑡 −𝑞𝑟 = 𝜇. If we set 𝑞 = 𝐹 (𝑞, 𝜔) and set 𝜇 = 𝑞𝑡 −𝑞𝑟 , then 𝜇 = 𝐹𝑞 · (𝑞𝑡 −𝑞𝑟 ) =
𝐹𝑞𝜇. Recall that 𝜇 |𝑠=0 = 𝐴1 and that our goal is to make 𝜇 |𝑠=0 = −2. This suggests that we should choose F so that 𝐴1𝐹𝑞 = −2.
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In summary, we have |𝜕𝑎𝑞 𝜕
𝑐
𝜔𝜇 | �𝑎,𝑐 〈𝑞〉−1−𝑎+𝐶𝑎,𝑐 𝜀𝑒𝐶𝑎,𝑐𝑠 . That is, we obtain the first estimate in (3.18)

with 𝑏 = 0.
Now, by (3.16), we notice that

𝜕𝑎𝑞 𝜕
𝑏
𝑠 𝜕

𝑐
𝜔𝑈𝑞 = 𝜕𝑎𝑞 𝜕

𝑐
𝜔 ((

1
2
𝐺𝐴)𝑏𝐴 · exp(

1
2
𝐺𝐴𝑠)), 𝑎, 𝑏, 𝑐 ≥ 0;

𝜕𝑎𝑞 𝜕
𝑏
𝑠 𝜕

𝑐
𝜔𝜇 = 𝜕𝑎𝑞 𝜕

𝑐
𝜔 ((−

1
2
𝐺𝐴)𝑏 · exp(−

1
2
𝐺𝐴𝑠)), 𝑎, 𝑐 ≥ 0, 𝑏 > 0.

(3.20)

Both of these rows are of the form

𝜕𝑎𝑞 𝜕
𝑐
𝜔 [𝐹1 (𝑞, 𝜔) · exp(𝐹2 (𝑞, 𝜔)𝑠)] .

Here, for all 𝑎, 𝑐 ≥ 0 and 𝑗 = 1, 2, we have 𝜕𝑎𝑞 𝜕𝑐𝜔𝐹𝑗 = 𝑂𝑎,𝑐 (〈𝑞〉
−𝑏 𝑗+𝐶𝑎,𝑐 𝜀) for some fixed constants

𝑏1 > 0 and 𝑏2 = 1. Following the same proof in the previous paragraph for 𝜇, we obtain that for all
𝑎, 𝑐 ≥ 0 and (𝑠, 𝑞, 𝜔),

𝜕𝑎𝑞 𝜕
𝑐
𝜔 (exp(𝐹2 (𝑞, 𝜔)𝑠) − 1) = 𝑂𝑎,𝑐 (〈𝑞〉

−1−𝑎+𝐶𝑎,𝑐 𝜀𝑒𝐶𝑎,𝑐𝑠).

Thus, by Leibniz’s rule, for all 𝑎, 𝑐 ≥ 0 and (𝑠, 𝑞, 𝜔), we have

𝜕𝑎𝑞 𝜕
𝑐
𝜔 [𝐹1 (𝑞, 𝜔) · exp(𝐹2 (𝑞, 𝜔)𝑠)] = 𝜕

𝑎
𝑞 𝜕

𝑐
𝜔𝐹1 + 𝜕

𝑎
𝑞 𝜕

𝑐
𝜔 [𝐹1 · (exp(𝐹2𝑠) − 1)]

= 𝑂𝑎,𝑐 (〈𝑞〉
−𝑏1−𝑎+𝐶𝑎,𝑐 𝜀𝑒𝐶𝑎,𝑐𝑠 + 〈𝑞〉−𝑏1−1−𝑎+𝐶𝑎,𝑐 𝜀𝑒𝐶𝑎,𝑐𝑠) = 𝑂𝑎,𝑐 (〈𝑞〉

−𝑏1−𝑎+𝐶𝑎,𝑐 𝜀𝑒𝐶𝑎,𝑐𝑠).

To estimate the derivatives of 𝑈𝑞 , we use (3.20) to set 𝐹1 = ( 1
2𝐺𝐴)

𝑏𝐴 and 𝐹2 = 1
2𝐺𝐴. In this case, we

have 𝑏1 = 𝑏 + 1, so we obtain the second row of (3.18). To estimate the derivatives of 𝜇, we use (3.20)
to set 𝐹1 = ( 1

2𝐺𝐴)
𝑏 and 𝐹2 = − 1

2𝐺𝐴. In this case, we have 𝑏1 = 𝑏, so we obtain the first row of (3.18)
with 𝑏 > 0.

To end the proof of (3.18), we prove the bounds for 𝜕𝑏𝑠 𝜕𝑐𝜔𝑈. Note that 𝑈 ≡ 0 for 𝑞 ≥ 𝑅 and that for
𝑞 < 𝑅,

|𝜕𝑏𝑠 𝜕
𝑐
𝜔𝑈 (𝑠, 𝑞, 𝜔) | �

∫ 𝑅

𝑞
〈𝜌〉−1−𝑏+𝐶𝜀𝑒𝐶𝑠 𝑑𝜌.

When 𝑏 = 0, the right side is 𝑂 (𝜀−1〈𝑞〉𝐶𝜀𝑒𝐶𝑠). If 𝑏 ≥ 1, the right side is 𝑂 (𝑒𝐶𝑠).
Finally, we check (3.19). Recall from [75, Proposition 7.3] that 𝜕𝑐𝜔𝑈 = 𝑂 (𝑒𝐶𝑠) for (𝑠, 𝑞, 𝜔) ∈ Ω′.

That is, (𝑠, 𝜔) ∈ [0,∞) × S2 and 𝑞 > 𝑞 (𝑠,𝜀) := 1
2 (𝑒

𝛿/𝜀 − 𝑒 (𝑠+𝛿)/𝜀) + 2𝑅. Since 𝑒𝛿/𝜀 − 𝑒 (𝛿+𝑠)/𝜀 − 1 =
2𝑞 (𝑠,𝜀) − 4𝑅 − 1 < 0 and since 𝑞 (𝑠,𝜀) ≤ 2𝑅, we have

〈𝑞〉/〈𝑞 (𝑠,𝜀) 〉 + 〈𝑞 (𝑠,𝜀) 〉/〈𝑞〉 �𝑅,𝐶0 𝑒
𝐶0𝑠 , whenever 𝐶0𝑒

𝐶0𝑠 (𝑒𝛿/𝜀 − 𝑒 (𝛿+𝑠)/𝜀 − 1) < 𝑞 ≤ 𝑞 (𝑠,𝜀) .

Since 𝜕𝑐𝜔𝑈𝑞 = 𝑂 (〈𝑞〉−1+𝐶𝜀𝑒𝐶𝑠) by (3.18), by the mean value theorem, we have

𝜕𝑐𝜔𝑈 (𝑠, 𝑞, 𝜔; 𝜀) = 𝜕𝑐𝜔𝑈 (𝑠, 𝑞 (𝑠,𝜀) , 𝜔; 𝜀) +𝑂 (|𝑞 − 𝑞 (𝑠,𝜀) | · 〈𝑞 (𝑠,𝜀) 〉
−1+𝐶𝜀𝑒𝐶𝑠)

= 𝑂 (𝑒𝐶𝑠) +𝑂 (〈𝑞 (𝑠,𝜀) 〉 · 〈𝑞 (𝑠,𝜀) 〉
−1+𝐶𝜀 · 𝑒𝐶𝑠) = 𝑂 (𝑒𝐶𝑠)

for all 𝐶0𝑒
𝐶0𝑠 (𝑒𝛿/𝜀 − 𝑒 (𝛿+𝑠)/𝜀 − 1) < 𝑞 ≤ 𝑞 (𝑠,𝜀) . This finishes the proof. �

Remark 3.2.1. The bounds for 𝜇 in (3.18) are better than those for 𝜇. For example, we have
𝜇𝑞 = 𝑂 (〈𝑞〉−2+𝐶𝜀𝑒𝐶𝑠) but 𝜇𝑞 = 𝑂 (〈𝑞〉−1+𝐶𝜀𝑒𝐶𝑠). Such a difference occurs because we have 𝜕𝑞 (−2) = 0
and 𝜕𝑞𝐴1 = 𝑂 (〈𝑞〉−1+𝐶𝜀). This explains why we introduce this new map F.
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It follows from [75, Lemma 7.2] that 𝑞(𝑡, 𝑥; 𝜀) := 𝐹 (𝑞(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |; 𝜀) solves

𝑞𝑡 − 𝑞𝑟 = 𝜇(𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |; 𝜀), in Ω, (3.21)

that 𝑞 = 𝑟 − 𝑡 for 𝑟 − 𝑡 ≥ 𝑅, and that

�̃�(𝑡, 𝑥; 𝜀) = �̂�(𝑡, 𝑥; 𝜀) := 𝜀 |𝑥 |−1𝑈 (𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |; 𝜀), in Ω. (3.22)

In the rest of this subsection, every function of (𝑠, 𝑞, 𝜔) induces a function of (𝑡, 𝑥) via the map
(𝑡, 𝑥) ↦→ (𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |). Note that this is different from the setting in Section 3.3. By [75,
Lemmas 7.4 and 7.7], we have 𝑞 ∈ 𝑆0,1 and 〈𝑟 − 𝑡〉 � 〈𝑞〉𝑡𝐶𝜀 . Thus, we can apply Lemma 2.7 with
𝜌 = 𝑞. For convenience, we list some results from (3.18) and (3.19):

𝑈, 𝜀𝑈𝑠 ∈ 𝑆
0,0; �̂� = 𝜀𝑟−1𝑈 ∈ 𝜀𝑆−1,0; 𝜇 + 2 ∈ 𝑆0,−1; (3.23)

All the functions here are of (𝑡, 𝑥) via the map (𝑡, 𝑥) ↦→ (𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |) = (𝑠, 𝑞, 𝜔). We
will use them in the next subsection. Note that (𝑡, 𝑥) ∈ Ω does not imply that (𝜀 ln 𝑡 − 𝛿, 𝑞, 𝑥/|𝑥 |) ∈ Ω′.
Instead, by [75, Lemma 7.4], we have 〈𝑞〉/〈𝑟 − 𝑡〉 + 〈𝑟 − 𝑡〉/〈𝑞〉 � 𝑡𝐶𝜀 in Ω. That is, in Ω∩ {𝑟 − 𝑡 ≤ 2𝑅},
we have 𝑞 ≤ 2𝑅 and

0 < (2𝑅 + 1 − 𝑞) ∼ 〈𝑞〉 � 〈𝑟 − 𝑡〉𝑡𝐶𝜀 � (𝑡 − 𝑒𝛿/𝜀 + 1)𝑡𝐶𝜀 .

We hope that the estimate (3.19) holds for such a 𝑞, so we assume 𝑞 > 𝐶0𝑒
𝐶0𝑠 (𝑒𝛿/𝜀 − 𝑒 (𝛿+𝑠)/𝜀 − 1) in

Lemma 3.2.

3.5. Further computations

In the next proposition, we present asymptotic formulas for 𝑍 𝐼 �̂� and (𝜕𝑡 − 𝜕𝑟 )𝑍
𝐼 �̂� in Ω. We remind our

readers of the definitions of 𝜀∗𝑆∗,∗ and 𝜀∗𝑆∗,∗ln in Definition 2.5.

Proposition 3.3. For each multiindex I, there exist functions𝑈𝐼 = 𝑈𝐼 (𝑠, 𝑞, 𝜔; 𝜀) and 𝐴𝐼 = 𝐴𝐼 (𝑞, 𝜔; 𝜀)
defined for all (𝑠, 𝑞, 𝜔) ∈ [0,∞) × R × S2 and 𝜀 �𝐼 1, such that

𝑟𝑍 𝐼 �̂� = 𝜀𝑈𝐼 (𝜀 ln 𝑡 − 𝛿, |𝑥 | − 𝑡, 𝑥/|𝑥 |; 𝜀) + 𝜀𝑆0,−1
ln + 𝜀𝑆−1,1,

𝑟 (𝜕𝑡 − 𝜕𝑟 )𝑍
𝐼 �̂� = 𝜀𝐴𝐼 (|𝑥 | − 𝑡, 𝑥/|𝑥 |; 𝜀) + 𝜀𝑆0,−2

ln + 𝜀𝑆−1,0.
(3.24)

Here, 𝑈𝐼 and 𝐴𝐼 are defined inductively on |𝐼 |. First, we have 𝑈0 = 𝑈 and 𝐴0 = −2𝐴. Moreover, for
each |𝐼 | > 0, by writing 𝑍 𝐼 = 𝑍𝑍 𝐼 ′ with |𝐼 ′ | = |𝐼 | − 1, we define𝑈𝐼 and 𝐴𝐼 inductively by

𝑈𝐼 (𝑠, 𝑞, 𝜔; 𝜀) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜀𝜕𝑠𝑈𝐼 ′ + 𝑞𝜕𝑞𝑈𝐼 ′ −𝑈𝐼 ′ , 𝑍 𝐼 = 𝑆𝑍 𝐼

′ ;
(𝜔𝑖𝜕𝜔 𝑗 − 𝜔 𝑗𝜕𝜔𝑖 )𝑈𝐼 ′ , 𝑍 𝐼 = Ω𝑖 𝑗𝑍

𝐼 ′ , 1 ≤ 𝑖 < 𝑗 ≤ 3;
𝜀𝜔𝑖𝜕𝑠𝑈𝐼 ′ − 𝑞𝜔𝑖𝜕𝑞𝑈𝐼 ′ + 𝜕𝜔𝑖𝑈𝐼 ′ − 𝜔𝑖𝑈𝐼 ′ , 𝑍

𝐼 = Ω0𝑖𝑍
𝐼 ′ , 1 ≤ 𝑖 ≤ 3;

0, 𝑍 𝐼 = 𝜕𝑍 𝐼
′ ;

(3.25)

𝐴𝐼 (𝑞, 𝜔; 𝜀) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑞𝜕𝑞𝐴𝐼 ′ , 𝑍 𝐼 = 𝑆𝑍 𝐼

′ ;
(𝜔𝑖𝜕𝜔 𝑗 − 𝜔 𝑗𝜕𝜔𝑖 )𝐴𝐼 ′ , 𝑍 𝐼 = Ω𝑖 𝑗𝑍

𝐼 ′ , 1 ≤ 𝑖 < 𝑗 ≤ 3;
−𝑞𝜔𝑖𝜕𝑞𝐴𝐼 ′ + 𝜕𝜔𝑖 𝐴𝐼 ′ − 2𝜔𝑖𝐴𝐼 ′ , 𝑍

𝐼 = Ω0𝑖𝑍
𝐼 ′ , 1 ≤ 𝑖 ≤ 3;

0, 𝑍 𝐼 = 𝜕𝑍 𝐼
′ ;

(3.26)

Note that 𝑈 ≡ 𝐴 ≡ 0 for 𝑞 ≥ 𝑅, so by (3.25) and (3.26), we have 𝑈𝐼 ≡ 𝐴𝐼 ≡ 0 for all 𝑞 ≥ 𝑅. For all
𝑎, 𝑏, 𝑐 ≥ 0, we have
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𝜕𝑎𝑞 𝜕
𝑐
𝜔𝐴𝐼 = 𝑂𝑎,𝑐 (〈𝑞〉

−1−𝑎+𝐶𝑎,𝑐 𝜀);

𝜕𝑎𝑞 𝜕
𝑏
𝑠 𝜕

𝑐
𝜔𝜕𝑞𝑈𝐼 = 𝑂𝑎,𝑏,𝑐 (〈𝑞〉

−1−𝑎−𝑏+𝐶𝑎,𝑏,𝑐 𝜀𝑒𝐶𝑎,𝑏,𝑐𝑠);

𝜕𝑏𝑠 𝜕
𝑐
𝜔𝑈𝐼 = 𝑂𝑏,𝑐 ((𝜀

−1〈𝑞〉𝐶𝑏,𝑐 𝜀1𝑏=0 + 1𝑏>0)𝑒
𝐶𝑏,𝑐𝑠)

(3.27)

for all (𝑠, 𝑞, 𝜔) ∈ [0,∞) × R × S2. For all 𝑐 ≥ 0, we have

𝜕𝑐𝜔𝑈𝐼 = 𝑂𝑐,𝐶0 (𝑒
𝐶𝑐,𝐶0 𝑠) (3.28)

for all 𝑠 > 0, 𝜔 ∈ S2, and 𝑞 > 𝐶0𝑒
𝐶0𝑠 (𝑒𝛿/𝜀 − 𝑒 (𝛿+𝑠)/𝜀 − 1) for some constant 𝐶0 > 1. Finally, for all

𝑎, 𝑏, 𝑐 ≥ 0, we have

𝜕𝑎𝑞 𝜕
𝑏
𝑠 𝜕

𝑐
𝜔 (2𝜕𝑞𝑈𝐼 + 𝐴𝐼 ) (𝑠, 𝑞, 𝜔; 𝜀) = 𝑂𝑎,𝑏,𝑐 (〈𝑞〉

−max{1,𝑏}−1−𝑎+𝐶𝑎,𝑏,𝑐 𝜀𝑒𝐶𝑎,𝑏,𝑐𝑠) (3.29)

for all (𝑠, 𝑞, 𝜔) ∈ [0,∞) × R × S2.

Remark 3.3.1. Since �̂� = 𝜀𝑟−1𝑈 (𝑠, 𝑞, 𝜔) is defined explicitly by (3.22), one can compute 𝑍 𝐼 �̂� by the
chain rule and Leibniz’s rule. This has been done in, for example, the proof of Lemma 2.7. Thus, we can
obtain an identity for 𝑍 𝐼 �̂�. Similarly for (𝜕𝑡 − 𝜕𝑟 )𝑍 𝐼 �̂�. In this paper, we prefer the asymptotic formulas
(3.24) over these identities because (3.24) are much simpler.

Let us compute 𝑍�̂� as an example. It suffices to compute 𝑍 (𝑟�̂�) = 𝑍 (𝜀𝑈 (𝜀 ln 𝑡 − 𝛿, 𝑞, 𝜔)) because of
the commutator [𝑍, 𝑟] = 𝑍𝑟 . By the chain rule, we obtain the following term in the expansion of 𝑍 (𝑟�̂�):

𝜀𝑈𝑞 (𝜀 ln 𝑡 − 𝛿, 𝑞, 𝜔) · 𝑍𝑞. (3.30)

Recall that 𝑞 is a solution to the transport equation (3.21). There is no explicit formula for 𝑍𝑞, so we
cannot further simplify (3.30). In Proposition 3.3, we use an alternative way. We first show that 𝑍 (𝑟�̂�)
equals 𝑍 (𝜀𝑈 (𝜀 ln 𝑡 − 𝛿, 𝑟 − 𝑡, 𝜔)) up to a remainder term. This remainder term is good because we
expect 𝑞 ≈ 𝑟 − 𝑡 to some extent; see Lemma 3.4 below. By the chain rule, we replace (3.30) with

𝜀𝑈𝑞 (𝜀 ln 𝑡 − 𝛿, 𝑟 − 𝑡, 𝜔) · 𝑍 (𝑟 − 𝑡).

We can compute this expression explicitly because we have 𝑆(𝑟 − 𝑡) = 𝑟 − 𝑡, Ω0𝑖 (𝑟 − 𝑡) = (𝑡 − 𝑟)𝜔𝑖 , and
𝑍 (𝑟 − 𝑡) = 0 for other Z. As a result, we obtain a simpler asymptotic formula for 𝑍�̂�.

Remark 3.3.2. As commented in Remark 1.4, if 𝑍 𝐼 contains a translation, we have 𝐴𝐼 ≡ 0. In this case,
we can still approximate 𝑍 𝐼 �̂�. We achieve this goal by following Remark 1.4, and we remark that the
key is the identity (1.25).

The key step in the proof of Proposition 3.3 is to show the following estimates:

𝑟�̂� − 𝜀𝑈 (𝜀 ln 𝑡 − 𝛿, 𝑟 − 𝑡, 𝜔; 𝜀) ∈ 𝜀𝑆0,−1
ln + 𝜀𝑆−1,1,

(𝜕𝑡 − 𝜕𝑟 ) (𝑟�̂�) + 2𝜀𝐴(𝑟 − 𝑡, 𝜔; 𝜀) ∈ 𝜀𝑆0,−2
ln + 𝜀𝑆−1,0.

(3.31)

Recall that 𝑟 = |𝑥 | and 𝜔 = 𝑥/|𝑥 |. Proving these estimates requires several estimates for the approximate
optical function 𝑞; see Section 3.5.1.

