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Abstract

Let n ≥ 1 be an integer and f be an arithmetical function. Let S = {x1, . . . , xn} be a set of n distinct positive
integers with the property that d ∈ S if x ∈ S and d|x. Then min(S ) = 1. Let ( f (S )) = ( f (gcd(xi, x j)))
and ( f [S ]) = ( f (lcm(xi, x j))) denote the n × n matrices whose (i, j)-entries are f evaluated at the greatest
common divisor of xi and x j and the least common multiple of xi and x j, respectively. In 1875, Smith
[‘On the value of a certain arithmetical determinant’, Proc. Lond. Math. Soc. 7 (1875–76), 208–212]
showed that det( f (S )) =

∏n
l=1( f ∗ µ)(xl), where f ∗ µ is the Dirichlet convolution of f and the Möbius

function µ. Bourque and Ligh [‘Matrices associated with classes of multiplicative functions’, Linear
Algebra Appl. 216 (1995), 267–275] computed the determinant det( f [S ]) if f is multiplicative and, Hong,
Hu and Lin [‘On a certain arithmetical determinant’, Acta Math. Hungar. 150 (2016), 372–382] gave
formulae for the determinants det( f (S \{1})) and det( f [S \{1}]). In this paper, we evaluate the determinant
det( f (S \{xt})) for any integer t with 1 ≤ t ≤ n and also the determinant det( f [S \{xt}]) if f is multiplicative.
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1. Introduction

Let n be a positive integer. In 1875, Smith [15] published his famous result stating
that the determinant of the n × n matrix (gcd(i, j))1≤i, j≤n, having the greatest common
divisor gcd(i, j) of i and j as the (i, j)-entry for all integers i and j between 1 and n,
is equal to

∏n
k=1 ϕ(k), where ϕ is Euler’s totient function. Throughout, let f be an

arithmetical function and S = {x1, . . . , xn} be a set of n distinct positive integers. Let
( f (gcd(xi, x j)))1≤i, j≤n and ( f (lcm(xi, x j)))1≤i, j≤n denote the n × n matrices whose (i, j)-
entries are f evaluated at the greatest common divisor gcd(xi, x j) and the least common
multiple lcm(xi, x j) of xi and x j, respectively. Smith [15] also showed that

det(lcm(xi, x j))1≤i, j≤n =

n∏
i=1

ϕ(xi)π(xi)
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and

det( f (gcd(xi, x j)))1≤i, j≤n =

n∏
i=1

( f ∗ µ)(xi)

if S is factor closed (that is, d ∈ S if x ∈ S and d|x), where f ∗ µ is the Dirichlet
convolution of f and the Möbius function µ and π is the multiplicative function defined
for any prime power pr by π(pr) := −p. One hundred and twenty years later, Bourque
and Ligh [3] showed that if S is factor closed and f is a multiplicative function such
that f (x) , 0 for all x ∈ S , then

det( f (lcm(xi, x j)))1≤i, j≤n =

n∏
i=1

f (xi)2( f −1 ∗ µ)(xi),

where f −1 is defined for any positive integer x by f −1(x) := 1/ f (x) if f (x) , 0, and 0
otherwise.

Since Smith’s paper, this area has been studied intensely. Apostol [2] points out that
Smith’s determinant has connections with Ramanujan’s sum and its generalisations
(see also [10, 14, 17]). Haukkanen, Wang and Sillanpää [6] review papers relating to
Smith’s determinant and present a common structure in the language of posets (further
developed in [1, 13]). Weber [16] investigates gcd quadratic forms

∑
xix jF((i, j))

and their connections with the Riemann zeta function. The asymptotic behaviour
of the eigenvalues of gcd and lcm matrices and their generalisations has also been
investigated (see [11] and references therein). Multidimensional determinants have
been considered (see [5] for a review and [10, 17] for recent developments). Related
determinants involving other multiplicative functions or multiple gcd-closed sets are
considered in [4, 7, 8].

Let us recall that a positive integer is called squarefree if it is divisible by no other
perfect square than 1. In 2016, Hong et al. [9] showed that if S is factor closed,

det( f (S \{1})) =

n∑
l = 1

xl squarefree

n∏
k = 1
k , l

( f ∗ µ)(xk),

and if f is multiplicative and f (x) , 0 for all x ∈ S ,

det( f [S \{1}]) =

( n∏
l=1

f (xl)2
) n∑

l = 1
xl squarefree

n∏
k = 1
k , l

( f −1 ∗ µ)(xk).

