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STABILITY OF GELFAND-KIRILLOV DIMENSION FOR
RINGS WITH THE STRONG SECOND LAYER CONDITION

by T. H. LENAGAN
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We study the influence of the link structure of the prime spectrum of a Noetherian ring on the representation
theory of the ring in the case that the ring satisfies the strong second layer condition and has exact integer
Gelfand-Kirillov dimension. In particular, we show that Jategaonkar's density condition is satisfied and that
the growth of an injective module is controlled by the growth of its first layer.

1991 Mathematics subject classification: 16P40, 16P90.

Recently, there have been a number of studies examining the influence on the
representation theory of a Noetherian ring of the prime ideal structure of the ring, see
e.g. [1, 3, 7, Chapter 9 and 9]. This note is a further contribution to the theme. In [9]
Gelfand-Kirillov dimension was used to analyse extension of modules; however, one
disadvantage of this approach is that for a finitely generated module M the analysis
used GK dim (R/ann(M)) rather than GKdim(M), and there can be considerable
disparity between these numbers. In Section 6 of [9] a start was made on the analysis of
GKdim(M) under extensions and we continue this work here. In particular, we show
that rings with finite Gelfand-Kirillov dimension and the strong second layer condition
satisfy the density condition of Jategaonkar and we also show that for such rings with
exact Gelfand-Kirillov dimension the growth of any injective module is controlled by
the growth of its "first layer". Throughout the note we will assume that R is a
Noetherian fc-algebra, where k is a field, and in addition assume that R satisfies the
strong second layer condition and, for certain results, that R has finite exact Gelfand-
Kirillov dimension. This includes rings such as enveloping algebras of finite dimensional
solvable Lie algebras [7, A.3.5, 8, Chapters 6, 7], and Noetherian PI algebras with finite
Gelfand-Kirillov dimension [7, 8.1.1, 8, Chapter 10].

1. The strong second layer condition

The best source for the definition of the strong second layer condition from our point
of view is [6] and so we will give the necessary background from there. Recall that an
affiliated series of an /^-module M is a sequence 0 = M o s Mt £•••£ Afn = M of
submodules together with an ordered set of prime ideals {Pu...,Pn} called affiliated
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primes such that Af.-^M,-,, each P, is a maximal annihilate* prime of M/M,_i and

If P is a prime ideal of R and M a right R-module then M is a P-prime module if
annR(M') = P for each nonzero submodule M' of M.

One can easily check that M1- = annM(PI-P,-_1,...,P1) and that Mi/Mi_1 is a P,-prime
module. Jategaonkar's Main Lemma analyses the behaviour of affiliated series of length
two. The version we present is that of [6, Theorem 11.1]. We will use freely the
language of links and cliques; suitable references are [7] and [6].

Theorem 1.1. Let R be a Noetherian ring and let M be a right R-modute with an
affiliated series 0 £ U £ M and affiliated primes {P, Q], such that U is essential in M. Let
M' be a submodule of M, properly containing U, such that the ideal A = annR(M') is
maximal among annihilators of submodules of M properly containing U. Then exactly one
of the following two alternatives occurs:

(i) Q^P and M'Q=0. In this case, M' and M'/U are faithful torsion R/Q-modules.
(ii) Q—>P and B = Qn P/A is a linking bimodule between Q and P. In this case, if U is

torsion free as a right R/P'-module, then M'/U is torsion free as a right R/Q-module.

The Noetherian ring R is said to have the (right) strong second layer condition if, given
the hypotheses of the above theorem, the conclusion (i) never occurs. The ring R is said
to have exact Gelfand-Kirillov dimension if the following condition is satisfied: if
O-»/4-*B->C-*0isa short exact sequence of R-modules, then

GK dim (B) = max {GK dim (A), GK dim (C)}.

The two invariance properties that we need to analyse the dimension of module
extensions are given in the following two lemmas.

Lemma 1.2. Let R and S be k-algebras. Suppose that M is a right R-module and that
RBS is a bimodule such that RB is finitely generated. Then

GK dims (M <g) B) g GK dimR (M).

Proof, cf. [8, Proposition 5.6]. •

If M is a right i?-module and SBR is a bimodule then Horn (BR,M) has a natural
structure as a right S-module via (6s)(b): = 8(sb), for 6eHorn(BR,M), seS and beB.