In Section 3.5.2, we extend (3.31) by showing that for each multiindex I, we have

𝑟𝑍 𝐼 �̂� = 𝜀𝑈𝐼 (𝜀 ln 𝑡 − 𝛿, 𝑟 − 𝑡, 𝜔; 𝜀) + 𝜀𝑆0,−1
ln + 𝜀𝑆−1,1,

(𝜕𝑡 − 𝜕𝑟 ) (𝑟𝑍
𝐼 �̂�) = 𝜀𝐴𝐼 (𝑟 − 𝑡, 𝜔; 𝜀) + 𝜀𝑆0,−2

ln + 𝜀𝑆−1,0.
(3.32)

Here, the 𝑈𝐼 and 𝐴𝐼 are defined in the statement of Proposition 3.3: we set (𝑈0, 𝐴0) = (𝑈,−2𝐴) and
define (𝑈𝐼 , 𝐴𝐼 ) inductively by (3.25) and (3.26) for |𝐼 | > 0. We can induct on |𝐼 | to check (3.27) and
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(3.28); the details of the proofs are omitted. We also notice that [𝜕𝑡 − 𝜕𝑟 , 𝑟]𝑍 𝐼 �̂� = −𝑍 𝐼 �̂� = 𝑂 (𝜀𝑡−1+𝐶𝜀)

by (3.13), so we obtain (3.24).
Finally, we prove (3.29). By setting 𝐵𝐼 = 2𝜕𝑞𝑈𝐼 + 𝐴𝐼 for each I, we note that the 𝐵𝐼 ’s satisfy the

induction formulas

𝐵𝐼 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜀𝜕𝑠𝑏 : 𝐼 ′ + 𝑞𝜕𝑞𝐵𝐼 ′ , 𝑍 𝐼 = 𝑆𝑍 𝐼

′ ;
(𝜔𝑖𝜕𝜔 𝑗 − 𝜔 𝑗𝜕𝜔𝑖 )𝐵𝐼 ′ , 𝑍 𝐼 = Ω𝑖 𝑗𝑍

𝐼 ′ , 1 ≤ 𝑖 < 𝑗 ≤ 3;
𝜀𝜔𝑖𝜕𝑠𝑏 : 𝐼 ′ − 𝑞𝜔𝑖𝜕𝑞𝐵𝐼 ′ + 𝜕𝜔𝑖𝐵𝐼 ′ − 2𝜔𝑖𝐵𝐼 ′ , 𝑍

𝐼 = Ω0𝑖𝑍
𝐼 ′ , 1 ≤ 𝑖 ≤ 3;

0, 𝑍 𝐼 = 𝜕𝑍 𝐼
′
.

We also have 𝐵0 = 2𝐴(exp( 1
2𝐺 (𝜔)𝐴𝑠) − 1). Since exp( 1

2𝐺 (𝜔)𝐴𝑠) − 1 has essentially the same form as
𝜇 + 2, by following the proof of (3.18), we obtain for all 𝑎, 𝑏, 𝑐 ≥ 0 and all (𝑠, 𝑞, 𝜔) ∈ [0,∞) × R × S2,

𝜕𝑎𝑞 𝜕
𝑏
𝑠 𝜕

𝑐
𝜔 (exp(

1
2
𝐺 (𝜔)𝐴𝑠) − 1) = 𝑂𝑎,𝑏,𝑐 (〈𝑞〉

−max{1,𝑏}−𝑎+𝐶𝑎,𝑏,𝑐 𝜀𝑒𝐶𝑎,𝑏,𝑐𝑠).

It follows from Leibniz’s rule that

𝜕𝑎𝑞 𝜕
𝑏
𝑠 𝜕

𝑐
𝜔𝐵0 = 𝑂𝑎,𝑏,𝑐 (〈𝑞〉

−max{1,𝑏}−1−𝑎+𝐶𝑎,𝑏,𝑐 𝜀𝑒𝐶𝑎,𝑏,𝑐𝑠).

Now, (3.29) follows by induction on |𝐼 |. We again omit the details of the proof.

3.5.1. Proof of (3.31)
By the definition of �̂�, in Ω we have

𝑟�̂� = 𝜀𝑈,

(𝜕𝑡 − 𝜕𝑟 ) (𝑟�̂�) = (𝜕𝑡 − 𝜕𝑟 ) (𝜀𝑈) = 𝜀
2𝑡−1𝑈𝑠 + 𝜀𝑈𝑞𝜇 = 𝜀2𝑡−1𝑈𝑠 − 2𝜀𝐴.

Here, 𝑈,𝑈𝑠 , 𝐴 are functions of (𝑡, 𝑥) via the map (𝑡, 𝑥) ↦→ (𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥), 𝑥/|𝑥 |). By (3.23) at the
end of Section 3.4, we have 𝜀𝑈𝑠 ∈ 𝑆

0,0. Thus, we have

(𝜕𝑡 − 𝜕𝑟 ) (𝑟�̂�) = −2𝜀𝐴 + 𝜀𝑆−1,0.

It remains to show that

𝜀𝑈 (𝜀 ln 𝑡 − 𝛿, 𝑞, 𝜔; 𝜀) − 𝜀𝑈 (𝜀 ln 𝑡 − 𝛿, 𝑟 − 𝑡, 𝜔; 𝜀) ∈ 𝜀𝑆0,−1
ln + 𝜀𝑆−1,1,

𝜀𝐴(𝑞, 𝜔; 𝜀) − 𝜀𝐴(𝑟 − 𝑡, 𝜔; 𝜀) ∈ 𝜀𝑆0,−2
ln + 𝜀𝑆−1,0.

(3.33)

We first prove a lemma for 𝑞. This lemma both relies on and improves [75, Lemma 7.7].

Lemma 3.4. We have 𝑞 − 𝑟 + 𝑡 ∈ 𝑆0,0
ln . That is, for each I, we have 𝑍 𝐼 (𝑞 − 𝑟 + 𝑡) = 𝑂 ((1+ ln〈𝑟 − 𝑡〉)𝑡𝐶𝜀)

in Ω.

Proof. For 𝑟 − 𝑡 ≥ 𝑅, we have 𝑞 = 𝑟 − 𝑡. It remains to prove 𝑍 𝐼 (𝑞 − 𝑟 + 𝑡) = 𝑂 ((1 + ln〈𝑟 − 𝑡〉)𝑡𝐶𝜀)

for each I in Ω ∩ {𝑟 − 𝑡 < 2𝑅}. Before we start the proof, we recall from [75, Lemma 7.4] that
𝑡−𝐶𝜀 � 〈𝑞〉/〈𝑟 − 𝑡〉 � 𝑡𝐶𝜀 in Ω. Thus, every power of 〈𝑞〉 can be controlled by 〈𝑟 − 𝑡〉𝑡𝐶𝜀 and vice versa.

We first apply Lemma 2.4 to compute (𝜕𝑡 − 𝜕𝑟 )𝑍
𝐼 (𝑞 − 𝑟 + 𝑡) for each multiindex I. For each integer

𝑁 ≥ 0, in Ω we have
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|𝐼 | ≤𝑁

| (𝜕𝑡 − 𝜕𝑟 )𝑍
𝐼 (𝑞 − 𝑟 + 𝑡) |

�
∑
|𝐼 | ≤𝑁

|𝑍 𝐼 (𝜇 + 2) | +
∑

|𝐽 |<𝑁

���|𝑍 𝐽 (𝜇 + 2) | +
3∑
𝑗=1

| (𝜕 𝑗 + 𝜔 𝑗𝜕𝑡 )𝑍
𝐽 (𝑞 − 𝑟 + 𝑡) |

���
�

∑
|𝐼 | ≤𝑁

|𝑍 𝐼 (𝜇 + 2) | + 〈𝑟 + 𝑡〉−1
∑
|𝐼 | ≤𝑁

|𝑍 𝐼 (𝑞 − 𝑟 + 𝑡) |.

(3.34)

Here, we recall that 𝜇 = 𝑞𝑡 − 𝑞𝑟 . In the last estimate, we apply Lemma 2.1 to get the factor 〈𝑟 + 𝑡〉−1.
Meanwhile, we recall that 𝜇 + 2 ∈ 𝑆0,−1. In fact, the results in (3.23) hold because it is already known
that 𝑞 ∈ 𝑆0,1 from [75, Lemma 7.7]. Thus, we have

∑
|𝐼 | ≤𝑁 |𝑍 𝐼 (𝜇 + 2) | � 〈𝑟 − 𝑡〉−1𝑡𝐶𝜀 in Ω.

We can now use Gronwall’s inequality to finish the proof. Fix an integer 𝑁 ≥ 0 and a point
(𝑡0, 𝑥0) ∈ Ω ∩ {|𝑥0 | − 𝑡0 < 2𝑅}. For each 𝜏 ∈ [

𝑡0+|𝑥0 |
2 − 𝑅, 𝑡0], we set

𝑧𝑁 (𝜏) =
∑
|𝐼 | ≤𝑁

|𝑍 𝐼 (𝑞 − 𝑟 + 𝑡) (𝜏, (𝑡0 + |𝑥0 | − 𝜏)
𝑥0
|𝑥0 |

; 𝜀) |.

Note that (𝜏, (𝑡0 + |𝑥0 | − 2𝜏) 𝑥0
|𝑥0 |

) ∈ Ω ∩ {𝑟 − 𝑡 < 2𝑅} for all 𝜏 ∈ [
𝑡0+|𝑥0 |

2 − 𝑅, 𝑡0]. Moreover, given a
function ℎ(𝑡, 𝑥), for �̃�(𝜏) = ℎ(𝜏, (|𝑥0 | + 𝑡0 − 𝜏) ·

𝑥0
|𝑥0 |

), we have 𝑑
𝑑𝜏 �̃� = (ℎ𝑡 − ℎ𝑟 ) (𝜏, (|𝑥0 | + 𝑡0 − 𝜏) ·

𝑥0
|𝑥0 |

).
Thus, the inequality (3.34) implies that for each 𝜏0 ∈ [

𝑡0+|𝑥0 |
2 − 𝑅, 𝑡0],

𝑧𝑁 (𝜏0) � 𝑧𝑁 (
𝑡0 + |𝑥0 |

2
− 𝑅) +

∫ 𝜏0

𝑡0+|𝑥0 |
2 −𝑅

〈|𝑥0 | + 𝑡0 − 2𝜏〉−1𝜏𝐶𝜀 + 〈|𝑥0 | + 𝑡0〉
−1𝑧𝑁 (𝜏) 𝑑𝜏

� 〈|𝑥0 | + 𝑡0〉
−1

∫ 𝜏0

𝑡0+|𝑥0 |
2 −𝑅

𝑧𝑁 (𝜏) 𝑑𝜏 + 𝑡𝐶𝜀
0 (1 + ln〈|𝑥0 | − 𝑡0〉).

To obtain the second estimate, we notice that ( 𝑡0+|𝑥0 |
2 − 𝑅, ( 𝑡0+|𝑥0 |

2 − 𝑅) 𝑥0
|𝑥0 |

) ∈ {(𝑡, 𝑥) : |𝑥 | − 𝑡 > 𝑅}.
Thus, we have 𝑞 = 𝑟 − 𝑡 near this point and thus 𝑧𝑁 (

𝑡0+|𝑥0 |
2 − 𝑅) = 0. Moreover, for 𝑡0+|𝑥0 |

2 − 𝑅 ≤ 𝜏 ≤ 𝑡0,
we have 𝜏𝐶𝜀 ≤ 𝑡𝐶𝜀

0 and 𝑡 + 𝑥0 − 2𝜏 ≤ 2𝑅. It follows that∫ 𝜏0

𝑡0+|𝑥0 |
2 −𝑅

〈|𝑥0 | + 𝑡0 − 2𝜏〉−1𝜏𝐶𝜀 𝑑𝜏 � 𝑡𝐶𝜀
0

∫ 𝜏0

𝑡0+|𝑥0 |
2 −𝑅

(2𝜏 − |𝑥0 | − 𝑡0 + 2𝑅 + 1)−1 𝑑𝜏

� 𝑡𝐶𝜀
0 ln(𝑡0 − |𝑥0 | + 2𝑅 + 1) � 𝑡𝐶𝜀

0 (1 + ln〈𝑡0 − |𝑥0 |〉).

Thus, by Gronwall’s inequality, we have

𝑧𝑁 (𝑡0) � 𝑡𝐶𝜀
0 (1 + ln〈𝑡0 − |𝑥0 |〉) exp(

∫ 𝑡0

𝑡0+|𝑥0 |
2 −𝑅

〈|𝑥0 | + 𝑡0〉
−1 𝑑𝜏)

� 𝑡𝐶𝜀
0 (1 + ln〈𝑡0 − |𝑥0 |〉) exp(𝐶 ·

𝑡0−|𝑥0 |
2 + 𝑅

|𝑥0 | + 𝑡0 + 1
) � 𝑡𝐶𝜀

0 (1 + ln〈𝑡0 − |𝑥0 |〉). �

Using Lemma 3.4 and the bounds for𝑈, 𝐴, we now show (3.33) which implies (3.31).

Lemma 3.5. Fix an integer 𝑁 ≥ 0. Then, for 𝜀 �𝑁 1 and all (𝑡, 𝑥) ∈ Ω, we have∑
|𝐼 | ≤𝑁

|𝑍 𝐼 (𝑈 (𝜀 ln 𝑡 − 𝛿, 𝑞, 𝜔; 𝜀) −𝑈 (𝜀 ln 𝑡 − 𝛿, 𝑟 − 𝑡, 𝜔; 𝜀)) | � (1 + ln〈𝑟 − 𝑡〉)〈𝑟 − 𝑡〉−1𝑡𝐶𝜀 ,∑
|𝐼 | ≤𝑁

|𝑍 𝐼 (𝐴(𝑞, 𝜔) − 𝐴(𝑟 − 𝑡, 𝜔)) | � (1 + ln〈𝑟 − 𝑡〉)〈𝑟 − 𝑡〉−2𝑡𝐶𝜀 .
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Proof. Since 𝑞 = 𝑟 − 𝑡 for 𝑟 − 𝑡 ≥ 𝑅, it remains to prove this lemma in Ω∩ {𝑟 − 𝑡 < 2𝑅}. We will prove
by induction on |𝐼 |.

When |𝐼 | = 0, by the mean value theorem, we have (here we set 𝑠 = 𝜀 ln 𝑡−𝛿 and omit the parameter 𝜀)

|𝑈 (𝑠, 𝑞, 𝜔) −𝑈 (𝑠, 𝑟 − 𝑡, 𝜔) | � |𝑞 − 𝑟 + 𝑡 | · sup
𝜌 lies between 𝑞,𝑟−𝑡

|𝑈𝑞 (𝑠, 𝜌, 𝜔) |

� (1 + ln〈𝑟 − 𝑡〉)𝑡𝐶𝜀 · 〈𝑟 − 𝑡〉−1+𝐶𝜀𝑡𝐶𝜀 � (1 + ln〈𝑟 − 𝑡〉)〈𝑟 − 𝑡〉−1𝑡𝐶𝜀 ,

|𝐴(𝑞, 𝜔) − 𝐴(𝑟 − 𝑡, 𝜔) | � |𝑞 − 𝑟 + 𝑡 | · sup
𝜌 lies between 𝑞,𝑟−𝑡

|𝐴𝑞 (𝜌, 𝜔) |

� (1 + ln〈𝑟 − 𝑡〉)𝑡𝐶𝜀 · 〈𝑟 − 𝑡〉−2+𝐶𝜀𝑡𝐶𝜀 � (1 + ln〈𝑟 − 𝑡〉)〈𝑟 − 𝑡〉−2𝑡𝐶𝜀 .

Here, we use (3.17), (3.18), and Lemma 3.4. Besides, we also use the fact that if 𝜌 lies between 𝑞 and
𝑟 − 𝑡, then 〈𝑟 − 𝑡〉 � 〈𝜌〉𝑡𝐶𝜀 . In fact, since 𝑞 < 2𝑅 and 𝑟 − 𝑡 < 2𝑅 in Ω ∩ {𝑟 − 𝑡 < 2𝑅}, we also have
𝜌 < 2𝑅. And since 𝑡−𝐶𝜀 � 〈𝑞〉/〈𝑟 − 𝑡〉 � 𝑡𝐶𝜀 , we have

〈𝜌〉−1 ∼ (1 + 2𝑅 − 𝜌)−1 ≤ (1 + 2𝑅 − 𝑞)−1 + (1 + 2𝑅 − 𝑟 + 𝑡)−1

� 〈𝑞〉−1 + 〈𝑟 − 𝑡〉−1 � 〈𝑟 − 𝑡〉−1𝑡𝐶𝜀 .

We thus finish the proof when |𝐼 | = 0.
In general, we fix a multiindex I with |𝐼 | > 0. By the chain rule and Leibniz’s rule, we can write

𝑍 𝐼 (𝑈 (𝑠, 𝑞, 𝜔) −𝑈 (𝑠, 𝑟 − 𝑡, 𝜔)) as a linear combination (with real constant coefficients depending on I)
of terms of the form

(𝜕𝑎𝑞 𝜕
𝑏
𝑠 𝜕

𝑐
𝜔𝑈) (𝑠, 𝑞, 𝜔) ·

𝑏∏
𝑗=1
𝑍 𝐼 𝑗 (𝜀 ln 𝑡 − 𝛿) ·

𝑎∏
𝑗=1
𝑍 𝐽 𝑗 𝑞 ·

𝑐∏
𝑗=1
𝑍𝐾 𝑗𝜔

− (𝜕𝑎𝑞 𝜕
𝑏
𝑠 𝜕

𝑐
𝜔𝑈) (𝑠, 𝑟 − 𝑡, 𝜔) ·

𝑏∏
𝑗=1
𝑍 𝐼 𝑗 (𝜀 ln 𝑡 − 𝛿) ·

𝑎∏
𝑗=1
𝑍 𝐽 𝑗 (𝑟 − 𝑡) ·

𝑐∏
𝑗=1
𝑍𝐾 𝑗𝜔.

Here, 𝑎 + 𝑏 + 𝑐 > 0, the sum of all the multiindices is |𝐼 |, and each of these multiindices is nonzero.
This term equals

[(𝜕𝑎𝑞 𝜕
𝑏
𝑠 𝜕

𝑐
𝜔𝑈) (𝑠, 𝑞, 𝜔) − (𝜕𝑎𝑞 𝜕

𝑏
𝑠 𝜕

𝑐
𝜔𝑈) (𝑠, 𝑟 − 𝑡, 𝜔)] ·

𝑏∏
𝑗=1
𝑍 𝐼 𝑗 (𝜀 ln 𝑡) ·

𝑎∏
𝑗=1
𝑍 𝐽 𝑗 𝑞 ·

𝑐∏
𝑗=1
𝑍𝐾 𝑗𝜔

+ (𝜕𝑏𝑠 𝜕
𝑎
𝑞 𝜕

𝑐
𝜔𝑈) (𝑠, 𝑟 − 𝑡, 𝜔) ·

���
𝑎∑
𝑘=1

𝑘∏
𝑗=1
𝑍 𝐽 𝑗 𝑞 · 𝑍 𝐽𝑘 (𝑞 − 𝑟 + 𝑡) ·

𝑎∏
𝑗=𝑘+1

𝑍 𝐽 𝑗 (𝑟 − 𝑡)
���

·

𝑏∏
𝑗=1
𝑍 𝐼 𝑗 (𝜀 ln 𝑡) ·

𝑐∏
𝑗=1
𝑍𝐾 𝑗𝜔.

If 𝑎 = 0, then the second row vanishes. We claim that this term is 𝑂 ((1 + ln〈𝑟 − 𝑡〉)〈𝑟 − 𝑡〉−1𝑡𝐶𝜀). In
fact, by (3.18), we follow a similar proof in the case |𝐼 | = 0 to show that

(𝜕𝑎𝑞 𝜕
𝑏
𝑠 𝜕

𝑐
𝜔𝑈) (𝑠, 𝑞, 𝜔) − (𝜕𝑎𝑞 𝜕

𝑏
𝑠 𝜕

𝑐
𝜔𝑈) (𝑠, 𝑟 − 𝑡, 𝜔) = 𝑂 ((1 + ln〈𝑟 − 𝑡〉)〈𝑟 − 𝑡〉−1−𝑎𝑡𝐶𝜀).

Moreover, by (3.18) and (3.19), we have (𝜕𝑎𝑞 𝜕
𝑏
𝑠 𝜕

𝑐
𝜔𝑈) (𝑠, 𝑟− 𝑡, 𝜔) = 𝑂 (〈𝑟− 𝑡〉−𝑎𝑡𝐶𝜀) in Ω∩{𝑟− 𝑡 < 2𝑅}.