In this paper, we address the problem of calculating the determinants of the
following (n − 1) × (n − 1) matrices:

( f (S \{xt})) = ( f (gcd(xi, x j)))1 ≤ i, j ≤ n
i , t, j , t

and
( f [S \{xt}]) = ( f (lcm(xi, x j)))1 ≤ i, j ≤ n

i , t, j , t
,

where S is factor closed and xt is any given element of S . Our main results can be
stated as follows.
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Theorem 1.1. Let n ≥ 2 be an integer and let t be an integer with 1 ≤ t ≤ n. Let f be
an arithmetical function and S = {x1, . . . , xn} be factor closed. Then

det( f (gcd(xi, x j)))1 ≤ i, j ≤ n
i , t, j , t

=

n∑
l = 1

xt |xl, xl/xt squarefree

n∏
k = 1
k , l

( f ∗ µ)(xk).

Moreover, if f is multiplicative, then

det( f (lcm(xi, x j)))1 ≤ i, j ≤ n
i , t, j , t

=

( n∏
l = 1
l , t

f (xl)2
) n∑

l = 1
xt |xl, xl/xt squarefree

n∏
k = 1
k , l

( f −1 ∗ µ)(xk).

Theorem 1.1 extends the results of Smith, Bourque and Ligh, and Hong, Hu and
Lin. If xt = max(S ), then Theorem 1.1 reduces to the theorems of Smith [15] and
Bourque and Ligh [3]. If xt = min(S ), then Theorem 1.1 gives [9, Theorem 2]. The
problem of removing elements from the set S (and inserting elements into S ) was also
considered in [12] in the more general setting of posets using partitioned matrices.

For any positive integer x, we let ω(x) and rad(x) stand for the number and the
product of all distinct prime divisors of x, respectively. Taking f = I in Theorem 1.1,
where I(x) := x for any positive integer x, gives the following result.

Theorem 1.2. Let n ≥ 2 be an integer and let t be an integer with 1 ≤ t ≤ n. Let
S = {x1, . . . , xn} be factor closed. Then

det((gcd(xi, x j)))1 ≤ i, j ≤ n
i , t, j , t

=

( n∏
l=1

ϕ(xl)
) n∑

k = 1
xt |xk , xk/xt squarefree

1
ϕ(xk)

and

det((lcm(xi, x j)))1 ≤ i, j ≤ n
i , t, j , t

=
(−1)

∑n
l=1 ω(xl)

x2
t

( n∏
l=1

rad(xl)ϕ(xl)
) n∑

k = 1
xt |xk , xk/xt squarefree

(−1)ω(xk)x2
k

rad(xk)ϕ(xk)
.

For any real number x, bxc stands for the largest integer that is less than or equal to
x. Taking S = {1, 2, . . . , n} in Theorem 1.2 gives the following result.

Theorem 1.3. Let n ≥ 2 be an integer and let t be an integer with 1 ≤ t ≤ n. Then

det((gcd(i, j)))1 ≤ i, j ≤ n
i , t, j , t

=

( n∏
l=1

ϕ(l)
) bn/tc∑

k = 1
k squarefree

1
ϕ(tk)

and

det((lcm(i, j)))1 ≤ i, j ≤ n
i , t, j , t

= (−1)
∑n

l=1 ω(l)
( n∏

l=1

rad(l)ϕ(l)
) bn/tc∑

k = 1
k squarefree

(−1)ω(tk)k2

rad(tk)ϕ(tk)
.
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Taking t = 1 in Theorem 1.3, gives [9, Theorem 1].
The proof of Theorem 1.1 is similar to the proofs of the results in Smith [15] and

Hong et al. [9], but more complicated.
We organise this paper as follows. In Section 2, we present several lemmas which

are needed in the proof of Theorem 1.1. In Section 3, we first give the proof of
Theorem 1.1 and then apply Theorem 1.1 to show Theorems 1.2 and 1.3.

2. Preliminary lemmas

In this section, we present several lemmas that are needed in the next section.

Lemma 2.1. Let n ≥ 2 be an integer and let S = {x1, . . . , xn} be a factor-closed set such
that x1 < · · · < xn.

(i) The smallest element of S is x1 = 1.
(ii) Let t be an integer with 1 ≤ t ≤ n. The set S \{xt} is factor closed if and only if xt

is not a proper divisor of any element of S .
(iii) The set S \{1} is not factor closed.
(iv) The set S \{xn} is factor closed.

Proof. Parts (i) and (ii) are easy deductions from the definition of a factor-closed set
and parts (iii) and (iv) follow from part (ii). �

Lemma 2.2 [9]. Let m ≥ 2 be an integer and f be an arithmetical function. Define the
arithmetical function Fm for any positive integer n by

Fm(n) :=
∑
d|n

µ
(n
d

)
f (gcd(m, d)).

Then

Fm(n) =

{
( f ∗ µ)(n) if n | m,
0 otherwise.