Lemma 13. Let R and S be k-algebras. Suppose that M is a right R-module and that
SBR is a bimodule such that BR is finitely generated. Then

GK dims (Horn (BR, M)) g GK dim (MR).
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Proof. [9, Lemma 6.1 (ii)]. •

Let R be a Noetherian ring containing prime ideals P and Q and suppose that U and
V are uniform modules that are P-prime and Q-prime respectively. Suppose that there is
a short exact sequence of K-modules

with M uniform and such that U = annM(P). In this setting, Theorem 1.1 gives
information about the connection between the prime ideals P and Q; in order to make
further progress it is necessary to establish connections between U and V. The
groundwork for this has been done in [3, 2.5, 2.7] where the next result is established.
However the exact result that we need is a little difficult to extract from [3]; so we give
a complete proof of the result, following a suggestion of the referee.

Proposition 1.4. Let R be a Noetherian ring containing prime ideals P and Q and
suppose that U and V are uniform modules that are P-prime and Q-prime respectively. If
there is a short exact sequence of R-modules

with M uniform and such that U = annM(P) then either Q is strictly contained in P or

(i) there is an R-monomorphism from V into Horn (B, U), where B is the non-zero
bimodule P n g/annR(M), and

(ii) there is a nonzero homomorphism from V ®RB to U.

Proof. Suppose that Q is not strictly contained in P. If JV: = annM(P n Q) strictly
contains U then consider the short exact sequence

If A is the annihilator of an arbitrary submodule of N that properly contains U then
P n Q e A since N(P n Q) = 0 and A^(P nQ) since A annihilates U and a non-zero
submodule of the Q-prime module N/U; thus A = PnQ. Now Theorem 1.1 applied to N
yields that Q is linked to P via the bimodule B = (PnQ)/(PnQ), which is absurd since
B = 0. Thus U = annM(P n Q). Now, using the notation of [3], apply [3, 2.3] to M with
I = PnQ and J = annR(M), to obtain a monomorphism from V=M/U into Hom(B,M).
However, Horn (B, M) s Horn (B, U), since BP=0 and U = annM{P), so (i) is established.

(ii) follows from the nonzero homomorphism in (i) and the natural isomorphism
Horn(V ® B, I / ) s Horn(V, Horn{B, U)). •

The prototype of the kind of result that we are aiming at is provided by the following
result.
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Corollary 1.5. Let R be a Noetherian k-algebra satisfying the strong second layer
condition. Let P and Q be prime ideals of R and suppose that U and V are uniform
modules that are P-prime and Q-prime respectively. If there is a short exact sequence of
R-modules

with M uniform and such that U = annM(P) then

(i) GKdim(K)^GKdim(£/),
(ii) ifU is GK-homogeneous then GKdim(C/) = GKdim(F).

Proof, (i) GK dim (F)^GK dim (Horn (B,U)), since part (i) of the previous result
provides a monomorphism from V into Horn (B, U); so the result follows from
Lemma 1.3.

(ii) Let 0 # [ / ' £ { / be the image of a nonzero homomorphism from V® B to U, then,
since U is GK-homogeneous,

GK dim (U) = GK dim (V) ^ GK dim (V ® B) ^ GK dim (V),

by Lemma 1.2. •

In the setting of the above result, if U is a torsion free /?/P-module, then part (ii) of
Theorem 1.1 guarantees that V is torsion free as an K/g-module. The question as to
when the converse holds is not very well understood and is related to the density
condition of Jategaonkar [7, p. 176], see e.g. [2, Section 3]. However, we see below that
the converse holds for the large class of rings that we are discussing here: the reason
that we are able to see this is that torsion modules over Noetherian prime rings can be
detected using Gelfand-Kirillov dimension. This is shown in the following well-known
result.

Lemma 1.6. Let R be a Noetherian prime k-algebra with finite Gelfand-Kirillov
dimension. Then:

(i) / / / is right ideal of R then GK dim (R/I) < GK dim (R) if and only if I is an
essential right ideal of R.

(ii) An R-module M is a torsion module if and only if GK dim (M) < GK dim (R).