We also have 𝑍 𝐽𝜔 = 𝑂 (1), 𝑍 𝐽 (𝑞, 𝑟 − 𝑡) = 𝑂 (〈𝑟 − 𝑡〉𝑡𝐶𝜀), and 𝑍 𝐽 (𝑞 − 𝑟 + 𝑡) = 𝑂 ((1 + ln〈𝑟 − 𝑡〉)𝑡𝐶𝜀).
Combine all these estimates and we obtain the estimates for 𝑈 in the lemma. The estimates for 𝐴 can
be proved similarly. �
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3.5.2. Proof of (3.32)
We induct on |𝐼 |. The case when |𝐼 | = 0 has been proved; see (3.31). Now, fix a multiindex I with |𝐼 | > 0
and write 𝑍 𝐼 = 𝑍𝑍 𝐼 ′ . We have

𝑟𝑍 𝐼 �̂� = 𝑍 (𝑟𝑍 𝐼
′

�̂�) + [𝑟, 𝑍]𝑍 𝐼
′

�̂�

= 𝜀(𝜕𝑠𝑈𝐼 ′ ) · 𝑍 (𝜀 ln 𝑡) + 𝜀(𝜕𝑞𝑈𝐼 ′ ) · 𝑍 (𝑟 − 𝑡)

+

3∑
𝑘=1
𝜀(𝜕𝜔𝑘𝑈𝐼 ′ ) · 𝑍𝜔𝑘 − 𝑍𝑟 · 𝑍

𝐼 ′ �̂� + 𝜀𝑆0,−1
ln + 𝜀𝑆−1,1,

(3.35)

(𝜕𝑡 − 𝜕𝑟 ) (𝑟𝑍
𝐼 �̂�) = 𝑍 [(𝜕𝑡 − 𝜕𝑟 ) (𝑟𝑍

𝐼 ′ �̂�)] + [𝜕𝑡 − 𝜕𝑟 , 𝑍] (𝑟𝑍
𝐼 ′ �̂�) + (𝜕𝑡 − 𝜕𝑟 ) ( [𝑟, 𝑍]𝑍

𝐼 ′ �̂�)

= 𝜀(𝜕𝑞𝐴𝐼 ′ ) · 𝑍 (𝑟 − 𝑡) +
3∑
𝑘=1
𝜀(𝜕𝜔𝑘 𝐴𝐼 ′ ) · 𝑍𝜔𝑘

+ [𝜕𝑡 − 𝜕𝑟 , 𝑍] (𝑟𝑍
𝐼 ′ �̂�) − (𝜕𝑡 − 𝜕𝑟 ) (𝑍𝑟 · 𝑍

𝐼 ′ �̂�) + 𝜀𝑆0,−2
ln + 𝜀𝑆−1,0.

(3.36)

On the right sides, every function of (𝑠, 𝑞, 𝜔) is evaluated at (𝑠, 𝑞, 𝜔) = (𝜀 ln 𝑡−𝛿, 𝑟− 𝑡, 𝜔). For example,
𝜕𝑠𝑈𝐼 ′ = (𝜕𝑠𝑈𝐼 ′ ) (𝜀 ln 𝑡 − 𝛿, 𝑟 − 𝑡, 𝜔; 𝜀); similarly for 𝑈𝐼 ′ , 𝐴𝐼 ′ , 𝜕𝑞 (𝑈𝐼 ′ , 𝐴𝐼 ′ ), 𝜕𝜔 (𝑈𝐼 ′ , 𝐴𝐼 ′ ). We apply the
induction hypotheses and the chain rule to compute 𝑍 (𝑟𝑍 𝐼 ′ �̂�) and 𝑍 ((𝜕𝑡 − 𝜕𝑟 ) (𝑟𝑍 𝐼

′
�̂�)). Now we can

prove (3.32).

Lemma 3.6. Fix a multiindex I with |𝐼 | > 0 and 𝑍 𝐼 = 𝑍𝑍 𝐼 ′ . Assuming that (3.32) holds with I replaced
by 𝐼 ′, we have (3.32) for I. Here, the functions𝑈𝐼 and 𝐴𝐼 are defined in the statement of Proposition 3.3.

Proof. In this proof, every function of (𝑠, 𝑞, 𝜔) (such as 𝑈𝐼 ′ and 𝐴𝐼 ′) is evaluated at (𝑠, 𝑞, 𝜔) =
(𝜀 ln 𝑡 − 𝛿, 𝑟 − 𝑡, 𝜔).

Since the𝑈𝐼 ’s and 𝐴𝐼 ’s are defined inductively by (3.25) and (3.26), we can prove (3.27) and (3.28)
without proving (3.24). Thus, for each multiindex I, we have

𝑈𝐼 , 𝜀𝜕𝑠𝑈𝐼 , 𝜕𝜔𝑈𝐼 ∈ 𝑆
0,0; 𝜕𝑞𝑈𝐼 , 𝜕𝜔𝐴𝐼 ∈ 𝑆

0,−1; 𝜕𝑞𝐴𝐼 ∈ 𝑆
0,−2. (3.37)

Here, we apply Lemma 2.7 (with 𝜌 = 𝑟 − 𝑡), (3.27), and (3.28).
(a) Suppose that 𝑍 𝐼 = 𝜕𝑍 𝐼

′ . We have 𝜕 (𝜀 ln 𝑡), 𝜕𝜔 ∈ 𝜀𝑆−1,0 and 𝜕 (𝑟 − 𝑡) ∈ 𝑆0,0. By (3.37) and
Lemma 2.6, we have

𝜀(𝜕𝑠𝑈𝐼 ′ ) · 𝜕 (𝜀 ln 𝑡) + 𝜀(𝜕𝑞𝑈𝐼 ′ ) · 𝜕 (𝑟 − 𝑡) +
3∑
𝑘=1
𝜀(𝜕𝜔𝑘𝑈𝐼 ′ ) · 𝜕𝜔𝑘

∈ 𝑆0,0 · 𝜀𝑆−1,0 + 𝜀𝑆0,−1 · 𝑆0,0 + 𝜀𝑆0,0 · 𝑆−1,0 ⊂ 𝜀𝑆0,−1,

𝜀(𝜕𝑞𝐴𝐼 ′ ) · 𝜕 (𝑟 − 𝑡) +
3∑
𝑘=1
𝜀(𝜕𝜔𝑘 𝐴𝐼 ′ ) · 𝜕𝜔𝑘 ∈ 𝜀𝑆0,−2 · 𝑆0,0 + 𝜀𝑆0,−1 · 𝑆−1,0 ⊂ 𝜀𝑆0,−2.

Moreover, we have [𝜕𝑡 − 𝜕𝑟 , 𝜕𝑖] = 𝑟−1(𝜕𝑖 − 𝜔𝑖𝜕𝑟 ) = 𝑆−1,0 · 𝜕 (by 𝑆−1,0 · 𝜕 we mean 𝑓 𝛼 (𝑡, 𝑥)𝜕𝛼 where
𝑓 𝛼 ∈ 𝑆0,0), 𝜕𝑖𝑟 = 𝜔𝑖 ∈ 𝑆

0,0 and [𝜕𝑡 − 𝜕𝑟 , 𝜕𝑡 ] = 𝜕𝑡𝑟 = 0. Since �̂� ∈ 𝜀𝑆−1,0, by Lemma 2.6, we have

𝜕𝑟 · 𝑍 𝐼
′

�̂� ∈ 𝑆0,0 · 𝜀𝑆−1,0 ⊂ 𝜀𝑆−1,0,

[𝜕𝑡 − 𝜕𝑟 , 𝜕] (𝑟𝑍
𝐼 ′ �̂�) ∈ 𝑆−1,0 · 𝜕 (𝜀𝑆0,0) ⊂ 𝜀𝑆−1,−1,

(𝜕𝑡 − 𝜕𝑟 ) (𝜕𝑟 · 𝑍
𝐼 ′ �̂�) ∈ 𝜕 (𝑆0,0 · 𝜀𝑆−1,0) ⊂ 𝜀𝑆−1,−1.

In summary, by (3.35) and (3.36), we have 𝑟𝜕𝑍 𝐼 ′ �̂� ∈ 𝜀𝑆0,−1
ln + 𝜀𝑆−1,1 and (𝜕𝑡 − 𝜕𝑟 ) (𝑟𝜕𝑍

𝐼 ′ �̂�) ∈ 𝜀𝑆0,−2
ln +

𝜀𝑆−1,0, i.e.𝑈𝐼 ≡ 𝐴𝐼 ≡ 0.
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(b) Suppose that 𝑍 𝐼 = 𝑆𝑍 𝐼
′ . In this case, we have 𝑆(𝜀 ln 𝑡) = 𝜀, 𝑆(𝑟 − 𝑡) = 𝑟 − 𝑡, 𝑆𝜔 = 0,

[𝜕𝑡 − 𝜕𝑟 , 𝑆] = 𝜕𝑡 − 𝜕𝑟 , and 𝑆𝑟 = 𝑟 . By (3.35) and (3.36), we have

𝑟𝑆𝑍 𝐼
′

�̂� = 𝜀2 (𝜕𝑠𝑈𝐼 ′ ) + 𝜀(𝜕𝑞𝑈𝐼 ′ ) · (𝑟 − 𝑡) − 𝑟 · 𝑍
𝐼 ′ �̂� + 𝜀𝑆0,−1

ln + 𝜀𝑆−1,1

= 𝜀(𝜀𝜕𝑠𝑈𝐼 ′ + 𝑞𝜕𝑞𝑈𝐼 ′ −𝑈𝐼 ′ ) + 𝜀𝑆
0,−1
ln + 𝜀𝑆−1,1,

(𝜕𝑡 − 𝜕𝑟 ) (𝑟𝑆𝑍
𝐼 ′ �̂�) = 𝜀(𝜕𝑞𝐴𝐼 ′ ) · (𝑟 − 𝑡) + 𝜀𝑆

0,−2
ln + 𝜀𝑆−1,0 = 𝜀(𝑞𝜕𝑞𝐴𝐼 ′ ) + 𝜀𝑆

0,−2
ln + 𝜀𝑆−1,0.

That is, 𝑈𝐼 = 𝜀𝜕𝑠𝑈𝐼 ′ + 𝑞𝜕𝑞𝑈𝐼 ′ − 𝑈𝐼 ′ and 𝐴𝐼 = 𝑞𝜕𝑞𝐴𝐼 ′ . In these estimates, we apply the induction
hypotheses to compute 𝑟𝑍 𝐼 ′ �̂�. We also notice that [𝑆, 𝑟 (𝜕𝑡 − 𝜕𝑟 )] = 0.

(c) Suppose that 𝑍 𝐼 = Ω𝑖 𝑗𝑍
𝐼 ′ . In this case, we have Ω𝑖 𝑗 (𝜀 ln 𝑡) = Ω𝑖 𝑗 (𝑟 − 𝑡) = Ω𝑖 𝑗𝑟 = 0, Ω𝑖 𝑗𝜔𝑘 =

𝜔𝑖𝛿 𝑗𝑘 − 𝜔 𝑗𝛿𝑖𝑘 , and [𝜕𝑡 − 𝜕𝑟 ,Ω𝑖 𝑗 ] = 0. By (3.35) and (3.36), we have

𝑟Ω𝑖 𝑗𝑍
𝐼 ′ �̂� =

3∑
𝑘=1
𝜀(𝜕𝜔𝑘𝑈𝐼 ′ ) · (𝜔𝑖𝛿 𝑗𝑘 − 𝜔 𝑗𝛿𝑖𝑘 ) + 𝜀𝑆

0,−1
ln + 𝜀𝑆−1,1

= 𝜀((𝜔𝑖𝜕𝜔 𝑗 − 𝜔 𝑗𝜕𝜔𝑖 )𝑈𝐼 ′ ) + 𝜀𝑆
0,−1
ln + 𝜀𝑆−1,1,

(𝜕𝑡 − 𝜕𝑟 ) (𝑟Ω𝑖 𝑗𝑍
𝐼 ′ �̂�) =

3∑
𝑘=1
𝜀(𝜕𝜔𝑘 𝐴𝐼 ′ ) · (𝜔𝑖𝛿 𝑗𝑘 − 𝜔 𝑗𝛿𝑖𝑘 ) + 𝜀𝑆

0,−2
ln + 𝜀𝑆−1,0

= 𝜀((𝜔𝑖𝜕𝜔 𝑗 − 𝜔 𝑗𝜕𝜔𝑖 )𝐴𝐼 ′ ) + 𝜀𝑆
0,−2
ln + 𝜀𝑆−1,0.

That is,𝑈𝐼 = (𝜔𝑖𝜕𝜔 𝑗 − 𝜔 𝑗𝜕𝜔𝑖 )𝑈𝐼 ′ and 𝐴𝐼 = (𝜔𝑖𝜕𝜔 𝑗 − 𝜔 𝑗𝜕𝜔𝑖 )𝐴𝐼 ′ .
(d) Suppose that 𝑍 𝐼 = Ω0𝑖𝑍

𝐼 ′ . In this case, we have Ω0𝑖 (𝜀 ln 𝑡) = 𝜀𝜔𝑖 (1 + 𝑟−𝑡
𝑡 ), Ω0𝑖 (𝑟 − 𝑡) =

−(𝑟 − 𝑡)𝜔𝑖 , Ω0𝑖𝜔𝑘 = (1 − 𝑟−𝑡
𝑟 ) (𝛿𝑖𝑘 − 𝜔𝑖𝜔𝑘 ), [𝜕𝑡 − 𝜕𝑟 ,Ω0𝑖] = −𝜔𝑖 (𝜕𝑡 − 𝜕𝑟 ) −

𝑟+𝑡
𝑟2

∑3
𝑗=1 𝜔 𝑗Ω𝑖 𝑗 , and

Ω0𝑖𝑟 = 𝑡𝜔𝑖 = (1 − 𝑟−𝑡
𝑟 )𝑟𝜔𝑖 . By (3.35) and (3.36), we have

𝑟Ω0𝑖𝑍
𝐼 ′ �̂�

= 𝜀(𝜕𝑠𝑈𝐼 ′ ) · 𝜀𝜔𝑖 (1 +
𝑟 − 𝑡

𝑡
) − 𝜀(𝜕𝑞𝑈𝐼 ′ ) · (𝑟 − 𝑡)𝜔𝑖

+

3∑
𝑘=1
𝜀(𝜕𝜔𝑘𝑈𝐼 ′ ) · (1 −

𝑟 − 𝑡

𝑟
) (𝛿𝑖𝑘 − 𝜔𝑖𝜔𝑘 ) − (1 −

𝑟 − 𝑡

𝑟
)𝑟𝜔𝑖 · 𝑍

𝐼 ′ �̂� + 𝜀𝑆0,−1
ln + 𝜀𝑆−1,1

= 𝜀(𝜀𝜔𝑖𝜕𝑠𝑈𝐼 ′ − 𝑞𝜔𝑖𝜕𝑞𝑈𝐼 ′ + 𝜕𝜔𝑖𝑈𝐼 ′ − 𝜔𝑖𝑈𝐼 ′ )

+ 𝜀2(𝜕𝑠𝑈𝐼 ′ )𝜔𝑖 ·
𝑟 − 𝑡

𝑡
− 𝜀(𝜕𝜔𝑖𝑈𝐼 ′ ) ·

𝑟 − 𝑡

𝑟
+ (𝑟 − 𝑡)𝜔𝑖𝑍

𝐼 ′ �̂� + 𝜀𝑆0,−1
ln + 𝜀𝑆−1,1,

(𝜕𝑡 − 𝜕𝑟 ) (𝑟Ω0𝑖𝑍
𝐼 ′ �̂�)

= −𝜀(𝜕𝑞𝐴𝐼 ′ ) · (𝑟 − 𝑡)𝜔𝑖 +

3∑
𝑘=1
𝜀(𝜕𝜔𝑘 𝐴𝐼 ′ ) · (1 −

𝑟 − 𝑡

𝑟
) (𝛿𝑖𝑘 − 𝜔𝑖𝜔𝑘 )

− 𝜔𝑖 (𝜕𝑡 − 𝜕𝑟 ) ((𝑟 + 𝑡)𝑍
𝐼 ′ �̂�) −

𝑟 + 𝑡

𝑟2

3∑
𝑗=1
𝜔 𝑗Ω𝑖 𝑗 (𝑟𝑍

𝐼 ′ �̂�) + 𝜀𝑆0,−2
ln + 𝜀𝑆−1,0

= 𝜀(−𝑞𝜔𝑖𝜕𝑞𝐴𝐼 ′ + 𝜕𝜔𝑖 𝐴𝐼 ′ − 2𝜔𝑖𝐴𝐼 ′ ) − 𝜀(𝜕𝜔𝑖 𝐴𝐼 ′ ) ·
𝑟 − 𝑡

𝑟

+ 𝜔𝑖 (𝜕𝑡 − 𝜕𝑟 ) ((𝑟 − 𝑡)𝑍
𝐼 ′ �̂�) −

𝑟 + 𝑡

𝑟2

3∑
𝑗=1
𝑥 𝑗Ω𝑖 𝑗𝑍

𝐼 ′ �̂� + 𝜀𝑆0,−2
ln + 𝜀𝑆−1,0.
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By (3.37), we have

𝜀2(𝜕𝑠𝑈𝐼 ′ )𝜔𝑖 ·
𝑟 − 𝑡

𝑡
− 𝜀(𝜕𝜔𝑖𝑈𝐼 ′ ) ·

𝑟 − 𝑡

𝑟
+ (𝑟 − 𝑡)𝜔𝑖𝑍

𝐼 ′ �̂� ∈ 𝜀𝑆−1,1,

−𝜀(𝜕𝜔𝑖 𝐴𝐼 ′ ) ·
𝑟 − 𝑡

𝑟
+ 𝜔𝑖 (𝜕𝑡 − 𝜕𝑟 ) ((𝑟 − 𝑡)𝑍

𝐼 ′ �̂�) −
𝑟 + 𝑡

𝑟2

3∑
𝑗=1
𝑥 𝑗Ω𝑖 𝑗𝑍

𝐼 ′ �̂� ∈ 𝜀𝑆−1,0.

In summary, we have

𝑟Ω0𝑖𝑍
𝐼 ′ �̂� = 𝜀(𝜀𝜔𝑖𝜕𝑠𝑈𝐼 ′ − 𝑞𝜔𝑖𝜕𝑞𝑈𝐼 ′ + 𝜕𝜔𝑖𝑈𝐼 ′ − 𝜔𝑖𝑈𝐼 ′ ) + 𝜀𝑆

0,−1
ln + 𝜀𝑆−1,1,

(𝜕𝑡 − 𝜕𝑟 ) (𝑟Ω0𝑖𝑍
𝐼 ′ �̂�) = 𝜀(−𝑞𝜔𝑖𝜕𝑞𝐴𝐼 ′ + 𝜕𝜔𝑖 𝐴𝐼 ′ − 2𝜔𝑖𝐴𝐼 ′ ) + 𝜀𝑆

0,−2
ln + 𝜀𝑆−1,0.

That is,𝑈𝐼 = 𝜀𝜔𝑖𝜕𝑠𝑈𝐼 ′ − 𝑞𝜔𝑖𝜕𝑞𝑈𝐼 ′ + 𝜕𝜔𝑖𝑈𝐼 ′ − 𝜔𝑖𝑈𝐼 ′ and 𝐴𝐼 = −𝑞𝜔𝑖𝜕𝑞𝐴𝐼 ′ + 𝜕𝜔𝑖 𝐴𝐼 ′ − 2𝜔𝑖𝐴𝐼 ′ . �

3.6. Gauge independence

In Section 3.2, we construct the optical function 𝑞 = 𝑞(𝑡, 𝑥; 𝜀) by solving the eikonal equation (3.3).
There, we consider the regionΩ = Ω𝛿,𝑅,𝜀 defined by (3.2) and assign the boundary condition 𝑞 |𝜕Ω = 𝑟−𝑡.
Meanwhile, we will obtain different optical functions by choosing different regions Ω and by assigning
different boundary conditions. For example, for 𝛿, 𝜅 ∈ (0, 1), we can set

Ω𝛿,𝑅,𝜀,𝜅 = {(𝑡, 𝑥) ∈ R1+3 : 𝑡 > 𝑒𝛿/𝜀 , |𝑥 | − 𝑒𝛿/𝜀 − 2𝑅 > 𝜅(𝑡 − 𝑒𝛿/𝜀)}

and solve the eikonal equation (3.3) with Ω replaced by Ω. Note that Ω𝛿,𝑅,𝜀 = Ω𝛿,𝑅,𝜀,1/2. All the
computations and proofs in Sections 3.2–3.5 will work, so we will again obtain functions such as �̂�
(from (3.16)) and 𝐴𝐼 (from Proposition 3.3), etc. It is natural to ask how these new functions are related
to the old ones. We seek to obtain a gauge independence result; see [75, Section 6].

For convenience, we make the following definition.

Definition 3.7. Fix 𝛿, 𝜅 ∈ (0, 1). Let 𝑞 = 𝑞(𝑡, 𝑥; 𝜀) be a 𝐶2 optical function defined for all 𝜀 �𝜅, 𝛿 1 and
for all (𝑡, 𝑥) ∈ R1+3 with 𝑡 > 𝑒𝛿/𝜀 and |𝑥 | > 𝜅𝑡. That is, we have

𝑔𝛼𝛽 (𝑢)𝜕𝛼𝑞𝜕𝛽𝑞 = 0, ∀𝑡 > 𝑒𝛿/𝜀 , |𝑥 | > 𝜅𝑡.