Lemma 2.3. Let m and n be positive integers such that m|n and m < n and let f be an
arithmetical function. Then∑

m|d|n
d ≥ 2

f
(n
d

)
= ( f ∗ 1)

( n
m

)
− f

( n
m

)
δ(m),

where the arithmetical functions 1 and δ are defined by 1(x) = 1 for any positive integer
x and δ(x) = 1 if x = 1 and 0 otherwise.

Proof. For any integer d with m|d|n, we can write d = mk with an integer k ≥ 1. So∑
m|d|n
d ≥ 2

f
(n
d

)
=

∑
mk|n

mk ≥ 2

f
( n
mk

)
=

∑
k| nm

mk ≥ 2

f
( n
mk

)
. (2.1)
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If m = 1, the right-hand side of (2.1) is∑
k|n

f
(n

k

)
1(k) − f (n) = ( f ∗ 1)(n) − f (n) = ( f ∗ 1)

( n
m

)
− f

( n
m

)
δ(m).

If m > 1, then mk ≥ 2 for any positive integer k and so the right-hand side of (2.1) is∑
k| nm

f
( n
mk

)
1(k) = ( f ∗ 1)

( n
m

)
= ( f ∗ 1)

( n
m

)
− f

( n
m

)
δ(m)

as expected. This ends the proof of Lemma 2.3. �

By the well-known result that
∑

d|n µ(d) = 0 for any integer n with n > 1, taking
f = µ in Lemma 2.3 and noting that 1 ∗ µ = δ gives the following corollary.

Corollary 2.4 [9, Lemma 5] . Let m and n be positive integers with m dividing n and
m < n. Then ∑

m|d|n
d ≥ 2

µ
(n
d

)
=

{
(−1)1+ω(n) if m = 1 and n is squarefree,
0 otherwise.

Lemma 2.5. Let n ≥ 2 be an integer and a1, . . . , an and b1, . . . , bn be 2n elements in a
commutative ring. Let M = diag(a2

1, b2, . . . , bn) + M1 + M2, where M1 and M2 are the
n × n matrices defined by:

(i) the first row of M1 is (0,−a2b1, . . . ,−anb1) and all other elements are zero;
(ii) the first column of M2 is (0, a2, . . . , an)T and all other elements are zero.

Then

det(M) =

n∑
i=1

a2
i

n∏
k = 1
k , i

bk.

Proof. Write M := (mi j)n×n. Let Ai be the minor of mi1. Then A1 = b2 · · · bn and, for
2 ≤ i ≤ n, all the elements of the (i − 1)th column of Ai are zero except that the first
element equals −aib1. Consequently

Ai = (−1)1+i−1(−aib1)b2 · · · bi−1bi+1 · · · bn = (−1)i+1ai

n∏
j = 1
j , i

b j. (2.2)

By the Laplace expansion theorem and (2.2),

det(A) =

n∑
i=1

(−1)i+1mi1Ai = a2
1A1 +

n∑
i=2

(−1)i+1aiAi

= a2
1

n∏
j=2

b j +

n∑
i=2

(−1)i+1ai · (−1)i+1ai

n∏
j=1
j,i

b j =

n∑
i=1

a2
i

n∏
j = 1
j , i

b j

as required. This concludes the proof of Lemma 2.5. �
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3. Proofs of Theorems 1.1 to 1.3

For a positive integer x, we introduce the auxiliary arithmetical function ux defined
for any positive integer y by

ux(y) :=

µ
( y

x

)
if x|y,

0 otherwise.

Proof of Theorem 1.1. For any set S = {x1, . . . , xn}, we define S σ := {xσ(1) , . . . , xσ(n)},
where σ is a permutation on {1, . . . , n}. Then ( f (S )) = PT ( f (S ))P for any arithmetical
function f , where P is the n × n permutation matrix whose ith row is equal to
(0, . . . , 0, 1, 0, . . . , 0) with a 1 in the σ(i)th place, for 1 ≤ i ≤ n. It follows that
det( f (S )) = det( f (S σ)) and det( f [S ]) = det( f [S σ]). So we can rearrange the elements
of S in any case of necessity. Without loss of generality, we assume that x1 < · · · < xn

in what follows. Then, by Lemma 2.1, x1 = 1.
Define the n × n matrix A = (ai j) as follows: att := 1, ait := 0 if i , t, and ai j :=

f (gcd(xi, x j)) for all integers i and j with 1 ≤ i, j ≤ n and j , t.
Let R1 and T1 be the empty set. For each integer r with 2 ≤ r ≤ n, define two subsets

Rr and Tr of S by

Rr := {xd : xd |xr, 1 ≤ d < r}, Tr := Rr\{xt}.

Then, Rr is nonempty and Rr ∪ {xr} is factor closed, but Tr may be empty for any
integer r with 2 ≤ r ≤ n.

For each integer r with 2 ≤ r ≤ n and each integer d with xd ∈ Rr, multiply the
entries of the dth row of A by µ(xr/xd) and then add them to the corresponding entries
of the rth row of A. We obtain a new n × n matrix, denoted by B := (bi j).