Proof. Most of this is in [10, 8.3.6]. Suppose that / is not an essential right ideal of
R but GK dim (R/I) <GK dim (R). Then there is a uniform right ideal U of R such that
U n 1 = 0. Hence U embeds in R/I and so GKdim(l/)<GKdim(fl). However, since R
is prime every right ideal of R contains an isomorphic copy of U and so some essential
right ideal E of R satisfies GKdim(£) = GKdim([/)<GKdim(i?). Now R embeds in E
so that GK dim (R) g GK dim (£), a contradiction. •
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Theorem 1.7. Let R be a Noetherian k-algebra satisfying the strong second layer
condition and with finite Gelfand-Kirillov dimension. Let P and Q be prime ideals of R and
suppose that U and V are uniform modules that are P-prime and Q-prime respectively. If
there is a short exact sequence of R-modules

with M uniform and such that U = annM(P) then U is a torsion free R/P-module if and
only if V is a torsion free R/Q-module.

Proof. Suppose that U is a torsion R/P-module. The previous result shows that
GKdim(lO<GKdim(/?/P). Note that GK dim (R/P) = GK dim (R/Q), since g~»P.
Now GKdim(F)SGKdim(l7), by part (i) of Corollary 1.5. Thus
GKdim(K)<GKdim(K/Q); and so V is a torsion R/Q-module. On the other hand, if U
is a torsion free J?/P-module then V is a torsion free R/g-module, by Theorem 1.1. •

Let R and S be prime Noetherian rings and let B be an /?-S-bimodule, finitely
generated and torsion free on each side. Then B satisfies the density condition if the
following property and its left-handed version hold: Let E be an essential right
submodule of B; then there exists a regular element d of R such that dB^E. A
Noetherian ring R is said to satisfy the density condition if each of the bimodules that
link prime ideals of R satisfies the density condition.

Corollary 1.8. Let R be a Noetherian k-algebra satisfying the strong second layer
condition and with finite Gelfand-Kirillov dimension. Then R satisfies the density
condition.

Proof. The truth of the conclusion of the above result is equivalent to the truth of
the conclusion of this corollary, by [7, Theorem 6.3.11]. •

Remark. Strictly, [7, 6.3.11] only gives that the strongest link bimodules have the
density condition when the conclusion of the above theorem holds. However, every link
is a bimodule factor of a strongest link and the density condition passes to factor
bimodules, as is obvious from the first definition of the density condition given on p.
176 of [7].

The density condition does not hold in general, see [5, pp. 235-236]. However, the
example constructed by Goodearl and Schofield is rather esoteric and the above
corollary justifies the feeling that the density condition should hold in reasonable rings.

2. Injective modules

Our next aim is to say something about the Gelfand-Kirillov dimension of injective
modules. Without loss of generality, we may assume that we are dealing with an
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indecomposable injective module E. Recall that the set of associated prime ideals of a
module M, ass(M), consists of those prime ideals P of R such that M contains a P-
prime submodule. Since £ is a uniform module there is a unique prime ideal P of R
with ass(E) = {P}.

Theorem 2.1. Let R be a Noetherian ring with the strong second layer condition and
finite exact Gelfand-Kirillov dimension. Let E be an indecomposable injective R-module
with ass (E) = {P} for some prime ideal P of R. Then

GK dim (£) = GK dim (annE(P)) = GK dim (ER/P(U)),

where U is any P-prime submodule of E.

Proof. The second equality occurs since ann£(P) ^ER/P(U). Let M be any finitely
generated submodule of E and set t/ = Mnann£(P) and note that U is P-prime. It is
enough to show that GKdim(M)^GKdim((/), since certainly GKdim([/)^
GKdim(M). Now M is annihilated by a product of prime ideals, each in the right
clique of P, by [6, Theorem 11.4], so let n be the least integer such that there are
semiprime ideals Sh i=\,...,n, with MSn...Si = 0 such that each S, is a finite
intersection of prime ideals from the right clique of P. First we show that one may take
S1 = P. For, if not, set N = MSn...S2 so that NP#0 while NSX=O. If S i £ P set X = St

while if S i £ P set X to be the semiprime ideal with S ^ X and S1=XnP. In both
cases X£P. Now l/' = N P n t / # 0 while U'X £ NPX£ NSt=Q; so X £ P, since U is
P-prime, a contradiction.