Also suppose that 𝑞 |𝑟−𝑡≥𝑅 = 𝑟 − 𝑡. We say that the optical function q is (𝛿, 𝜅)-admissible if it satisfies
the following assumptions:

a) For all 𝑡 > 𝑒𝛿/𝜀 and |𝑥 | > 𝜅𝑡, we have∑
|𝐼 | ≤1

|𝑍 𝐼 (𝑞𝑡 − 𝑞𝑟 , 𝑞
−1
𝑟 , (𝑞𝑡 − 𝑞𝑟 )

−1) | � 𝑡𝐶𝜀;∑
|𝐼 | ≤1

∑
𝑖=1,2,3

|𝑍 𝐼 (𝑞𝑖 + 𝜔𝑖𝑞𝑡 ) | � 𝑡−1+𝐶𝜀;

b) The map (𝑠, 𝑞, 𝜔) = (𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |) induces a𝐶1 diffeomorphism from {𝑡 > 𝑒𝛿/𝜀 , |𝑥 | >
𝜅𝑡} to a subset of [0,∞) × R × S2, so every 𝐶1 function of (𝑡, 𝑥) induces a 𝐶1 function of (𝑠, 𝑞, 𝜔);
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c) Define (𝜇,𝑈) (𝑡, 𝑥) = (𝑞𝑡 − 𝑞𝑟 , 𝜀
−1𝑟𝑢) (𝑡, 𝑥) and consider the induced functions (𝜇,𝑈) (𝑠, 𝑞, 𝜔; 𝜀).

The limits in (3.5) exist; that is,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝐴(𝑞, 𝜔; 𝜀) := −

1
2

lim
𝑠→∞

(𝜇𝑈𝑞) (𝑠, 𝑞, 𝜔; 𝜀),

𝐴1 (𝑞, 𝜔; 𝜀) := lim
𝑠→∞

exp(
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀)𝑠)𝜇(𝑠, 𝑞, 𝜔; 𝜀),

𝐴2 (𝑞, 𝜔; 𝜀) := lim
𝑠→∞

exp(−
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀)𝑠)𝑈𝑞 (𝑠, 𝑞, 𝜔; 𝜀).

Remark 3.7.1. For each 𝜅 ∈ (1/2, 1) and 𝛿 ∈ [𝛿, 1), the optical function q constructed in Section 3.2 is
(𝛿, 𝜅)-admissible. We cannot take 𝜅 = 1/2 because Ω𝛿,𝑅,𝜀 � {𝑡 > 𝑒𝛿,𝜀 , |𝑥 | > 𝑡/2}.

We now state the gauge independence result. It is indeed stronger than the one in [75].

Proposition 3.8. Fix 𝛿, 𝜅, 𝛿, 𝜅 ∈ (0, 1). Let 𝑞, 𝑞 be a (𝛿, 𝜅)-admissible optical function and a (𝛿, 𝜅)-
admissible optical function, respectively. Define 𝛿0 = max{𝛿, 𝛿} and 𝜅0 = max{𝜅, 𝜅}. Then, whenever
𝜀 �𝛿,𝜅, 𝛿,𝜅 1, we have

i) There exists 𝑄∞ = 𝑄∞(𝑞, 𝜔; 𝜀) ∈ 𝐶1 (R × S2) such that

𝑄∞(𝑞, 𝜔; 𝜀) = lim
𝑠→∞

𝑞(𝑠, 𝑞, 𝜔; 𝜀),

where 𝑞(𝑠, 𝑞, 𝜔; 𝜀) is the function induced by 𝑞(𝑡, 𝑥; 𝜀) via the coordinate changes (𝑠, 𝑞, 𝜔) =
(𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |). Besides, we have

𝜕𝑞𝑄∞ = lim
𝑠→∞

𝜕𝑞𝑞, 𝜕𝜔𝑖𝑄∞ = lim
𝑠→∞

𝜕𝜔𝑖𝑞.

All the convergences are here uniform in (𝑞, 𝜔) ∈ R × S2.
ii) One can exchange the roles of q and 𝑞 to obtain 𝑄∞(𝑞, 𝜔; 𝜀) ∈ 𝐶1 (R × S2) such that

𝑄∞(𝑞, 𝜔; 𝜀) = lim
𝑠→∞

𝑞(𝑠, 𝑞, 𝜔; 𝜀),

𝜕𝑞𝑄∞ = lim
𝑠→∞

𝜕𝑞𝑞, 𝜕𝜔𝑖𝑄∞ = lim
𝑠→∞

𝜕𝜔𝑖𝑞.

Moreover, we have

𝑄∞(𝑄∞(𝑞, 𝜔; 𝜀), 𝜔; 𝜀) = 𝑞,

𝑄∞(𝑄∞(𝑞, 𝜔; 𝜀), 𝜔; 𝜀) = 𝑞.

iii) Let (𝐴, 𝐴1, 𝐴2) (𝑞, 𝜔; 𝜀) and (𝐴, 𝐴1, 𝐴2) (𝑞, 𝜔; 𝜀) be the limits defined by (3.5), respectively. Then
we have

𝐴(𝑄∞(𝑞, 𝜔; 𝜀), 𝜔; 𝜀) = 𝐴(𝑞, 𝜔; 𝜀),

𝐴1 (𝑄∞(𝑞, 𝜔; 𝜀), 𝜔; 𝜀) = (𝐴1 · 𝜕𝑞𝑄∞)(𝑞, 𝜔; 𝜀) · exp(
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) · (𝛿 − 𝛿)).

Proof. The existence of 𝑄∞ has been proved in [75, Proposition 6.1]. We recall that the key step in the
proof is to write

𝜕𝑠𝑞 = 𝜀−1𝑡𝑞𝑟 (
𝜈

𝑞𝑟
−
𝜈

𝑞𝑟
).

Here, 𝜈 = 𝑞𝑡 + 𝑞𝑟 and 𝜈 = 𝑞𝑡 + 𝑞𝑟 . Using the eikonal equation, we write 𝜈/𝑞𝑟 as the sum of a quantity
not involving q and a remainder term. We thus obtain 𝜕𝑠𝑞 = 𝑂 (𝑡−1+𝐶𝜀) and show that the limit 𝑄∞
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exists. Following a similar proof, we can show 𝜕𝑞𝑄∞ = lim𝑠→∞ 𝜕𝑞𝑞 and 𝜕𝜔𝑖𝑄∞ = lim𝑠→∞ 𝜕𝜔𝑖𝑞. The
details are skipped. This finishes the proof of part i).

In part ii), we recall from the definition that both (𝑠, 𝑞, 𝜔) = (𝜀 ln 𝑡−𝛿, 𝑞(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |) and (𝑠, 𝑞, 𝜔) =
(𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |) are 𝐶1 diffeomorphisms. These diffeomorphisms are defined whenever
𝑡 > 𝑒𝛿0/𝜀 and |𝑥 | > 𝜅0𝑡. We thus have two maps that are the inverses of each other:

(𝑠, 𝑞, 𝜔) ↦→ (𝑠 + 𝛿 − 𝛿, 𝑞(𝑠, 𝑞, 𝜔; 𝜀), 𝜔);

(𝑠, 𝑞, 𝜔) ↦→ (𝑠 − 𝛿 + 𝛿, 𝑞(𝑠, 𝑞, 𝜔; 𝜀), 𝜔).

It follows that for each (𝑠, 𝑞, 𝜔), we have

𝑞 = 𝑞(𝑠, 𝑞(𝑠 + 𝛿 − 𝛿, 𝑞, 𝜔; 𝜀), 𝜔; 𝜀).

By the continuity and the uniform convergence, we obtain

𝑞 = 𝑄∞(𝑄∞(𝑞, 𝜔; 𝜀), 𝜔; 𝜀).

The other limit can be proved similarly.
In part iii), we have proved 𝐴(𝑄∞(𝑞, 𝜔; 𝜀), 𝜔; 𝜀) = 𝐴(𝑞, 𝜔; 𝜀) in [75, Proposition 6.1]. To show the

other limit, we recall that

𝐴1(𝑞, 𝜔; 𝜀) = lim
𝑠→∞

exp(
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀)𝑠)𝜇(𝑠, 𝑞, 𝜔; 𝜀).

Here, 𝑠 = 𝜀 ln 𝑡 − 𝛿 = 𝑠 + 𝛿 − 𝛿. Set 𝑞 = 𝑄∞(𝑞, 𝜔; 𝜀), and we obtain

𝐴1(𝑄∞(𝑞, 𝜔; 𝜀), 𝜔; 𝜀) = lim
𝑠→∞

exp(
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) · (𝑠 + 𝛿 − 𝛿))𝜇(𝑠 + 𝛿 − 𝛿, 𝑄∞(𝑞, 𝜔; 𝜀), 𝜔; 𝜀).

Using the𝐶1 diffeomorphisms mentioned in the proof of part ii), we identify the following three points:

(𝑠 + 𝛿 − 𝛿, 𝑄∞(𝑞, 𝜔; 𝜀), 𝜔) in (𝑠, 𝑞, 𝜔)-coordinates,

(𝑠, 𝑞(𝑠 + 𝛿 − 𝛿, 𝑄∞(𝑞, 𝜔; 𝜀), 𝜔), 𝜔) in (𝑠, 𝑞, 𝜔)-coordinates,

(𝑒 (𝑠+𝛿)/𝜀 , 𝑥(𝑠, 𝑞, 𝜔; 𝜀)) in (𝑡, 𝑥)-coordinates.

(3.38)

Here, 𝑥(𝑠, 𝑞, 𝜔; 𝜀) is chosen so that 𝑥(𝑠, 𝑞, 𝜔; 𝜀) = |𝑥(𝑠, 𝑞, 𝜔; 𝜀) |𝜔 and 𝑞(𝑒 (𝑠+𝛿)/𝜀 , 𝑥(𝑠, 𝑞, 𝜔; 𝜀)) =
𝑄∞(𝑞, 𝜔). Meanwhile, we have

𝜇 = 𝜈 − 2𝑞𝑟 = 𝜈 − 2𝑞𝑟𝜕𝑞𝑞 = (𝜇 − 𝜈)𝜕𝑞𝑞 +𝑂 (𝑡−1+𝐶𝜀).

At the point specified by (3.38), we have (using (𝑠, 𝑞, 𝜔)-coordinates)

(𝜕𝑞𝑞) (𝑠, 𝑞(𝑠 + 𝛿 − 𝛿, 𝑄∞(𝑞, 𝜔; 𝜀), 𝜔; 𝜀), 𝜔; 𝜀) → (𝜕𝑞𝑄∞)(𝑞, 𝜔; 𝜀), 𝑠→ ∞.

This limit holds because the underlined part converges to 𝑄∞(𝑄∞(𝑞, 𝜔; 𝜀), 𝜔; 𝜀) = 𝑞. As a result, we
can skip the term −𝜈𝜕𝑞𝑞 +𝑂 (𝑡−1+𝐶𝜀) as it will not affect the limit. In summary, we have

lim
𝑠→∞

exp(
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) · (𝑠 + 𝛿 − 𝛿))𝜇(𝑠 + 𝛿 − 𝛿, 𝑄∞(𝑞, 𝜔; 𝜀), 𝜔; 𝜀)

= lim
𝑠→∞

exp(
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) · (𝑠 + 𝛿 − 𝛿)) (𝜇 · 𝜕𝑞𝑞) (𝑠, 𝑞(𝑠 + 𝛿 − 𝛿, 𝑄∞(𝑞, 𝜔; 𝜀), 𝜔), 𝜔; 𝜀)

= (𝐴1 · 𝜕𝑞𝑄∞)(𝑞, 𝜔; 𝜀) · exp(
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) · (𝛿 − 𝛿)). �
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We now discuss two important corollaries of this gauge independence result. First, suppose that
𝛿 < 𝛿, 𝜅 < 𝜅, and that 𝑞 is simply a restriction of q. In this case, we have 𝑄∞ = 𝑄∞ = 𝑞 everywhere, so
part iii) of Proposition 3.8 suggests that

𝐴 ≡ 𝐴, 𝐴1 ≡ 𝐴1 exp(
𝛿 − 𝛿

2
𝐺 (𝜔)𝐴).

If we define (𝜇,𝑈) and ( �̃�,𝑈) by (3.6) correspondingly, it is easy to check that

( �̃�,𝑈) (𝑠 + 𝛿 − 𝛿, 𝑞, 𝜔; 𝜀) = (𝜇,𝑈) (𝑠, 𝑞, 𝜔; 𝜀).

Such a time translation follows from the fact that the time t corresponds to 𝑠 = 𝜀 ln 𝑡 − 𝛿 in (𝑠, 𝑞, 𝜔)-
coordinates and 𝑠 = 𝜀 ln 𝑡 − 𝛿 in (𝑠, 𝑞, 𝜔)-coordinates.

The second corollary states that, if 𝛿 = 𝛿, then the outcome 𝐴 defined by (3.16) should be the same.

Corollary 3.9. Fix 𝛿, 𝜅, 𝜅 ∈ (0, 1). Let 𝑞, 𝑞 be a (𝛿, 𝜅)-admissible optical function and a (𝛿, 𝜅)-
admissible optical function, respectively. Let 𝐴, �̂� be the functions defined by (3.16), respectively. Then
we have 𝐴 ≡ �̂�.

Proof. Fix (𝜌, 𝜔) ∈ R × S2. We seek to prove 𝐴(𝜌, 𝜔; 𝜀) = �̂�(𝜌, 𝜔; 𝜀), or equivalently,

𝐴(𝐹 (𝜌, 𝜔; 𝜀), 𝜔; 𝜀) = 𝐴(�̂� (𝜌, 𝜔; 𝜀), 𝜔; 𝜀).

The definitions of 𝐹, �̂� are given above (3.16). Since 𝐴(𝑄∞(𝑞, 𝜔; 𝜀), 𝜔; 𝜀) = 𝐴(𝑞, 𝜔; 𝜀), it suffices to
prove

�̂� (𝜌, 𝜔; 𝜀) = 𝑄∞(𝐹 (𝜌, 𝜔; 𝜀), 𝜔; 𝜀).

Set 𝑞 = 𝐹 (𝜌, 𝜔; 𝜀) and 𝑞 = �̂� (𝜌, 𝜔; 𝜀). By the definitions, we have

𝜌 = 𝐹 (𝑞, 𝜔; 𝜀) = 𝐹 (𝑞, 𝜔; 𝜀).

We seek to prove 𝑞 = 𝑄∞(𝑞, 𝜔; 𝜀). Note that

𝐹 (𝑞, 𝜔; 𝜀) = 2𝑅 −

∫ 𝑞

2𝑅

2
𝐴1(𝑝, 𝜔; 𝜀)

𝑑𝑝 = 2𝑅 −

∫ 𝑞

2𝑅

2𝜕𝑞𝑄∞(𝑝, 𝜔; 𝜀)
𝐴1 (𝑄∞(𝑝, 𝜔; 𝜀), 𝜔; 𝜀)

𝑑𝑝

= 2𝑅 −

∫ 𝑄∞ (𝑞,𝜔;𝜀)

2𝑅

2
𝐴1(𝑝, 𝜔; 𝜀)

𝑑𝑝 = 𝐹 (𝑄∞(𝑞, 𝜔; 𝜀), 𝜔; 𝜀).

In the second identity, we use part iii) of Proposition 3.8. Since𝑄∞(·;𝜔; 𝜀) has an inverse, its derivative
with respect to q cannot vanish. Moreover, since 𝑞, 𝑞 = 𝑟 − 𝑡 for 𝑟 − 𝑡 ≥ 𝑅, we have𝑄∞(2𝑅, 𝜔; 𝜀) = 2𝑅.
It follows that

𝜌 = 𝐹 (𝑞, 𝜔; 𝜀) = 𝐹 (𝑄∞(𝑞, 𝜔; 𝜀), 𝜔; 𝜀) = 𝐹 (𝑞, 𝜔; 𝜀).

Since 𝜕𝑞𝐹 = 2/𝐴1 ≠ 0, we must have 𝑞 = 𝑄∞(𝑞, 𝜔; 𝜀). This finishes our proof. �
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4. A general result for inhomogeneous wave equations

We now consider the following general inhomogeneous wave equation:

�𝜙 = 𝐹 (𝑡, 𝑥) in O. (4.1)

Here, the region O ⊂ R1+3 is defined by

O = {(𝑡, 𝑥) ∈ R1+3 : 𝑡 > 0, |𝑥 | < 𝑡}. (4.2)

The main proposition in this section is a representation formula for a solution 𝜙 in O.

Proposition 4.1. Suppose that 𝜙 ∈ 𝐶2 (O) is a solution to (4.1). Suppose that for some constants
𝑀, 𝛾1, 𝛾2 > 0, we have

|𝐹 (𝑡, 𝑥) | ≤ 𝑀 〈𝑡〉−𝛾1 〈|𝑥 | − 𝑡〉−𝛾2 , ∀(𝑡, 𝑥) ∈ O.

Then, by setting Φ(𝑡, 𝑥) = (−𝜕𝑡 + 𝜕𝑟 ) (|𝑥 |𝜙), for all (𝑡, 𝑥) ∈ O and 𝑇 > 2𝑡, we have

𝜙(𝑡, 𝑥) =
1

4𝜋

∫
S2
Φ(𝑇, 𝑥 − (𝑇 − 𝑡)𝜃) 𝑑𝑆𝜃

+𝑂 (|𝑥 |‖𝜕𝜙(𝑇)‖𝐿∞ + 𝑀 〈𝑡 − |𝑥 |〉−𝛾2 · (〈𝑡〉2−𝛾1 +

∫ (𝑇 −𝑡)2

𝑡2
(1 + 𝜌)−𝛾1/2 𝑑𝜌)).

(4.3)

The implicit constant in 𝑂 (. . . ) is universal and does not depend on 𝑇, 𝑡, 𝑥, 𝑀, 𝛾1, 𝛾2.

Remark 4.1.1. Note that the integral can be estimated explicitly:

∫ 𝑇 2

𝑡2
(1 + 𝜌)−𝛾1/2 𝑑𝜌 ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

〈𝑇 〉2−𝛾1
1−𝛾1/2 , 𝛾1 < 2;

2 ln( 〈𝑇 〉
〈𝑡 〉 ), 𝛾1 = 2;

〈𝑡 〉2−𝛾1
𝛾1/2−1 , 𝛾1 > 2.

It suffices to prove this proposition for 𝑀 = 1. For general 𝑀 > 0, we simply replace (𝜙, 𝐹) with
(𝜙/𝑀, 𝐹/𝑀) in (4.1). In the proof, we view 𝜙 as a solution to (4.1) with initial data (𝜙0, 𝜙1) = (𝜙, 𝜙𝑡 ) (𝑇)
at 𝑡 = 𝑇 . This allows us to write 𝜙 = 𝜙lin + 𝜙inh. Here, we have 𝜙lin solves �𝜙lin = 0 with data (𝜙0, 𝜙1)
at 𝑡 = 𝑇 , and 𝜙inh solves (4.1) with zero data at 𝑡 = 𝑇 . See Lemma 4.2. Note that 𝜙lin can be expressed
explicitly in terms of (𝜙0, 𝜙1) and that 𝜙inh can be expressed explicitly in terms of F. In Lemmas 4.3
and 4.4, we estimate 𝜙lin and 𝜙inh by applying these explicit formulas.

4.1. A representation formula

Lemma 4.2. Let 𝜙 ∈ 𝐶2(O) be a solution to (4.1). Then, for all (𝑡, 𝑥) ∈ O and 𝑇 > 𝑡, we have

4𝜋𝜙(𝑡, 𝑥) =
∫
S2
𝜙(𝑇, 𝑥 − (𝑇 − 𝑡)𝜃) − (𝑇 − 𝑡) (𝜙𝑡 + 𝜃 · ∇𝑥𝜙) (𝑇, 𝑥 − (𝑇 − 𝑡)𝜃) 𝑑𝑆𝜃

−

∫
𝑦∈R3: |𝑦 |<𝑇−𝑡

𝐹 (𝑡 + |𝑦 |, 𝑥 + 𝑦) |𝑦 |−1 𝑑𝑦.
(4.4)

Proof. Fix 𝑇 > 0 and set 𝑤(𝑡, 𝑥) = 𝜙(𝑇 − 𝑡,−𝑥). Note that 𝑤 ∈ 𝐶2 ({0 < 𝑡 < 𝑇, |𝑥 | < 𝑇 − 𝑡}) and that
w solves (�𝑤) (𝑡, 𝑥) = 𝐹 (𝑇 − 𝑡,−𝑥) in its domain. Using formulas from, for example, [67, 26], we can
explicitly express w in terms of (𝑤, 𝑤𝑡 ) |𝑡=0 and F. Whenever 𝑡 ∈ (0, 𝑇) and |𝑥 | < 𝑇 − 𝑡, we have
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4𝜋𝑤(𝑡, 𝑥) =
∫
S2
𝜕𝑡 (𝑡𝑤(0, 𝑥 + 𝑡𝜃)) + 𝑡𝑤𝑡 (0, 𝑥 + 𝑡𝜃) 𝑑𝑆𝜃 −

∫
𝑦∈R3: |𝑦 |<𝑡

(�𝑤) (𝑡 − |𝑦 |, 𝑥 − 𝑦)
𝑑𝑦

|𝑦 |
.

Since (𝑤, 𝑤𝑡 ) |𝑡=0 = (𝜙(𝑇,−𝑥),−𝜙𝑡 (𝑇,−𝑥)), by the chain rule, we have

𝜕𝑡 (𝑡𝑤(0, 𝑥 + 𝑡𝜃)) + 𝑡𝑤𝑡 (0, 𝑥 + 𝑡𝜃) = 𝑤(0, 𝑥 + 𝑡𝜃) + 𝑡 (𝑤𝑡 + 𝜃 · ∇𝑥𝑤) (0, 𝑥 + 𝑡𝜃)
= 𝜙(𝑇,−𝑥 − 𝑡𝜃) − 𝑡 (𝜙𝑡 + 𝜃 · ∇𝑥𝜙) (𝑇,−𝑥 − 𝑡𝜃).

And since (�𝑤) (𝑡 − |𝑦 |, 𝑥 − 𝑦) = 𝐹 (𝑇 − 𝑡 + |𝑦 |, 𝑦 − 𝑥), we have

4𝜋𝑤(𝑡, 𝑥) =
∫
S2
𝜙(𝑇,−𝑥 − 𝑡𝜃) − 𝑡 (𝜙𝑡 + 𝜃 · ∇𝑥𝜙) (𝑇,−𝑥 − 𝑡𝜃) 𝑑𝑆𝜃

−

∫
𝑦∈R3: |𝑦 |<𝑡

|𝑦 |−1𝐹 (𝑇 − 𝑡 + |𝑦 |, 𝑦 − 𝑥) 𝑑𝑦.

Finally, by replacing (𝑡, 𝑥) with (𝑇 − 𝑡,−𝑥), we obtain the formula for 𝜙. This is because 𝜙(𝑡, 𝑥) =
𝑤(𝑇 − 𝑡,−𝑥). �

For each (𝑡, 𝑥) ∈ O and 𝑇 > 𝑡, we rewrite (4.4) as 𝜙 = 𝜙lin + 𝜙inh where

𝜙lin(𝑡, 𝑥;𝑇) =
1

4𝜋

∫
S2
𝜙(𝑇, 𝑥 − (𝑇 − 𝑡)𝜃) − (𝑇 − 𝑡) (𝜙𝑡 + 𝜃 · ∇𝑥𝜙) (𝑇, 𝑥 − (𝑇 − 𝑡)𝜃) 𝑑𝑆𝜃 , (4.5)

𝜙inh(𝑡, 𝑥;𝑇) = −
1

4𝜋

∫
𝑦∈R3: |𝑦 |<𝑇−𝑡

𝐹 (𝑡 + |𝑦 |, 𝑥 + 𝑦) |𝑦 |−1 𝑑𝑦. (4.6)

When T is fixed, we note that 𝜙lin is the solution to the linear wave equation �𝜙lin = 0 in O∩{0 < 𝑡 < 𝑇}
with data (𝜙lin, 𝜕𝑡𝜙lin) |𝑡=𝑇 = (𝜙(𝑇), 𝜙𝑡 (𝑇)) and that 𝜙inh is the solution to the inhomogeneous equation
�𝜙inh = 𝐹 in O ∩ {0 < 𝑡 < 𝑇} with zero data at 𝑡 = 𝑇 .

In the next two subsections, we will estimate 𝜙lin and 𝜙inh, respectively. Proposition 4.1 will then
follow directly from Lemmas 4.3 and 4.4 below.

4.2. Estimates for 𝜙lin

Let us start with 𝜙lin defined by (4.5).

Lemma 4.3. Set Φ(𝑡, 𝑥) = (−𝜕𝑡 + 𝜕𝑟 ) (|𝑥 |𝜙). Then, for all (𝑡, 𝑥) ∈ O with 𝑡 < 𝑇 , we have

𝜙lin(𝑡, 𝑥;𝑇) =
1

4𝜋

∫
S2
Φ(𝑇, 𝑥 − (𝑇 − 𝑡)𝜃) 𝑑𝑆𝜃 +𝑂 (|𝑥 |‖𝜕𝜙(𝑇)‖𝐿∞ ({𝑥∈R3: |𝑥 |<𝑇 }) ).

The implicit constant in 𝑂 (. . . ) is universal and does not depend on 𝑇, 𝑡, 𝑥.

Proof. For simplicity, we write 𝑦 = 𝑦(𝑡, 𝑥, 𝜃, 𝑇) = 𝑥 − (𝑇 − 𝑡)𝜃. Then, we have

Φ(𝑇, 𝑦) = 𝜙(𝑇, 𝑦) − |𝑦 | (𝜙𝑡 − 𝜙𝑟 ) (𝑇, 𝑦) = 𝜙(𝑇, 𝑦) − |𝑦 |𝜙𝑡 (𝑇, 𝑦) +
3∑
𝑗=1
𝑦 𝑗𝜙𝑦 𝑗 (𝑇, 𝑦),

while the integrand on the right side of (4.5) is

𝜙(𝑇, 𝑦) − (𝑇 − 𝑡) (𝜙𝑡 + 𝜃 · ∇𝑦𝜙) (𝑇, 𝑦) = 𝜙(𝑇, 𝑦) − (𝑇 − 𝑡)𝜙𝑡 (𝑇, 𝑦) −
3∑
𝑗=1
𝜃 𝑗 (𝑇 − 𝑡)𝜙𝑦 𝑗 (𝑇, 𝑦).
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The difference between these two formulas is (𝑇 − 𝑡 − |𝑦 |)𝜙𝑡 (𝑇, 𝑦) +
∑3

𝑗=1 (𝑦 𝑗 + (𝑇 − 𝑡)𝜃 𝑗 )𝜙𝑦 𝑗 (𝑇, 𝑦). By
the definition of y, we have 𝑦 𝑗 + (𝑇 − 𝑡)𝜃 𝑗 = 𝑥 𝑗 and

𝑇 − 𝑡 − |𝑥 | ≤ |𝑦 | = |𝑥 − (𝑇 − 𝑡)𝜃 | ≤ |𝑥 | + 𝑇 − 𝑡 =⇒ |𝑇 − 𝑡 − |𝑦 | | ≤ |𝑥 |.

Here, we use 𝜃 ∈ S2 and 𝑇 ≥ 𝑡. This finishes the proof. �

4.3. Estimates for 𝜙inh

We now estimate 𝜙inh defined by (4.6).

Lemma 4.4. Suppose that |𝐹 (𝑡, 𝑥) | ≤ 〈𝑡〉−𝛾1 〈|𝑥 | − 𝑡〉−𝛾2 in O for some constants 𝛾1, 𝛾2 > 0. Then, for
all 𝑡, 𝑥, 𝑇 with (𝑡, 𝑥) ∈ O and 𝑇 > 𝑡 (later we will set 𝑇 = 𝑇 − 𝑡), we have����∫

𝑦∈R3: |𝑦 |<𝑇
𝐹 (𝑡 + |𝑦 |, 𝑥 + 𝑦) |𝑦 |−1 𝑑𝑦

���� ≤ 2𝜋〈𝑡 − |𝑥 |〉−𝛾2 · (〈𝑡〉2−𝛾1 +

∫ 𝑇 2

𝑡2
(1 + 𝜌)−𝛾1/2 𝑑𝜌).

Proof. Using the bound for F, we have����∫
𝑦∈R3: |𝑦 |<𝑇

𝐹 (𝑡 + |𝑦 |, 𝑥 + 𝑦) |𝑦 |−1 𝑑𝑦

����
≤

∫
𝑦∈R3: |𝑦 |<𝑇

〈𝑡 + |𝑦 |〉−𝛾1 〈|𝑥 + 𝑦 | − 𝑡 − |𝑦 |〉−𝛾2 |𝑦 |−1 𝑑𝑦

≤ 〈𝑡 − |𝑥 |〉−𝛾2

∫
𝑦∈R3: |𝑦 |<𝑇

〈𝑡 + |𝑦 |〉−𝛾1 |𝑦 |−1 𝑑𝑦

≤ 4𝜋〈𝑡 − |𝑥 |〉−𝛾2

∫ 𝑇

0
〈𝑡 + 𝜌〉−𝛾1𝜌 𝑑𝜌.

To get the second estimate, we recall |𝑥 | < 𝑡 and |𝑥 + 𝑦 | − |𝑦 | ≤ |𝑥 |. Since 𝑠 ↦→ 〈𝑠〉 is increasing for
𝑠 ≥ 0, we have 〈𝑡 − |𝑥 + 𝑦 | + |𝑦 |〉 ≥ 〈𝑡 − |𝑥 |〉. In the last step, we write the integral in polar coordinates.

Next, we notice that∫ 𝑇

0
〈𝑡 + 𝜌〉−𝛾1𝜌 𝑑𝜌 ≤

∫ 𝑡

0
〈𝑡〉−𝛾1𝜌 𝑑𝜌 +

∫ 𝑇

𝑡
(1 + 𝜌2)−𝛾1/2𝜌 𝑑𝜌

≤
1
2
〈𝑡〉2−𝛾1 +

1
2

∫ 𝑇 2

𝑡2
(1 + 𝜌)−𝛾1/2 𝑑𝜌.

This finishes the proof. �

It is now obvious that Proposition 4.1 follows directly from Lemmas 4.3 and 4.4. We also note that
we assume 𝑇 > 2𝑡 in Proposition 4.1 because 𝑇 − 𝑡 = 𝑇 > 𝑡 in Lemma 4.4.

5. Proof of Theorem 1

We now prove Theorem 1. Let u be the global solution to (1.1) in the statement of the theorem. In
Section 5.1, we apply Proposition 4.1 to 𝜙 = 𝑍 𝐼𝑢 for a fixed multiindex I. Because of (5.2), it remains
to compute the integral ∫

S2
Φ𝐼 (𝑇, 𝑥 − (𝑇 − 𝑡)𝜃; 𝜀) 𝑑𝑆𝜃 ,
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where Φ𝐼 = (−𝜕𝑡 + 𝜕𝑟 ) (𝑟𝑍
𝐼𝑢). This computation is then done in Section 5.2. By setting14 𝑇 = 𝑡3 and

𝑦 = 𝑦(𝑡, 𝑥, 𝑇, 𝜃) = 𝑥 − (𝑇 − 𝑡)𝜃, we have (𝑇, 𝑦) ∈ Ω and | |𝑦 | − 𝑇 | � 𝑇1/3 whenever 𝑡 > (2𝑒𝛿/𝜀)1/3,
|𝑥 | < 𝑡, and 𝜃 ∈ S2. Here, we recall that Ω = Ω𝛿,𝑅,𝜀 was defined by (3.2). As a result, we can apply
(3.14) to show

Φ𝐼 (𝑇, 𝑦; 𝜀) ≈ −𝑟 (𝜕𝑡 − 𝜕𝑟 )𝑍
𝐼 �̃�(𝑇, 𝑦; 𝜀).

Moreover, by Proposition 3.3, we also have

−𝑟 (𝜕𝑡 − 𝜕𝑟 )𝑍
𝐼 �̃�(𝑇, 𝑦; 𝜀) = −𝑟 (𝜕𝑡 − 𝜕𝑟 )𝑍

𝐼 �̂�(𝑇, 𝑦; 𝜀) ≈ −𝜀𝐴𝐼 (|𝑦 | − 𝑇, 𝑦/|𝑦 |; 𝜀).

Finally, by Lemma 5.1, we have |𝑦 | − 𝑇 ≈ −𝑡 − 𝑥 · 𝜃 and 𝑦/|𝑦 | ≈ −𝜃. We thus have∫
S2
Φ𝐼 (𝑇, 𝑥 − (𝑇 − 𝑡)𝜃; 𝜀) 𝑑𝑆𝜃 ≈ −𝜀

∫
S2
𝐴𝐼 (−𝑡 − 𝑥 · 𝜃,−𝜃; 𝜀) 𝑑𝑆𝜃 .

Thus, we obtain the integral on the right-hand side of (1.23). We still need to estimate the error terms
in these computations. The details will be given in the proof below.

5.1. Setup

Fix (𝑢0, 𝑢1) ∈ 𝐶
∞
𝑐 (R3). Let u be the global 𝐶∞ solution to (1.1) with data (𝜀𝑢0, 𝜀𝑢1) for 𝜀 � 1. Now

fix a multiindex I. Set 𝑁 = |𝐼 | + 2 and choose 𝜀 �𝑁 1 so that (3.1) holds for N.
In order to apply Proposition 4.1 to 𝑍 𝐼𝑢, we need to estimate �𝑍 𝐼𝑢. In fact, since 𝑔𝛼𝛽 (𝑢) =

𝑚𝛼𝛽 +𝑂 (|𝑢 |), it follows from (3.1) and Lemma 2.3 (with 𝑙0 = 1) that

|𝑍 𝐼�𝑢 | = |𝑍 𝐼
(
(𝑔𝛼𝛽 (𝑢) − 𝑚𝛼𝛽)𝜕𝛼𝜕𝛽𝑢

)
| �

∑
|𝐽1 |+ |𝐽2 |= |𝐼 |

|𝑍 𝐽1 (𝑔𝛼𝛽 (𝑢) − 𝑚𝛼𝛽) | |𝑍 𝐽2𝜕2𝑢 |

�
∑

|𝐽 | ≤ |𝐼 |

|𝑍 𝐽𝑢 | · 〈𝑟 − 𝑡〉−2
∑

|𝐽 | ≤ |𝐼 |+2
|𝑍 𝐽𝑢 | � 〈𝑟 − 𝑡〉−2(𝜀〈𝑡〉−1+𝐶𝜀)2 � 𝜀2〈𝑡〉−2+𝐶𝜀 〈𝑟 − 𝑡〉−2.

Now we apply Proposition 4.1 to 𝑍 𝐼𝑢 (with 𝑀 = 𝐶𝜀2, 𝛾1 = 2 − 𝐶𝜀 and 𝛾2 = 2). By setting
Φ𝐼 (𝑡, 𝑥; 𝜀) = (−𝜕𝑡 + 𝜕𝑟 ) (𝑟𝑍

𝐼𝑢) (𝑡, 𝑥; 𝜀), for all (𝑡, 𝑥) with 𝑡 > 0 and |𝑥 | < 𝑡, and all 𝑇 > 2𝑡, we have����(𝑍 𝐼𝑢) (𝑡, 𝑥; 𝜀) − 1
4𝜋

∫
S2
Φ𝐼 (𝑇, 𝑥 − (𝑇 − 𝑡)𝜃; 𝜀) 𝑑𝑆𝜃

����
� |𝑥 |



𝜕𝑍 𝐼𝑢(𝑇)


𝐿∞ + 𝜀2〈𝑡 − |𝑥 |〉−2 · (〈𝑡〉𝐶𝜀 +

∫ (𝑇 −𝑡)2

𝑡2
(1 + 𝜌)−1+𝐶𝜀 𝑑𝜌)

� 𝜀𝑡𝑇−1+𝐶𝜀 + 𝜀2〈𝑡 − |𝑥 |〉−2〈𝑡〉𝐶𝜀 + 𝜀〈𝑡 − |𝑥 |〉−2𝑇𝐶𝜀 .

(5.1)

If 𝑡 > 2 and if we set 𝑇 = 𝑡3 > 2𝑡, then 𝑇𝐶𝜀 � 𝑡𝐶𝜀 and 𝑡𝑇−1+𝐶𝜀 � 𝑡−2+𝐶𝜀 � 〈𝑡 − |𝑥 |〉−2𝑡𝐶𝜀 (since
0 < 𝑡 − |𝑥 | < 𝑡). That is, we have����(𝑍 𝐼𝑢) (𝑡, 𝑥; 𝜀) − 1

4𝜋

∫
S2
Φ𝐼 (𝑇, 𝑥 − (𝑇 − 𝑡)𝜃; 𝜀) 𝑑𝑆𝜃

���� � 𝜀〈𝑡 − |𝑥 |〉−2𝑡𝐶𝜀 . (5.2)

It remains to compute the integral of Φ𝐼 .

14The proof will still work if we set 𝑇 = 𝑡𝜆 with a fixed parameter 𝜆 > 2. However, we need the estimate 𝑇𝐶𝜀 � 𝑡𝐶𝜀 in our
proof, so we cannot set this T arbitrarily. For example, we cannot set 𝑇 = 𝑒𝑡 .
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5.2. Computing the integral of Φ𝐼

We now apply the results in Section 3. Since most estimates there hold in Ω defined by (3.2), our first
goal is to show that

(𝑇, 𝑥 − (𝑇 − 𝑡)𝜃) ∈ Ω, ∀𝑡 > (2𝑒𝛿/𝜀)1/3, 𝑇 = 𝑡3, |𝑥 | < 𝑡, 𝜃 ∈ S2. (5.3)

Here, we recall that 𝛿 ∈ (0, 1) is a small constant chosen at the beginning of Section 3.2. By choosing
𝜀 �𝛿,𝑅 1, we have 𝑇 > 2𝑒𝛿/𝜀 and

|𝑥 − (𝑇 − 𝑡)𝜃 | − (
1
2
(𝑇 + 𝑒𝛿/𝜀) + 2𝑅) ≥ (𝑇 − 𝑡) − |𝑥 | −

1
2
(𝑇 + 𝑒𝛿/𝜀) − 2𝑅

≥
1
2
𝑇 − 2𝑡 −

1
2
𝑒𝛿/𝜀 − 2𝑅 ≥

1
2
𝑇 (

1
2
− 4𝑇−2/3 − 2𝑅𝑇−1) > 0.

Thus, we have (5.3).
Next, we set 𝑦 = 𝑦(𝑡, 𝑥, 𝑇, 𝜃) = 𝑥 − (𝑇 − 𝑡)𝜃. Since 𝑇 � 𝑡 > |𝑥 |, we expect 𝑦 ≈ −𝑇𝜃. This expectation

is made rigorous in the next lemma.

Lemma 5.1. For all 𝑡 > (2𝑒𝛿/𝜀)1/3, 𝑇 = 𝑡3, |𝑥 | < 𝑡, and 𝜃 ∈ S2, we have |𝑦 | ∼ 𝑇 , 𝑇 − |𝑦 | =
𝑡 + 𝑥 · 𝜃 +𝑂 (𝑡−1) ∈ [𝑡 − |𝑥 | − 1, 2𝑡 + 1], and 𝑦/|𝑦 | + 𝜃 = 𝑂 (𝑡−2).

Proof. We have | |𝑦 | − (𝑇 − 𝑡) | ≤ |𝑥 |. It follows that

|𝑇 − |𝑦 | | ≤ | |𝑦 | − (𝑇 − 𝑡) | + 𝑡 ≤ 𝑡 + |𝑥 | ≤ 2𝑡,

|
|𝑦 |

𝑇
− 1| ≤

2𝑡
𝑇

≤ 2𝑇−2/3 ≤ 2(𝑒𝛿/𝜀)−2/3.

For 𝜀 �𝛿 1, we have (𝑒𝛿/𝜀)−2/3 = 𝑒−
2𝛿
3𝜀 < 1/4, so |𝑦 | ∼ 𝑇 .

Next, we have

𝑇2 − |𝑦 |2 = 𝑇2 − (|𝑥 |2 + (𝑇 − 𝑡)2 − 2(𝑇 − 𝑡)𝑥 · 𝜃) = 2𝑡𝑇 − 𝑡2 − |𝑥 |2 + 2(𝑇 − 𝑡)𝑥 · 𝜃,

𝑇 − |𝑦 | =
2𝑡𝑇 − 𝑡2 − |𝑥 |2 + 2(𝑇 − 𝑡)𝑥 · 𝜃

𝑇 + |𝑦 |

= 𝑡 + 𝑥 · 𝜃 +
𝑡 (𝑇 − |𝑦 |) − 𝑡2 − |𝑥 |2 + (𝑇 − |𝑦 | − 2𝑡)𝑥 · 𝜃

𝑇 + |𝑦 |

= 𝑡 + 𝑥 · 𝜃 +𝑂 (𝑡2/𝑇) = 𝑡 + 𝑥 · 𝜃 +𝑂 (𝑡−1).

In the second last estimate, we use |𝑥 | < 𝑡, |𝑇 − |𝑦 | | ≤ 2𝑡, and |𝑦 | ∼ 𝑇 . It is also clear that 𝑡 − |𝑥 | − 1 ≤

𝑇 − |𝑦 | ≤ 2𝑡 + 1.
Finally, we have ���� 𝑦|𝑦 | + 𝜃���� = |𝑥 − (𝑇 − 𝑡 − |𝑦 |)𝜃 |

|𝑦 |
� 𝑇−1 (|𝑥 | + 𝑡) � 𝑡/𝑇 = 𝑡−2. �

We can now compute Φ𝐼 (𝑇, 𝑦; 𝜀). For simplicity, in the remaining computations of the current
subsection, we omit the parameter 𝜀 in the functions Φ𝐼 , 𝑢, �̃�, 𝐴𝐼 , etc. That is, we will only write
Φ𝐼 (𝑇, 𝑦). Since | |𝑦 | − 𝑇 | � 𝑡 = 𝑇1/3, by applying (3.14) with 𝑁 = |𝐼 | + 2, for 𝜀 �𝑁 1, we have

Φ𝐼 (𝑇, 𝑦) = −[𝑟 (𝜕𝑡 − 𝜕𝑟 ) (𝑍
𝐼𝑢)] (𝑇, 𝑦) + 𝑍 𝐼𝑢(𝑇, 𝑦)

= −[𝑟 (𝜕𝑡 − 𝜕𝑟 ) (𝑍
𝐼 �̃�)] (𝑇, 𝑦) − [𝑟 (𝜕𝑡 − 𝜕𝑟 ) (𝑍

𝐼 (𝑢 − �̃�))] (𝑇, 𝑦) +𝑂 (𝜀𝑇−1+𝐶𝜀)

= −[𝑟 (𝜕𝑡 − 𝜕𝑟 ) (𝑍
𝐼 �̃�)] (𝑇, 𝑦) +𝑂 (𝜀𝑇−1+𝐶𝜀).
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Here, we use |𝜕𝑍 𝐼 (𝑢−�̃�) | � 〈𝑟−𝑡〉−1 |𝑍𝑍 𝐼 (𝑢−�̃�) | to remove the 〈𝑟−𝑡〉 factor in (3.14). By Proposition 3.3,
we have

− [𝑟 (𝜕𝑡 − 𝜕𝑟 ) (𝑍
𝐼 �̃�)] (𝑇, 𝑦)

= −𝜀𝐴𝐼 (|𝑦 | − 𝑇, 𝑦/|𝑦 |) +𝑂 (𝜀(1 + ln〈|𝑦 | − 𝑇〉)〈|𝑦 | − 𝑇〉−2𝑇𝐶𝜀 + 𝜀𝑇−1+𝐶𝜀)

= −𝜀𝐴𝐼 (|𝑦 | − 𝑇, 𝑦/|𝑦 |) +𝑂 (〈𝑡 − |𝑥 |〉−2𝑡𝐶𝜀 + 𝜀𝑡−3+𝐶𝜀).