We prove the result by induction on n. If n= 1 the result is trivial, since M = U. Set
7 = S B . . .S 2 nS n _ , . . .S 1 and J = Sn...Su so that J^I. Set 7V = annM(7). Note that
JV(S,nSn M).. .(S2nS1)£JV/ = 0; so N^M by the choice of n and GKdim(AT) =
GKdim(Nn t/)^GKdim(l/), by induction.

Now M/N = annM(J)/annM(7) embeds in Horn {I/J, M), by [3, 2.3], and, since I/J is a
right R/P-module any image of I/J in M must in fact be in U so that M/N embeds in
Horn (7/7,17). Thus GKdim(M/N)gGKdim([7), by Lemma 1.3, and so
GK dim (M) ^ GK dim (U), by exactness of Gelfand-Kirillov dimension. •

The above result says that the Gelfand-Kirillov dimension of an injective module is
controlled by the Gelfand-Kirillov dimension of the "first layer". Unfortunately, it does
not say that if M is an essential extension of a P-prime module U then
GKdim(M) = GKdim((/). The snag is that we have not shown that GKdim(M) =
GKdim(l/) where both M and U are P-prime modules, and, indeed, the present
methods will not touch this problem since MP=0 and the question is one concerning
the prime ring R/P and not one involving the structure of the clique of P in R.
However, in the case of a torsion module we can make an explicit statement.

Corollary 2.2. Let R be a Noetherian ring with the strong second layer condition and
finite exact Gelfand—Kirillov dimension. Let P be a prime ideal of R and suppose that U is
a finitely generated torsion R/P-module. If E = E(U) is the R-injective envelope of U then
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GK dim (£) < GK dim (R/P).

Proof. Without loss of generality, we may assume that U is uniform; and so E is
also uniform. Let M be any submodule of E such that U £ M and MP = 0. Then U is
essential in M and so M is also a torsion R/P-module; so GKdim(M)<GKdim(R/P)
by Lemma 1.6 (ii). The result now follows from the above theorem. •

3. Examples

In an attempt to clarify the general problem, one might ask the following question.
Let R be the second Weyl algebra; so that GKdim(/?)=4. If U is a holonomic simple
J?-module then GKdim([/) = 2. Stafford [12] has shown that there are simple nonholo-
nomic modules. If V is such a module then GKdim(F) = 3. Is it possible to have a
nonsplit extension of a holonomic simple module U by a nonholonomic simple module
V: that is, is there a uniserial module MR of length 2 with a holonomic submodule U
such that V=M/U is a nonholonomic module?

We finish by giving two examples that place the previous results and discussion in
perspective.

The first example shows that if one replaces Gelfand-Kirillov dimension by Krull
dimension then the problem discussed above does arise.

Let i? = C[x, y], xy—yx=x, the enveloping algebra of the two dimensional nonabe-
lian solvable Lie algebra. The ring R has the strong second layer condition [7, A.3.9]
and exact integer Gelfand-Kirillov dimension. Also the Krull dimension is an exact
integer dimension function. Musson [11] has constructed a uniform module M with a
simple submodule U such that M/U is 1-critical for Krull dimension. Thus
Kdim(C/) = 0 while Kdim(M) = l. This example is discussed in detail in [4, Ex. 7.15]
and from that discussion one can see that both U and M/U are 1-critical modules for
Gelfand-Kirillov dimension.

The second example illustrates what can happen when the strong second layer
condition is dropped. Let S = C[x,y~\, xy—yx = \, be the first Weyl algebra and set
l = xS, a maximal right ideal. Then the idealizer ring R = l(I) = C + xS is a Noetherian
domain in which / is the unique proper ideal. When considered as an /t-module, M =
S/I is uniserial of length two, [10, 5.5.5.], the only nontrivial submodule being U = R/I.
Thus O e l / c M is an affiliated series of length two with affiliated prime ideals {/,0}
and so we have an extension of type (i) in Theorem 1.1. Hence R does not have the
strong second layer condition. Now U = R/I = C + xS/xS so that GKdim(l/) = 0; while
M/U = C[x, y]/xC\_x, y], so that GK dim (M/U) = 1.
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