In the last step, we use that 𝜀 ln〈𝑇 − |𝑦 |〉 � 𝜀 + 𝜀 ln𝑇 � 𝜀 + 𝜀 ln 𝑡 � 𝑡𝐶𝜀 and that 〈|𝑦 | − 𝑇〉−2 �
(1 + 𝑡 − |𝑥 |)−2 � 〈𝑡 − |𝑥 |〉−2 by Lemma 5.1. Moreover, for 𝜌 lies between |𝑦 | − 𝑇 and −𝑡 − 𝑥 · 𝜃,

−𝜌 ≥ min{𝑇 − |𝑦 |, 𝑡 + 𝑥 · 𝜃} ≥ 𝑡 + 𝑥 · 𝜃 − 𝐶𝑡−1 ≥ 𝑡 − |𝑥 | − 1 > −1.

Thus, we have 〈𝜌〉 ∼ (2 − 𝜌) ≥ (𝑡 − |𝑥 | + 1) ∼ 〈𝑡 − |𝑥 |〉. By the mean value theorem, we have

| − 𝜀𝐴𝐼 (|𝑦 | − 𝑇, 𝑦/|𝑦 |) + 𝜀𝐴𝐼 (−𝑡 − 𝑥 · 𝜃,−𝜃) |

� 𝜀 |𝐴𝐼 (|𝑦 | − 𝑇, 𝑦/|𝑦 |) − 𝐴𝐼 (−𝑡 − 𝑥 · 𝜃, 𝑦/|𝑦 |) | + 𝜀 |𝐴𝐼 (−𝑡 − 𝑥 · 𝜃, 𝑦/|𝑦 |) − 𝐴𝐼 (−𝑡 − 𝑥 · 𝜃,−𝜃) |

� 𝜀 | |𝑦 | − 𝑇 + 𝑡 + 𝑥 · 𝜃 | · sup
𝜌 lies between |𝑦 |−𝑇 , −𝑡−𝑥 ·𝜃

|𝜕𝑞𝐴𝐼 (𝜌, 𝑦/|𝑦 |) |

+ 𝜀 |
𝑦

|𝑦 |
+ 𝜃 | · sup

𝜂∈S2
|𝜕𝜔𝐴𝐼 (−𝑡 − 𝑥 · 𝜃, 𝜂) |

� 𝜀𝑡−1 sup
𝜌 lies between |𝑦 |−𝑇 , −𝑡−𝑥 ·𝜃

〈𝜌〉−2+𝐶𝜀 + 𝜀𝑡−2〈𝑡 + 𝑥 · 𝜃〉−1+𝐶𝜀

� 𝜀𝑡−1〈𝑡 − |𝑥 |〉−2+𝐶𝜀 + 𝜀𝑡−2〈𝑡 − |𝑥 |〉−1+𝐶𝜀 � 𝜀𝑡−1+𝐶𝜀 〈|𝑥 | − 𝑡〉−2.

In summary, we have

Φ𝐼 (𝑇, 𝑦; 𝜀) = −𝜀𝐴𝐼 (−𝑡 − 𝑥 · 𝜃,−𝜃; 𝜀) +𝑂 (〈𝑟 − 𝑡〉−2𝑡𝐶𝜀).

Plugging this back to (5.2), we obtain

𝑍 𝐼𝑢(𝑡, 𝑥; 𝜀) = −
𝜀

4𝜋

∫
S2
𝐴𝐼 (−𝑡 + 𝑥 · 𝜃, 𝜃; 𝜀) 𝑑𝑆𝜃 +𝑂 (〈𝑡 − |𝑥 |〉−2𝑡𝐶𝜀), ∀𝑡 > (2𝑒𝛿/𝜀)1/3, |𝑥 | < 𝑡.

(5.4)

6. Corollaries of Theorem 1

Combining Theorem 1 with the asymptotic completeness result for (1.1), we can prove several interesting
corollaries.

In Section 6.1, we show a special decaying property for 𝐴 and𝑈; see (6.2) in Proposition 6.1. In the
proof, we compute the integral

∫
S2 𝑢(𝑡, (𝑡 − 𝑡

2/3)𝜔) 𝑑𝑆𝜔 in two ways. First, we can use the estimates
from the asymptotic completeness result. By (3.14) and Proposition 3.3, we have∫

S2
𝑢(𝑡, (𝑡 − 𝑡2/3)𝜔) 𝑑𝑆𝜔 ≈ 𝜀(𝑡 − 𝑡2/3)−1 ·

∫
S2
𝑈 (𝜀 ln 𝑡 − 𝛿,−𝑡2/3, 𝜔) 𝑑𝑆𝜔 , ∀𝑡 �𝛿,𝜀 1.

Meanwhile, we can apply the main theorem for this paper. By (1.23), we have∫
S2
𝑢(𝑡, (𝑡 − 𝑡2/3)𝜔) 𝑑𝑆𝜔 ≈

𝜀

2𝜋

∫
S2

∫
S2
𝐴(−𝑡 + (𝑡 − 𝑡2/3)𝜔 · 𝜃, 𝜃; 𝜀) 𝑑𝑆𝜃𝑑𝑆𝜔

=
𝜀

𝑡 − 𝑡2/3

∫
S2

∫ −𝑡2/3

−2𝑡+𝑡2/3
𝐴(𝜌, 𝜃; 𝜀) 𝑑𝜌𝑑𝑆𝜃

≈
𝜀

𝑡 − 𝑡2/3

∫
S2
[𝑈 (𝜀 ln 𝑡 − 𝛿,−𝑡2/3, 𝜔; 𝜀) −𝑈 (𝜀 ln 𝑡 − 𝛿,−2𝑡 + 𝑡2/3, 𝜔; 𝜀)] 𝑑𝑆𝜃 , ∀𝑡 �𝛿,𝜀 1.
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In the second step, we integrate with respect to 𝜔. In the last step, we notice that 𝑈𝑞 ≈ 𝐴. Comparing
these two approximate identities, we notice that there is a cancellation. We thus have

𝜀

𝑡 − 𝑡2/3

∫
S2
𝑈 (𝜀 ln 𝑡 − 𝛿,−2𝑡 + 𝑡2/3, 𝜔; 𝜀) 𝑑𝑆𝜃 ≈ 0

to some extent. For simplicity, we skip the discussion on how to control the error terms in these
computations, and we refer to the proof of Proposition 6.1 below. Following the same idea, one can
derive similar decay properties for the𝑈𝐼 ’s defined in Proposition 3.3; see (6.1).

In Sections 6.2 and 6.3, we prove Theorems 2 and 3. Here, Proposition 6.2 is the same as
Theorem 2, while Proposition 6.6 is slightly stronger than Theorem 3. Note that the ideas of the proofs
of Propositions 6.2 and 6.6 have been explained in the introduction, so we will not repeat them here.

6.1. Decaying properties of the𝑈𝐼 ’s

We now discuss the decaying properties mentioned at the beginning of this section.

Proposition 6.1. For each multiindex I, we let𝑈𝐼 be the function of (𝑠, 𝑞, 𝜔) defined in the statement of
Proposition 3.3. Then, for all 𝑡 ≥ 2𝑒𝛿/𝜀 , we have

|

∫
S2
𝑈𝐼 (𝜀 ln 𝑡 − 𝛿,−2𝑡, 𝜔; 𝜀) 𝑑𝑆𝜔 | � 𝜀−1𝑡−1/3+𝐶𝜀 . (6.1)

In particular, since𝑈0 = 𝑈 which was defined in (3.16), we have

|

∫
S2

∫ 𝑅

−2𝑡
𝐴(𝑞, 𝜔; 𝜀) exp(

1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) · (𝜀 ln 𝑡 − 𝛿)) 𝑑𝑞𝑑𝑆𝜔 | � 𝜀−1𝑡−1/3+𝐶𝜀 . (6.2)

Proof. Fix a constant 𝛾 ∈ (0, 1). For each (𝑡, 𝑥) ∈ Ω ∩ {−2𝑡𝛾 < 𝑟 − 𝑡 < −𝑡𝛾/2}, we have two ways to
approximate 𝑍 𝐼𝑢. By (3.14) and Proposition 3.3, we have

𝑍 𝐼𝑢 = 𝑍 𝐼 �̂� +𝑂𝛾 (𝜀𝑡
−2+𝐶𝜀 〈𝑟 − 𝑡〉)

= 𝜀𝑟−1𝑈𝐼 (𝜀 ln 𝑡 − 𝛿, 𝑟 − 𝑡, 𝜔; 𝜀) +𝑂𝛾 (𝑡
−1−𝛾+𝐶𝜀 + 𝜀𝑡−2+𝛾+𝐶𝜀).

Here, we use |𝑟 − 𝑡 | ∼ 𝑡𝛾 . Meanwhile, by Theorem 1, we have

𝑍 𝐼𝑢 = −
𝜀

4𝜋

∫
S2
𝐴𝐼 (−𝑡 + 𝑥 · 𝜃, 𝜃; 𝜀) 𝑑𝑆𝜃 +𝑂 (〈𝑟 − 𝑡〉−2𝑡𝐶𝜀)

= −
𝜀

4𝜋

∫
S2
𝐴𝐼 (−𝑡 + 𝑥 · 𝜃, 𝜃; 𝜀) 𝑑𝑆𝜃 +𝑂 (𝑡−2𝛾+𝐶𝜀).

By combining these two estimates, we have

𝑈𝐼 (𝜀 ln 𝑡 − 𝛿, 𝑟 − 𝑡, 𝜔; 𝜀) +
𝑟

4𝜋

∫
S2
𝐴𝐼 (−𝑡 + 𝑥 · 𝜃, 𝜃; 𝜀) 𝑑𝑆𝜃

= 𝑂𝛾 (𝜀
−1𝑡1−2𝛾+𝐶𝜀 + 𝑡−1+𝛾+𝐶𝜀)

(6.3)

whenever (𝑡, 𝑥) ∈ Ω and −2𝑡𝛾 < 𝑟 − 𝑡 < −𝑡𝛾/2.
To continue, we let 𝑡 > 2𝑒𝛿/𝜀 and 𝑟 = 𝑡 − 𝑡2/3 in (6.3). Note that max{1− 2𝛾,−1+ 𝛾} from the power

of t in (6.3) is minimized at 𝛾 = 2/3. Moreover, we have

𝑟 − (𝑡 + 𝑒𝛿/𝜀)/2 − 2𝑅 = (𝑡 − 𝑒𝛿/𝜀)/2 − 𝑡2/3 − 2𝑅 > 𝑡/4 − 𝑡2/3 − 2𝑅 > 0,
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so {𝑡 > 2𝑒𝛿/𝜀 , 𝑟 = 𝑡 − 𝑡2/3} ⊂ Ω. This gives us

𝑈𝐼 (𝜀 ln 𝑡 − 𝛿,−𝑡2/3, 𝜔; 𝜀) +
𝑟

4𝜋

∫
S2
𝐴𝐼 (−𝑡 + 𝑟𝜔 · 𝜃, 𝜃; 𝜀) 𝑑𝑆𝜃 = 𝑂 (𝜀−1𝑡−1/3+𝐶𝜀).

Integrate both sides with respect to 𝜔 on S2, and we get∫
S2
𝑈𝐼 (𝜀 ln 𝑡 − 𝛿,−𝑡2/3, 𝜔; 𝜀) 𝑑𝑆𝜔 = −

𝑟

4𝜋

∫
S2×S2

𝐴𝐼 (−𝑡 + 𝑟𝜔 · 𝜃, 𝜃; 𝜀) 𝑑𝑆𝜔𝑑𝑆𝜃 +𝑂 (𝜀−1𝑡−1/3+𝐶𝜀)

= −
1
2

∫
S2

∫ −𝑡+𝑟

−𝑡−𝑟
𝐴𝐼 (𝜌, 𝜃; 𝜀) 𝑑𝜌𝑑𝑆𝜃 +𝑂 (𝜀−1𝑡−1/3+𝐶𝜀).

Note that ∫
S2
𝐴𝐼 (−𝑡 + 𝑟𝜔 · 𝜃, 𝜃; 𝜀) 𝑑𝑆𝜔 =

∫
S2
𝐴𝐼 (−𝑡 + 𝑟𝜔3, 𝜃; 𝜀) 𝑑𝑆𝜔

=
∫ 2𝜋

0

∫ 𝜋

0
𝐴𝐼 (−𝑡 + 𝑟 cos𝛼, 𝜃; 𝜀) sin𝛼 𝑑𝛼𝑑𝛽 = 2𝜋

∫ 1

−1
𝐴𝐼 (−𝑡 + 𝑟𝜏, 𝜃; 𝜀) 𝑑𝜏

= 2𝜋𝑟−1
∫ −𝑡+𝑟

−𝑡−𝑟
𝐴𝐼 (𝜌, 𝜃; 𝜀) 𝑑𝜌.

(6.4)

In the first step, we notice that the integral is invariant under rotation. In the second step, we write the
integral in the spherical coordinates. Moreover, recall from (3.29) that 2𝜕𝑞𝑈𝐼 + 𝐴𝐼 = 𝑂 (〈𝑞〉−2+𝐶𝜀𝑒𝐶𝑠),
so we have (recall that 𝑟 − 𝑡 = −𝑡2/3)∫

S2
𝑈𝐼 (𝜀 ln 𝑡 − 𝛿,−𝑡2/3, 𝜔; 𝜀) 𝑑𝑆𝜔

=
∫
S2

∫ −𝑡2/3

−𝑡−𝑟
𝜕𝑞𝑈𝐼 (𝜀 ln 𝑡 − 𝛿, 𝜌, 𝜃; 𝜀) 𝑑𝜌𝑑𝑆𝜃 +𝑂 (𝑡𝐶𝜀

∫ −𝑡2/3

−𝑡−𝑟
〈𝜌〉−2+𝐶𝜀 𝑑𝜌 + 𝜀−1𝑡−1/3+𝐶𝜀)

=
∫
S2
[𝑈𝐼 (𝜀 ln 𝑡 − 𝛿,−𝑡2/3, 𝜃; 𝜀) −𝑈𝐼 (𝜀 ln 𝑡 − 𝛿,−2𝑡 + 𝑡2/3, 𝜃; 𝜀)] 𝑑𝑆𝜃 +𝑂 (𝜀−1𝑡−1/3+𝐶𝜀).

It follows that∫
S2
𝑈𝐼 (𝜀 ln 𝑡 − 𝛿,−2𝑡 + 𝑡2/3, 𝜃; 𝜀) 𝑑𝑆𝜃 = 𝑂 (𝜀−1𝑡−1/3+𝐶𝜀), ∀𝑡 ≥ 2𝑒𝛿/𝜀 .

Finally, by (3.27), we have 𝜕𝑞𝑈𝐼 = 𝑂 (〈𝑞〉−1+𝐶𝜀𝑒𝐶𝑠). By the mean value theorem, we have

|𝑈𝐼 (𝜀 ln 𝑡 − 𝛿,−2𝑡 + 𝑡2/3, 𝜃; 𝜀) −𝑈𝐼 (𝜀 ln 𝑡 − 𝛿,−2𝑡, 𝜃; 𝜀) | � 𝑡−1+𝐶𝜀 · 𝑡2/3 � 𝑡−1/3+𝐶𝜀 . �

Remark 6.1.1. Let us compare (6.1) with the pointwise bounds for𝑈𝐼 obtained in Proposition 3.3. There
it was proved that for all (𝑠, 𝑞, 𝜔) ∈ [0,∞) × R × S2, we have𝑈𝐼 = 𝑂 (𝜀−1〈𝑞〉𝐶𝜀𝑒𝐶𝑠). Thus, we have

|𝑈𝐼 (𝜀 ln 𝑡 − 𝛿,−2𝑡, 𝜔; 𝜀) | � 𝜀−1𝑡𝐶𝜀 , ∀𝑡 ≥ 2𝑒𝛿/𝜀 , 𝜔 ∈ S2.

The estimate (6.1), however, indicates that

inf
𝜔∈S2

|𝑈𝐼 (𝜀 ln 𝑡 − 𝛿,−2𝑡, 𝜔; 𝜀) | � 𝜀−1𝑡−1/3+𝐶𝜀 , ∀𝑡 ≥ 2𝑒𝛿/𝜀 .
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6.2. Sufficient conditions for vanishing 𝐴

We can now prove Theorem 2.

Proposition 6.2. Suppose that the quasilinear wave equation (1.1) violates the null condition. That is,
we have 𝐺 (𝜔) � 0 on S2, or equivalently, 𝑔𝛼𝛽0 ≠ 0 for some 𝛼, 𝛽 = 0, 1, 2, 3. Fix (𝑢0, 𝑢1) ∈ 𝐶

∞
𝑐 (R3)

and 0 < 𝜀 � 1. Let u be the global 𝐶∞ solution to (1.1) with data (𝜀𝑢0, 𝜀𝑢1). Fix 𝛿 ∈ (0, 1) and let 𝐴
be the corresponding function defined by (3.16) in the asymptotic completeness result in Section 3.

Moreover, suppose that one of the following assumptions holds:

a) We have min(𝑞,𝜔) ∈R×S2 𝐴(𝑞, 𝜔; 𝜀) ≥ 0 or max(𝑞,𝜔) ∈R×S2 𝐴(𝑞, 𝜔; 𝜀) ≤ 0;
b) We have min𝜔∈S2 𝐺 (𝜔) ≥ 0 and min{𝐴, 0} ∈ 𝐿1

𝑞,𝜔 (R × S2), or we have max𝜔∈S2 𝐺 (𝜔) ≤ 0 and
max{𝐴, 0} ∈ 𝐿1

𝑞,𝜔 (R × S2);
c) Let 𝐶0 > 0 be a constant uniform in all 𝜀 � 1 such that

𝐶0 ≥ sup
(𝑞,𝜔) ∈R×S2

|
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) |.

Suppose that there exists a constant 𝐵0 > 𝐶0 that is also uniform in all 𝜀 � 1, such that

lim
𝑞→−∞

〈𝑞〉1+𝐵0 𝜀 sup
𝜔∈S2

|𝐴(𝑞, 𝜔; 𝜀) | = 0.

Then, as long as 𝜀 � 1 (depending on the constant 𝐵0 in part c)), we have 𝐴 ≡ 0 and thus 𝑢 ≡ 0.

To prove Proposition 6.2, we will first prove that if one of the assumptions a), b) and c) holds, then
we have 𝐴 ≡ 0. We will then show that 𝑢 ≡ 0 if 𝐴 ≡ 0.

6.2.1. The assumption a)15

Assume that min(𝑞,𝜔) ∈R×S2 𝐴(𝑞, 𝜔; 𝜀) ≥ 0 or max(𝑞,𝜔) ∈R×S2 𝐴(𝑞, 𝜔; 𝜀) ≤ 0. Now, we can rewrite (6.2)
as∫
S2

∫
R

1𝑞∈[−2𝑡 ,𝑅] · |𝐴(𝑞, 𝜔; 𝜀) | exp(
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) · (𝜀 ln 𝑡 − 𝛿)) 𝑑𝑞𝑑𝑆𝜔 � 𝜀−1𝑡−1/3+𝐶𝜀 , ∀𝑡 ≥ 2𝑒𝛿/𝜀 .

Here the integrand is nonnegative everywhere. Besides, we have

exp(
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) · (𝜀 ln 𝑡 − 𝛿)) ≥ exp(−𝐶 (𝜀 ln 𝑡 − 𝛿)) � 𝑡−𝐶𝜀 .

As a result, we have∫
S2

∫
R

1𝑞∈[−2𝑡 ,𝑅] · |𝐴(𝑞, 𝜔; 𝜀) | 𝑑𝑞𝑑𝑆𝜔 � 𝜀−1𝑡−1/3+𝐶𝜀 · 𝑡𝐶𝜀 , ∀𝑡 ≥ 2𝑒𝛿/𝜀 .

We send 𝑡 → ∞ and apply the monotone convergence theorem. As long as 𝜀 � 1, we have 𝑡−1/3+𝐶𝜀 ·

𝑡𝐶𝜀 ≤ 𝑡−1/6. This yields ∫
S2

∫
R

|𝐴(𝑞, 𝜔; 𝜀) | 𝑑𝑞𝑑𝑆𝜔 = 0

and thus 𝐴 = 0 almost everywhere. Since 𝐴 is continuous, we conclude that 𝐴 ≡ 0.

15Note that the violation of the null condition is not used at all in this proof. Thus, the same conclusion holds no matter whether
the null condition is satisfied or not.
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6.2.2. The assumption b)
Assume that min𝜔∈S2 𝐺 (𝜔) ≥ 0 and min{𝐴, 0} ∈ 𝐿1

𝑞,𝜔 (R × S2). Or, assume that max𝜔∈S2 𝐺 (𝜔) ≤ 0
and max{𝐴, 0} ∈ 𝐿1

𝑞,𝜔 (R × S2). We now set

O+ := {(𝑞, 𝜔) ∈ R × S2 : 𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) > 0},

O− := {(𝑞, 𝜔) ∈ R × S2 : 𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) < 0},
O0 := {(𝑞, 𝜔) ∈ R × S2 : 𝐺 (𝜔) = 0}.

Note that 𝐴 = 0 in (R × S2) \ (O+ ∪O− ∪O0) and that O+,O−,O0 are pairwise disjoint. Thus, we can
write the integral on the left-hand side of (6.2) as the sum of∫

O+

𝐴(𝑞, 𝜔; 𝜀) · 1𝑞∈[−2𝑡 ,𝑅] · exp(
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) · (𝜀 ln 𝑡 − 𝛿)) 𝑑𝑞𝑑𝑆𝜔 ,∫

O−

𝐴(𝑞, 𝜔; 𝜀) · 1𝑞∈[−2𝑡 ,𝑅] · exp(
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) · (𝜀 ln 𝑡 − 𝛿)) 𝑑𝑞𝑑𝑆𝜔 ,∫

O0

𝐴(𝑞, 𝜔; 𝜀) · 1𝑞∈[−2𝑡 ,𝑅] 𝑑𝑞𝑑𝑆𝜔 .

Since 𝐺 (𝜔) � 0 on S2, the set {𝜔 ∈ S2 : 𝐺 (𝜔) = 0} has surface measure 0. Thus, the last integral
equals zero.

If min𝜔∈S2 𝐺 (𝜔) ≥ 0, we have 𝐴|O+
> 0 and 𝐴|O−

< 0. If max𝜔∈S2 𝐺 (𝜔) ≤ 0, we have 𝐴|O−
> 0

and 𝐴|O+
< 0. Thus, by (6.2), we have for all 𝑡 ≥ 2𝑡 𝛿/𝜀

|

∫
O+

|𝐴| · 1𝑞∈[−2𝑡 ,𝑅] · exp(
1
2
𝐺 (𝜔)𝐴 · (𝜀 ln 𝑡 − 𝛿)) 𝑑𝑞𝑑𝑆𝜔

−

∫
O−

|𝐴| · 1𝑞∈[−2𝑡 ,𝑅] · exp(
1
2
𝐺 (𝜔)𝐴 · (𝜀 ln 𝑡 − 𝛿)) 𝑑𝑞𝑑𝑆𝜔 | � 𝜀−1𝑡−1/3+𝐶𝜀 .

Under the assumption b), we have 𝐴 ·1O−
= 𝐴 ·1𝐺 (𝜔)𝐴<0 ∈ 𝐿1

𝑞,𝜔 . Moreover, we have 1 ≥ exp( 1
2𝐺 (𝜔)𝐴 ·

(𝜀 ln 𝑡−𝛿)) → 0 as 𝑡 → ∞ in O−. Thus, by the Lebesgue dominated convergence theorem, we conclude
that ∫

O−

|𝐴| · 1𝑞∈[−2𝑡 ,𝑅] · exp(
1
2
𝐺 (𝜔)𝐴 · (𝜀 ln 𝑡 − 𝛿)) 𝑑𝑞𝑑𝑆𝜔 → 0, as 𝑡 → ∞.

As a result, we have∫
O+

|𝐴| · 1𝑞∈[−2𝑡 ,𝑅] · exp(
1
2
𝐺 (𝜔)𝐴 · (𝜀 ln 𝑡 − 𝛿)) 𝑑𝑞𝑑𝑆𝜔 → 0, as 𝑡 → ∞.

However, since 𝐺 (𝜔)𝐴 > 0 in O+, by the monotone convergence theorem, we have∫
O+

|𝐴| 𝑑𝑞𝑑𝑆𝜔 = lim
𝑡→∞

∫
O+

|𝐴| · 1𝑞∈[−2𝑡 ,𝑅] 𝑑𝑞𝑑𝑆𝜔

≤ lim
𝑡→∞

∫
O+

|𝐴| · 1𝑞∈[−2𝑡 ,𝑅] · exp(
1
2
𝐺 (𝜔)𝐴 · (𝜀 ln 𝑡 − 𝛿)) 𝑑𝑞𝑑𝑆𝜔 = 0.

It follows that 𝐴 = 0 almost everywhere in O+. But the definition of O+ implies that 𝐴 ≠ 0 in O+. Thus,
O+ has zero measure in R × S2. By (6.2) again, we have
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S2

∫
R

|𝐴| · 1𝑞∈[−2𝑡 ,𝑅] · exp(
1
2
𝐺 (𝜔)𝐴 · (𝜀 ln 𝑡 − 𝛿)) 𝑑𝑞𝑑𝑆𝜔

=
∫
O−

|𝐴| · 1𝑞∈[−2𝑡 ,𝑅] · exp(
1
2
𝐺 (𝜔)𝐴 · (𝜀 ln 𝑡 − 𝛿)) 𝑑𝑞𝑑𝑆𝜔 � 𝜀−1𝑡−1/3+𝐶𝜀 .

Following the proof in Section 6.2.1, we conclude that 𝐴 ≡ 0.

6.2.3. The assumption c)
Let 𝐶0 > 0 be a constant uniform in all 𝜀 � 1 such that

𝐶0 ≥ sup
(𝑞,𝜔) ∈R×S2

|
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) |.

Such a 𝐶0 exists because we have |𝐴| � 〈𝑞〉−1+𝐶𝜀 with an implicit constant uniform in 𝜀 � 1. Suppose
that there exists a constant 𝐵0 > 𝐶0 that is also uniform in all 𝜀 � 1, such that

lim
𝑞→−∞

〈𝑞〉1+𝐵0 𝜀 sup
𝜔∈S2

|𝐴(𝑞, 𝜔; 𝜀) | = 0.

Recall that 𝐴 is a continuous function and that 𝐴|𝑞≥𝑅 ≡ 0. From this limit, we have

|𝐴(𝑞, 𝜔; 𝜀) | �𝐵0 , 𝜀 〈𝑞〉−1−𝐵0 𝜀 , ∀(𝑞, 𝜔) ∈ R × S2. (6.5)

The implicit constant in (6.5) is allowed to depend on 𝜀. We remark that this implicit constant is not
important in our proof for part c).

We now derive a pointwise decay for u from (6.5). Recall that (5.4) with |𝐼 | = 0 yields

𝑢(𝑡, 𝑥; 𝜀) =
𝜀

2𝜋

∫
S2
𝐴(−𝑡 + 𝑥 · 𝜃, 𝜃; 𝜀) 𝑑𝑆𝜃 +𝑂 (〈𝑡 − |𝑥 |〉−2𝑡𝐶𝜀)

whenever 𝑡 ≥ (2𝑒𝛿/𝜀)1/3 and |𝑥 | < 𝑡.

Lemma 6.3. Fix 𝜈0 ∈ (1/2, 1). Then, for all (𝑡, 𝑥) ∈ R1+3 with 𝑡 ≥ (2𝑒𝛿/𝜀)1/3 and |𝑥 | ≤ 𝑡 − 𝑡𝜈0/2,
we have

|𝑢(𝑡, 𝑥) | �𝜀,𝐵0 ,𝜈0 𝑡
−1〈|𝑥 | − 𝑡〉−𝐵0 𝜀

as long as 𝜀 �𝐵0 ,𝜈0 1.

Proof. We first estimate the spherical integral of 𝐴 above. By (6.5), we have∫
S2
|𝐴(−𝑡 + 𝑥 · 𝜃, 𝜃; 𝜀) | 𝑑𝑆𝜃 �𝐵0 , 𝜀

∫
S2
〈−𝑡 + 𝑥 · 𝜃〉−1−𝐵0 𝜀 𝑑𝑆𝜃 � |𝑥 |−1

∫ −𝑡+|𝑥 |

−𝑡−|𝑥 |
〈𝜌〉−1−𝐵0 𝜀 𝑑𝜌.

To obtain the last estimate, we express the spherical integral in the spherical coordinates. A similar
computation has been done in (6.4). If |𝑥 | ≤ 𝑡/2, we use the mean value theorem to show that the right side
is𝑂 (〈|𝑥 |−𝑡〉−1−𝐵0 𝜀) = 𝑂 (𝑡−1−𝐵0 𝜀). If 𝑡/2 ≤ |𝑥 | ≤ 𝑡−𝑡𝜈0/2, the right side is𝑂 (𝑡−1 · (𝐵0𝜀)

−1〈|𝑥 |−𝑡〉−𝐵0 𝜀).
In summary, we have ∫

S2
|𝐴(−𝑡 + 𝑥 · 𝜃, 𝜃; 𝜀) | 𝑑𝑆𝜃 �𝐵0 , 𝜀 𝑡

−1〈|𝑥 | − 𝑡〉−𝐵0 𝜀 .

This estimate does not involve the parameter 𝜈0.
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It remains to estimate the remainder term𝑂 (〈𝑟 − 𝑡〉−2𝑡𝐶𝜀). For all 𝑡 ≥ (2𝑒𝛿/𝜀)1/3 and |𝑥 | ≤ 𝑡 − 𝑡𝜈0/2,
we have 〈𝑟 − 𝑡〉 ≥ 𝑡𝜈0/2 and thus

〈𝑟 − 𝑡〉−2𝑡𝐶𝜀 ≤ 〈𝑟 − 𝑡〉−𝐵0 𝜀𝑡𝐶𝜀 · (𝑡𝜈0/2)−2+𝐵0𝜀 � 〈𝑟 − 𝑡〉−𝐵0 𝜀𝑡−2𝜈0+(𝐵0+𝐶) 𝜀 ≤ 〈𝑟 − 𝑡〉−𝐵0 𝜀𝑡−1.

The last estimate holds because 2𝜈0 > 1. We thus have −2𝜈0 + (𝐵0 + 𝐶)𝜀 ≤ −1 as long as 𝜀 �𝐵0 ,𝜈0 1.
This finishes our proof. �

In addition to (5.4), we have a different way to approximate u. That is, we have (3.14) in Section 3.4.
We also recall that �̃� = �̂� = 𝜀𝑟−1𝑈. The bound in Lemma 6.3 then implies a bound for𝑈.

Lemma 6.4. Fix 𝜈0 ∈ (1/2, 1). As long as 𝜀 �𝐵0 ,𝜈0 1, we have

|𝑈 (𝑠, 𝑞, 𝜔; 𝜀) | �𝜀,𝐵0 ,𝜈0 〈𝑞〉−𝐵0 𝜀 , ∀𝑠 ≥ 𝜀 ln 2, 𝜔 ∈ S2, −𝑞𝑒−
𝜈0 (𝑠+𝛿)

𝜀 ∈ [1/2, 2] .

The last condition for q is equivalent to 𝑞 ∈ [−2𝑡𝜈0 ,−𝑡𝜈0/2] with 𝑡 = 𝑒 (𝑠+𝛿)/𝜀 .

Proof. By (3.14), we have

|𝑢(𝑡, 𝑥; 𝜀) − 𝜀 |𝑥 |−1𝑈 (𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |; 𝜀) | �𝜈0 𝜀𝑡
−2+𝐶𝜀 〈𝑡 − |𝑥 |〉

�𝜈0 𝜀𝑡
−2+(1+𝐵0𝜀)𝜈+𝐶𝜀 〈𝑡 − |𝑥 |〉−𝐵0 𝜀 �𝜈 𝜀𝑡−1〈𝑡 − |𝑥 |〉−𝐵0 𝜀

for all (𝑡, 𝑥) ∈ Ω ∩ {|𝑟 − 𝑡 | ≤ 2𝑡𝜈0 }. Since 𝜈0 < 1, we have −2 + (1 + 𝐵0𝜀)𝜈0 +𝐶𝜀 < −1 for 𝜀 �𝜈0 ,𝐵0 1.
By Lemma 6.3, for all (𝑡, 𝑥) ∈ Ω ∩ {−2𝑡𝜈0 ≤ 𝑟 − 𝑡 ≤ −𝑡𝜈0/2}, as long as 𝜀 �𝐵0 ,𝜈0 1, we have

|𝑈 (𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |; 𝜀) | �𝜈0 |𝜀−1𝑟𝑢 | + 𝜀−1𝑟 · 𝜀𝑡−1〈𝑡 − |𝑥 |〉−𝐵0 𝜀 �𝜀,𝐵0 ,𝜈0 〈𝑡 − |𝑥 |〉−𝐵0 𝜀 .

Moreover, in the proof of Lemma 3.5, we have shown that for all (𝑡, 𝑥) ∈ Ω∩{−2𝑡𝜈0 ≤ |𝑥 | − 𝑡 ≤ −𝑡𝜈0/2},

|𝑈 (𝜀 ln 𝑡 − 𝛿, 𝑞(𝑡, 𝑥; 𝜀), 𝑥/|𝑥 |; 𝜀) −𝑈 (𝜀 ln 𝑡 − 𝛿, |𝑥 | − 𝑡, 𝑥/|𝑥 |; 𝜀) |

� (1 + ln〈|𝑥 | − 𝑡〉)〈|𝑥 | − 𝑡〉−1𝑡𝐶𝜀 � 〈𝑡 − |𝑥 |〉−𝐵0 𝜀 · 𝜀−1〈|𝑥 | − 𝑡〉−1+(𝐵0+𝐶) 𝜀𝑡𝐶𝜀

�𝜀,𝐵0 ,𝜈0 〈𝑡 − |𝑥 |〉−𝐵0 𝜀 · (𝑡𝜈0/2)−1+(𝐵0+𝐶) 𝜀𝑡𝐶𝜀 �𝜀,𝐵0 ,𝜈0 〈𝑡 − |𝑥 |〉−𝐵0 𝜀 .

In the last step, we use 𝜈0 > 1/2 and choose 𝜀 �𝜈0 ,𝐵0 1. In summary, we have

|𝑈 (𝜀 ln 𝑡 − 𝛿, |𝑥 | − 𝑡, 𝑥/|𝑥 |; 𝜀) | �𝜀,𝐵0 ,𝜈0 〈𝑡 − |𝑥 |〉−𝐵0 𝜀

in Ω ∩ {−2𝑡𝜈0 ≤ |𝑥 | − 𝑡 ≤ −𝑡𝜈0/2}.
Finally, we notice that

{𝑡 ≥ 2𝑒𝛿/𝜀 ,−2𝑡𝜈0 ≤ 𝑟 − 𝑡 ≤ −𝑡𝜈0/2} ⊂ Ω ∩ {−2𝑡𝜈0 ≤ 𝑟 − 𝑡 ≤ −𝑡𝜈0/2}.

In fact, if 𝑡 ≥ 2𝑒𝛿/𝜀 and −2𝑡𝜈0 ≤ 𝑟 − 𝑡 ≤ −𝑡𝜈0/2, then

𝑟 −
𝑡 + 𝑒𝛿/𝜀

2
− 2𝑅 = 𝑟 − 𝑡 +

𝑡 − 𝑒𝛿/𝜀

2
− 2𝑅 ≥

𝑡

4
− (2𝑡𝜈0 + 2𝑅) > 0.

Thus, we have (𝑡, 𝑥) ∈ Ω by the definition (3.2) of Ω. This finishes the proof. �

We can now show that 𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) = 0 everywhere. The value of 𝜈0 in Lemmas 6.3 and 6.4 will
be chosen in the proof of the next lemma.

Lemma 6.5. As long as 𝜀 �𝐵0 1, we have 𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) = 0 for all (𝑞, 𝜔) ∈ R × S2.
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Proof. Because of the finite speed of propagation, we only need to prove this lemma for 𝑞 ≤ 𝑅. There
is nothing to prove when 𝐺 (𝜔) = 0, so let us fix 𝜔 ∈ S2 so that 𝐺 (𝜔) ≠ 0.

Since 𝐵0 > 𝐶0, we choose 𝜈0 ∈ (1/2, 1), depending only on 𝐵0 and 𝐶0 but not on 𝜀, such that
𝜈0𝐵0 > 𝐶0. We now apply Lemmas 6.3 and 6.4 with this choice of 𝜈0. This gives us a bound for𝑈; see
Lemma 6.4.

We first show that 𝐺𝐴 ≤ 0 everywhere. Set

𝐼+ := {𝑞 ≤ 𝑅 : 𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) > 0}, 𝐼− := {𝑞 ≤ 𝑅 : 𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) < 0}.

Note that 𝐴 ≡ 0 on (−∞, 𝑅] \ (𝐼+ ∪ 𝐼−). By Lemma 6.4 (with 𝑠 = 𝜀 ln 𝑡 − 𝛿 and 𝑞 = −𝑡𝜈0 ), we have����∫ 𝑅

−𝑡𝜈0
𝐴(𝑞, 𝜔; 𝜀) exp(

1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀)𝑠) 𝑑𝑞

���� = |𝑈 (𝑠,−𝑡𝜈0 , 𝜔; 𝜀) | �𝜀,𝐵0 ,𝜈0 𝑡
−𝜈0𝐵0 𝜀 , ∀𝑡 ≥ 2𝑒𝛿/𝜀 .

(6.6)

The left side here can be written as | |I+| − |I−||, where

I± = I±(𝑡, 𝜔) =
∫
𝐼±∩[−𝑡

𝜈0 ,𝑅]

𝐴(𝑞, 𝜔; 𝜀) exp(
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀)𝑠) 𝑑𝑞.

To see this, we notice that the sign of 𝐴 remains unchanged in 𝐼+ (or 𝐼−). In other words, we have

lim
𝑡→∞

||I+| − |I−|| = 0.

In addition, since 𝐺𝐴 < 0 in 𝐼−, we have lim𝑡→∞ 𝐴 exp( 1
2𝐺𝐴𝑠) = 0 whenever 𝑞 ∈ 𝐼−. Moreover,

by (6.5), we have ∫
R

|𝐴(𝑞, 𝜔; 𝜀) | 𝑑𝑞 �𝜀,𝐵0

∫ 𝑅

−∞

〈𝑞〉−1−𝐵0 𝜀 𝑑𝑞 �𝜀,𝐵0 1.

As a result, we have

|1𝑞∈𝐼−∩[−𝑡𝜈0 ,𝑅] · 𝐴(𝑞, 𝜔; 𝜀) exp(
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀)𝑠) | ≤ |𝐴(𝑞, 𝜔; 𝜀) | ∈ 𝐿1

𝑞 (R).

By the Lebesgue dominated convergence theorem, we conclude that lim𝑡→∞ I− = 0. This also forces
lim𝑡→∞ I+ = 0. However, since 𝐺𝐴𝑠 > 0 and since the sign of 𝐴(·, 𝜔; 𝜀) remains unchanged on 𝐼+, we
have ∫

𝐼+∩[−𝑡
𝜈0 ,𝑅]

|𝐴(𝑞, 𝜔; 𝜀) | 𝑑𝑞 ≤ |I+|.

By sending 𝑡 → ∞ on both sides and applying the monotone convergence theorem, we conclude that∫
𝐼+

|𝐴(𝑞, 𝜔; 𝜀) | 𝑑𝑞 ≤ lim
𝑡→∞

|I+| = 0 =⇒ 𝐴|𝐼+ ≡ 0.

This forces 𝐼+ = ∅. Thus, 𝐺𝐴 ≤ 0 everywhere.
Now, since I+ = 0, by (6.6) we have |I−| �𝜀,𝐵0 𝑡

−𝜈0𝐵0 𝜀 . Since

𝐶0 ≥ sup
(𝑞,𝜔) ∈R×S2

|
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) |,
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we have ∫
𝐼−∩[−𝑡

𝜈0 ,𝑅]

|𝐴(𝑞, 𝜔; 𝜀) | 𝑑𝑞 ≤ |I−| · sup
(𝑞,𝜔) ∈R×S2

exp(−
1
2
𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀)𝑠)

�𝜀,𝐵0 𝑡
−𝜈0𝐵0 𝜀 · exp(𝐶0 (𝜀 ln 𝑡 − 𝛿)) �𝜀,𝐵0 𝑡

(−𝜈0𝐵0+𝐶0) 𝜀 .

The choice of 𝜈0 implies that 𝜈0𝐵0 > 𝐶0, so we have
∫
𝐼−
|𝐴| 𝑑𝑞 = 0 by sending 𝑡 → ∞. Thus, we have

𝐴|𝐼− ≡ 0. �

Finally, we show that if 𝐺 (𝜔)𝐴(𝑞, 𝜔; 𝜀) = 0 everywhere and if 𝐺 (𝜔) � 0 on S2, then 𝐴 ≡ 0. In fact,
in Section 6.2.2, we have mentioned that the set {𝜔 ∈ S2 : 𝐺 (𝜔) = 0} has surface measure zero. In
other words, we have 𝐴 = 0 almost everywhere on S2. We thus conclude that 𝐴 ≡ 0 by its continuity.

6.2.4. The final step
To end the proof of Proposition 6.2, we show that if 𝐴 ≡ 0, then 𝑢 ≡ 0.

Suppose that 𝐴 ≡ 0. We first claim that ‖𝜕𝑢(𝑡)‖𝐿2 (R3) � 𝜀𝑡
−1/2+𝐶𝜀 for all 𝑡 ≥ 2𝑒𝛿/𝜀 . Here, we want

to apply Lemma 3.1 instead of (3.14), because Lemma 3.1 holds in the whole region Ω. By (3.16), we
have

𝐴(𝑞, 𝜔) = 𝐴(𝐹 (𝑞, 𝜔), 𝜔) = 0, ∀(𝑞, 𝜔) ∈ R × S2.

Recall that 𝐴1𝐴2 = −2𝐴 and that 𝐴1 < −1. Thus, we also have 𝐴2 ≡ 0 and thus 𝑈 ≡ 0. Here, we recall
the definitions of 𝐴, 𝐴1, 𝐴2,𝑈 in (3.5) and (3.6). By Lemma 3.1, we have∑

|𝐼 | ≤1
|𝑍 𝐼𝑢 | � 𝜀𝑡−2+𝐶𝜀 〈𝑟 − 𝑡〉, ∀(𝑡, 𝑥) ∈ Ω.

Thus, we have |𝜕𝑢 | � 𝜀𝑡−2+𝐶𝜀 for all (𝑡, 𝑥) ∈ Ω by (2.6). Moreover, whenever 𝑡 ≥ 2𝑒𝛿/𝜀 but (𝑡, 𝑥) ∉ Ω,
we have |𝑥 | ≤ 1

2 (𝑡 + 𝑒
𝛿/𝜀) + 2𝑅 ≤ 3𝑡/4 + 2𝑅 ≤ 7𝑡/8. Since 𝑍 𝐼𝑢 = 𝑂 (𝜀𝑡−1+𝐶𝜀) by (3.1), we have

|𝜕𝑢 | � 〈𝑟 − 𝑡〉−1 |𝑍𝑢 | � 𝑡−1 · 𝜀𝑡−1+𝐶𝜀 � 𝜀𝑡−2+𝐶𝜀 , 𝑡 ≥ 2𝑒𝛿/𝜀 , (𝑡, 𝑥) ∉ Ω.

In summary, we have |𝜕𝑢 | � 𝜀𝑡−2+𝐶𝜀 for all 𝑡 ≥ 2𝑒𝛿/𝜀 and all 𝑥 ∈ R3. Since 𝑢 |𝑟−𝑡≥𝑅 ≡ 0, we conclude
that

‖𝜕𝑢(𝑡)‖𝐿2 (R3) � 𝜀𝑡
−2+𝐶𝜀 · |𝐵(0, 𝑡 + 𝑅) |1/2 � 𝜀𝑡−1/2+𝐶𝜀 , ∀𝑡 ≥ 2𝑒𝛿/𝜀 .

This finishes the proof of our claim.
Now, we apply the standard energy estimate from, for example, [67, Proposition I.2.1]. Since u is a

global solution to (1.1), for each 0 ≤ 𝑡1 < 𝑡2, we have

‖𝜕𝑢(𝑡1)‖𝐿2 � ‖𝜕𝑢(𝑡2)‖𝐿2 exp(
∫ 𝑡2

𝑡1

‖𝜕 (𝑔∗∗(𝑢)) (𝜏)‖𝐿∞ 𝑑𝜏). (6.7)

Note that there is no inhomogeneous term in (1.1). Moreover, the energy estimate in [67, Proposition
I.2.1] is forward in time while (6.7) is backward in time. To handle this difference, we simply apply the
forward energy estimate to 𝑤(𝑡, 𝑥) := 𝑢(𝑡2 − 𝑡,−𝑥) which still solves (1.1).

By the chain rule and the bound |𝜕𝑢 | � 𝜀〈𝑡〉−1 for all 𝑡 ≥ 0, we have

exp(
∫ 𝑡2

𝑡1

‖𝜕 (𝑔∗∗(𝑢)) (𝜏)‖𝐿∞ 𝑑𝜏) � exp(
∫ 𝑡2

𝑡1

𝐶𝜀(1 + 𝜏)−1 𝑑𝜏) � (
𝑡2 + 1
𝑡1 + 1

)𝐶𝜀 .
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And since ‖𝜕𝑢(𝑡)‖𝐿2 � 𝜀𝑡−1/2+𝐶𝜀 for all 𝑡 ≥ 2𝑒𝛿/𝜀 , we have

‖𝜕𝑢(𝑡)‖𝐿2 � ‖𝜕𝑢(𝑇)‖𝐿2 · (
1 + 𝑇

1 + 𝑡
)𝐶𝜀 � 𝜀𝑇−1/2+𝐶𝜀 , ∀0 ≤ 𝑡 ≤ 𝑇, 𝑇 > 2𝑒𝛿/𝜀 .

The left side is independent of T. Thus, by choosing 𝜀 � 1 and sending 𝑇 → ∞, we conclude that
𝜕𝑢(𝑡) ≡ 0 for each 𝑡 ≥ 0. Since 𝑢(𝑡, ·) has a compact support, we have 𝑢 ≡ 0 for all (𝑡, 𝑥) ∈ [0,∞) ×R3.

6.3. Corollaries of Proposition 6.2

We finally prove Theorem 3. We will prove a slightly stronger version of this theorem.

Proposition 6.6. Suppose that the quasilinear wave equation (1.1) violates the null condition. Fix
(𝑢0, 𝑢1) ∈ 𝐶

∞
𝑐 (R3) and 0 < 𝜀 � 1. Let u be the 𝐶∞ global solution to (1.1) with initial data (𝜀𝑢0, 𝜀𝑢1).

Also fix 𝛿 ∈ (0, 1). Then, there exist constants 𝐵0, 𝐵1 > 0 depending on 𝑢0, 𝑢1, 𝛿 (and not on 𝜀), such
that the following conclusion holds. Suppose that one of the following assumptions holds:

i) Fix 0 < 𝜈0 < 1. For all 𝑡 ≥ 𝑒𝛿/𝜀 and 𝜔 ∈ S2, we have

| (𝑢𝑡 − 𝑢𝑟 ) (𝑡, (𝑡 − 𝑡
𝜈0)𝜔) | � 𝜀𝑡−1〈𝑡𝜈0〉−1−𝐵0 𝜀 ∼ 𝜀𝑡−1−𝜈0−𝜈0𝐵0 𝜀; (6.8)

ii) Fix 0 < 𝜈0 < 1. For all 𝑡 ≥ 𝑒𝛿/𝜀 and all 𝑥 ∈ R3 with |𝑥 | ∈ [𝑡 − 2𝑡𝜈0 , 𝑡 − 𝑡𝜈0/2], we have

|𝑢(𝑡, 𝑥) | � 𝜀𝑡−1−(𝜈0𝐵0+𝐵1) 𝜀; (6.9)

iii) Fix 0 < 𝜈0 < 1. For all 𝑡 ≥ 𝑒𝛿/𝜀 and 𝜔 ∈ S2, we have∑
1≤𝑖< 𝑗≤3

| (𝜕𝑡 − 𝜕𝑟 )Ω𝑖 𝑗𝑢(𝑡, (𝑡 − 𝑡
𝜈0)𝜔) | � 𝜀𝑡−1〈𝑡𝜈0〉−1−𝐵0 𝜀 ∼ 𝜀𝑡−1−𝜈0−𝜈0𝐵0 𝜀 . (6.10)

Moreover, we have

|𝑢(𝑡, 0) | � 𝜀𝑡−1−𝐵0 𝜀 ∀𝑡 ≥ 𝑒𝛿/𝜀 . (6.11)

Then, as long as 𝜀 � 1 which may depend on the constants in each of the assumptions, we have 𝑢 ≡ 0.

In its proof, we will apply part c) of Proposition 6.2. Let 𝐶0 > 0 be the constant in part c) of
Proposition 6.2. Let the 𝐵0 in the statement of Proposition 6.6 be an arbitrary constant larger than 𝐶0
(e.g., 𝐵0 = 𝐶0 + 1). Following Section 3, we obtain a corresponding function 𝐴. It suffices to prove that

|𝐴(𝑞, 𝜔; 𝜀) | �𝜀,𝐵0 〈𝑞〉−1−𝐵0 𝜀 , ∀(𝑞, 𝜔) ∈ R × S2.

6.3.1. The assumption i)
Lemma 6.7. Fix 0 < 𝜈0 < 1. Suppose that

| (𝑢𝑡 − 𝑢𝑟 ) (𝑡, (𝑡 − 𝑡
𝜈0)𝜔) | � 𝜀𝑡−1−𝜈0−𝜈0𝐵0 𝜀 〈𝑟 (𝑡, 𝜔) − 𝑡〉−1−𝐵0 𝜀 , ∀𝑡 ≥ 𝑒𝛿/𝜀 , 𝜔 ∈ S2.

Then, we have

|𝐴(𝑞, 𝜔; 𝜀) | �𝐵0 ,𝜈0 〈𝑞〉−1−𝐵0 𝜀 , ∀(𝑞, 𝜔) ∈ R × S2.
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Proof. It is easy to check that (𝑡, (𝑡 − 𝑡𝜈0)𝜔) ∈ Ω ∩ {|𝑟 − 𝑡 | � 𝑡𝜈0 } whenever 𝑡 ≥ 𝑒𝛿/𝜀 . Thus, by (3.14),
we have

|𝜕 (𝑢 − �̂�) (𝑡, (𝑡 − 𝑡𝜈0)𝜔; 𝜀) | � 〈𝑡𝜈0〉−1 |𝑍 (𝑢 − �̂�) (𝑡, (𝑡 − 𝑡𝜈0)𝜔; 𝜀) |
�𝜈0 𝜀𝑡

−2+𝐶𝜀 � 𝜀𝑡−1−𝜈0−𝜈0𝐵0 𝜀 .

In the last estimate, we use −2 + 𝐶𝜀 < −1 − 𝜈0 − 𝜈0𝐵0𝜀 as long as 𝜀 �𝜈0 ,𝐵0 1. We thus have

| (𝜕𝑡 − 𝜕𝑟 )�̂�(𝑡, (𝑡 − 𝑡
𝜈0)𝜔; 𝜀) | � 𝜀𝑡−1−𝜈0−𝜈0𝐵0 𝜀 .

By (3.24) in Proposition 3.3, we also have

(𝜕𝑡 − 𝜕𝑟 )�̂�(𝑡, (𝑡 − 𝑡
𝜈0)𝜔; 𝜀)

= −2𝜀(𝑡 − 𝑡𝜈0)−1𝐴(−𝑡𝜈0 , 𝜔; 𝜀) +𝑂 (𝜀(1 + ln〈𝑡𝜈0〉)〈𝑡𝜈0〉−2𝑡−1+𝐶𝜀 + 𝜀𝑡−2+𝐶𝜀)

= −2𝜀(𝑡 − 𝑡𝜈0)−1𝐴(−𝑡𝜈0 , 𝜔; 𝜀) +𝑂 (𝜀𝑡−1−𝜈0−𝜈0𝐵0 𝜀).

Previously, we have proved that 𝜀𝑡−2+𝐶𝜀 � 𝜀𝑡−1〈𝑟 (𝑡, 𝜔) − 𝑡〉−1−𝐵0 𝜀 . Besides, we have 𝜀(1 +

ln〈𝑡𝜈0〉)〈𝑡𝜈0〉−2𝑡−1+𝐶𝜀 �𝜈0 𝜀𝑡
𝜈0/2−2𝜈0−1+𝐶𝜀 ≤ 𝜀𝑡−1−𝜈0−𝜈0𝐵0 𝜀 . In summary, we have

|𝐴(−𝑡𝜈0 , 𝜔; 𝜀) | � 𝜀−1 (𝑡 − 𝑡𝜈0) · 𝜀𝑡−1−𝜈0−𝜈0𝐵0 𝜀 � 〈𝑡𝜈0〉−1−𝐵0 𝜀 .

This estimate holds for all 𝑡 ≥ 𝑒𝛿/𝜀 and 𝜔 ∈ S2. Thus, we have

|𝐴(𝑞, 𝜔; 𝜀) | � 〈𝑞〉−1−𝐵0 𝜀 , ∀𝑞 ≤ −𝑒𝜈0 𝛿/𝜀 , 𝜔 ∈ S2.

Recall that 𝐴|𝑞≤𝑅 ≡ 0. Besides, whenever 𝑞 ∈ [−𝑒𝜈0 𝛿/𝜀 , 𝑅], we have

|𝐴| � 〈𝑞〉−1+𝐶𝜀 � 〈𝑞〉−1−𝐵0 𝜀 · 〈𝑒𝜈0 𝛿/𝜀〉 (𝐵0+𝐶) 𝜀 �𝐵0 〈𝑞〉−1−𝐵0 𝜀 .

This finishes the proof. �

6.3.2. The assumption ii)
Assuming (6.9), we will prove that (6.8) holds. Let 𝐵1 > 1 be a constant to be chosen. By taking
𝑞 = −𝑡𝜈0 and 𝑞 = −𝑡𝜈0 − 𝑡𝜈0−𝐵1 𝜀 in (6.9), we obtain

|𝑢(𝑡, (𝑡 − 𝑡𝜈0)𝜔) − 𝑢(𝑡, (𝑡 − 𝑡𝜈0 − 𝑡𝜈0−𝐵1 𝜀)𝜔) | � 𝜀𝑡−1−(𝜈0𝐵0+𝐵1) 𝜀 = 𝜀𝑡−1−𝜈0−𝜈0𝐵0 𝜀 · 𝑡𝜈0−𝐵1 𝜀 .

By the mean value theorem, there exists 𝑏0 ∈ (0, 1) such that

|𝑢𝑟 (𝑡, (𝑡 − 𝑡
𝜈0 − 𝑏0𝑡

𝜈0−𝐵1 𝜀)𝜔) | � 𝜀𝑡−1−𝜈0−𝜈0𝐵0 𝜀 .

Moreover, we notice that

|𝑢𝑟𝑟 (𝑡, 𝑥) | � |𝜕2𝑢 | + 𝑟−1 |𝜕𝑢 | � 𝜀𝑡−1+𝐶𝜀 〈|𝑥 | − 𝑡〉−2, ∀𝑡 ≥ 1, |𝑥 |/𝑡 ∈ [1/2, 2] .

It follows that

|𝑢𝑟 (𝑡, (𝑡 − 𝑡
𝜈0)𝜔) | � |𝑢𝑟 (𝑡, (𝑡 − 𝑡

𝜈0 − 𝑏0𝑡
𝜈0−𝐵1 𝜀)𝜔) | +

∫ 𝑡𝜈0+𝑏0𝑡
𝜈0−𝐵1 𝜀

𝑡𝜈0
|𝑢𝑟𝑟 (𝑡, (𝑡 − 𝜌)𝜔) | 𝑑𝜌

� 𝜀𝑡−1−𝜈0−𝜈0𝐵0 𝜀 +

∫ 𝑡𝜈0+𝑏0𝑡
𝜈0−𝐵1 𝜀

𝑡𝜈0
𝜀𝑡−1+𝐶𝜀 〈𝜌〉−2 𝑑𝜌

� 𝜀𝑡−1−𝜈0−𝜈0𝐵0 𝜀 + 𝜀𝑡−1+𝐶𝜀 · 𝑡𝜈0−𝐵1 𝜀 · 𝑡−2𝜈0 � 𝜀𝑡−1−𝜈0−𝜈0𝐵0 𝜀 + 𝜀𝑡−1−𝜈0−(𝐵1−𝐶) 𝜀 .
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To estimate the integral in the second row, we notice that 〈𝜌〉−2 ∼ 𝑡−2𝜈0 . Now, by choosing 𝐵1 such that
𝐵1 ≥ 𝐵0 +𝐶, we conclude that 𝑢𝑟 (𝑡, (𝑡 − 𝑡𝜈0)𝜔) = 𝑂 (𝜀𝑡−1−𝜈0−𝜈0𝐵0 𝜀). And since 𝑢𝑡 + 𝑢𝑟 = 𝑂 (𝜀𝑡−2+𝐶𝜀),
we obtain (6.8).

6.3.3. The assumption iii)
Lemma 6.8. Fix 0 < 𝜈0 < 1. Suppose that∑

1≤𝑖< 𝑗≤3
| (𝜕𝑡 − 𝜕𝑟 )Ω𝑖 𝑗𝑢(𝑡, (𝑡 − 𝑡

𝜈0)𝜔) | � 𝜀𝑡−1〈𝑡𝜈0〉−1−𝐵0 𝜀 ∼ 𝜀𝑡−1−𝜈0−𝜈0𝐵0 𝜀 , ∀𝑡 ≥ 𝑒𝛿/𝜀 , 𝜔 ∈ S2.

Then, we have∑
1≤𝑖< 𝑗≤3

| (𝜔𝑖𝜕𝜔 𝑗 − 𝜔 𝑗𝜕𝜔𝑖 )𝐴(𝑞, 𝜔; 𝜀) | �𝐵0 ,𝜈0 〈𝑞〉−1−𝐵0 𝜀 , ∀(𝑞, 𝜔) ∈ R × S2.

Proof. By following the proof in Lemma 6.7, we first obtain∑
1≤𝑖< 𝑗≤3

| (𝜕𝑡 − 𝜕𝑟 )Ω𝑖 𝑗 �̂�(𝑡, (𝑡 − 𝑡
𝜈0)𝜔; 𝜀) | � 𝜀𝑡−1−𝜈0−𝜈0𝐵0 𝜀 .

If we chose a multiindex I such that 𝑍 𝐼 = Ω𝑖 𝑗 , then by (3.26), we have 𝐴𝐼 = −2(𝜔𝑖𝜕𝜔 𝑗 − 𝜔 𝑗𝜕𝜔𝑖 )𝐴.
By (3.24) in Proposition 3.3, we thus have

(𝜕𝑡 − 𝜕𝑟 )Ω𝑖 𝑗 �̂�(𝑡, (𝑡 − 𝑡
𝜈0)𝜔; 𝜀)

= −2𝜀(𝑡 − 𝑡𝜈0)−1(𝜔𝑖𝜕𝜔 𝑗 − 𝜔 𝑗𝜕𝜔𝑖 )𝐴(−𝑡
𝜈0 , 𝜔; 𝜀) +𝑂 (𝜀(1 + ln〈𝑡𝜈0〉)〈𝑡𝜈0〉−2𝑡−1+𝐶𝜀 + 𝜀𝑡−2+𝐶𝜀)

= −2𝜀(𝑡 − 𝑡𝜈0)−1(𝜔𝑖𝜕𝜔 𝑗 − 𝜔 𝑗𝜕𝜔𝑖 )𝐴(−𝑡
𝜈0 , 𝜔; 𝜀) +𝑂 (𝜀𝑡−1−𝜈0−𝜈0𝐵0 𝜀).

The remaining proof is the same as that of Lemma 6.7. �

By (6.11) and (5.4) with |𝐼 | = 0, we have

|

∫
S2
𝐴(−𝑡, 𝜃; 𝜀) 𝑑𝑆𝜃 | � 𝜀−1𝑡−2+𝐶𝜀 + 𝑡−1−𝐵0 𝜀 � 𝑡−1−𝐵0 𝜀 ∀𝑡 ≥ 𝑒𝛿/𝜀 .

Thus, for all 𝑡 ≥ 𝑒𝛿/𝜀 and 𝜔 ∈ S2, we have

|𝐴(−𝑡, 𝜔; 𝜀) | ≤ |𝐴(−𝑡, 𝜔; 𝜀) −
1

4𝜋

∫
S2
𝐴(−𝑡, 𝜃; 𝜀) 𝑑𝑆𝜃 | +

1
4𝜋

|

∫
S2
𝐴(−𝑡, 𝜃; 𝜀) 𝑑𝑆𝜃 |

�
∫
S2
|𝐴(−𝑡, 𝜔; 𝜀) − 𝐴(−𝑡, 𝜃; 𝜀) | 𝑑𝑆𝜃 + 𝑡−1−𝐵0 𝜀 �𝐵0 ,𝜈0 𝑡

−1−𝐵0𝜀 .

In the last estimate, we apply Lemma 6.8. It follows that

|𝐴(𝑞, 𝜔; 𝜀) | � 〈𝑞〉−1−𝐵0 𝜀 , 𝑞 ≤ −𝑒𝛿/𝜀 , 𝜔 ∈ S2.

Using 𝐴 = 𝑂 (〈𝑞〉−1+𝐶𝜀) and 𝐴|𝑞≥𝑅 ≡ 0, we can once again prove |𝐴(𝑞, 𝜔; 𝜀) | �𝐵0 〈𝑞〉−1−𝐵0 𝜀 for all
(𝑞, 𝜔).
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