Lemma 3.1. For all integers i and j with 1 ≤ i, j ≤ n,

bi j =


uxt (xi) if j = t,
( f ∗ µ)(xi) if j , t and xi|x j,
0 otherwise.

Proof. For any integers i and j with 1 ≤ i, j ≤ n, since Ri ∪ {xi} is factor closed,

bi j = ai j +
∑
xd∈Ri

µ
( xi

xd

)
ad j =

∑
xd |xi

µ
( xi

xd

)
ad j. (3.1)

Since att = 1 and ait = 0 if i , t, it follows that

bit =
∑
xd |xi

µ
( xi

xd

)
adt = uxt (xi)att = uxt (xi)

as desired.
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Now let j be an integer different from t and between 1 to n. Since S is factor closed
and ak j = f (gcd(xk, x j)) for any integer k with 1 ≤ k ≤ n, it follows from Lemma 2.2
and (3.1) that

bi j =
∑
xd |xi

µ
( xi

xd

)
f (gcd(x j, xd)) =

∑
d|xi

µ
( xi

d

)
f (gcd(x j, d))

=

{
( f ∗ µ)(xi) if xi|x j and j , t,
0 if xi - x j and j , t.

Therefore Lemma 3.1 is proved. �

Next, for each integer r with r , t and 1 ≤ r ≤ n and each integer d with xd ∈ Tr

(if Tr is nonempty), multiply the entries of the dth column of B by µ(xr/xd) and add
them to the corresponding entries of the rth column of B, to arrive at the n × n matrix
C := (ci j).

Lemma 3.2. For all integers i and j with 1 ≤ i, j ≤ n,

ci j =



uxt (xi) if j = t,

( f ∗ µ)(x j) if j , t and i = j,

−µ
( x j

xt

)
( f ∗ µ)(xi) if j > t and xi|xt |x j,

0 otherwise.

Proof. Let i and j be integers between 1 and n. If j = t, then clearly cit = bit = uxt (xi).
In the following, we suppose j , t, so that

ci j = bi j +
∑
xd∈T j

µ
( x j

xd

)
bid =

∑
xd |x j
d , t

µ
( x j

xd

)
bid. (3.2)

Consider the following three cases.

Case 1: i ≥ j. For each integer d with xd ∈ T j, we have d , t and d < j ≤ i, which
implies that xi - xd. Also, bid = 0 since d , t. From Lemma 3.1,

ci j = bi j +
∑
xd∈T j

µ
( x j

xd

)
× 0 = bi j =

{
( f ∗ µ)(xi) if i = j,
0 if j < i.

Case 2: i < j and xi - x j. For each integer d with xd ∈ T j, we must have xi - xd.
Otherwise, xi|xd and, from xd |x j, we deduce that xi|x j which contradicts the assumption
xi - x j. Since xi - x j and xi - xd, by Lemma 3.1, bi j = 0 and bid = 0 for each d with
xd ∈ T j. Hence, by (3.2), ci j = 0.
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Case 3: i < j and xi|x j. Since S is factor closed, x1 = 1 and x j > 1,

c1 j =
∑
xd |x j
d , t

µ
( x j

xd

)
( f ∗ µ)(1) = ( f ∗ µ)(1)

( ∑
xd |x j

µ
( x j

xd

)
− uxt (x j)

)

= ( f ∗ µ)(1)
(∑

d|x j

µ
( x j

d

)
− uxt (x j)

)

= −( f ∗ µ)(1)uxt (x j) =

−( f ∗ µ)(x1)µ
( x j

xt

)
if xt |x j,

0 otherwise.
(3.3)

Now take i > 1. Then xi > 1. By (3.2), Lemma 3.1, Corollary 2.4 and noting that S
is factor closed,

ci j =
∑

xi |xd |x j
d , t

µ
( x j

xd

)
( f ∗ µ)(xi) = ( f ∗ µ)(xi)

∑
xi |xd |x j
d , t

µ
( x j

xd

)

=


( f ∗ µ)(xi)

( ∑
xi |xd |x j

µ
( x j

xd

)
− µ

( x j

xt

))
if xi|xt |x j,

( f ∗ µ)(xi)
∑

xi |xd |x j

µ
( x j

xd

)
otherwise

=


( f ∗ µ)(xi)

( ∑
xi |d|x j

µ
( x j

d

)
− µ

( x j

xt

))
if xi|xt |x j,

( f ∗ µ)(xi)
∑

xi |d|x j

µ
( x j

d

)
otherwise

=

−( f ∗ µ)(xi)µ
( x j

xt

)
if xi|xt |x j,

0 otherwise.
(3.4)

Taking (3.3) and (3.4) together gives the evaluation of ci j in this case.
Finally, combining Cases 1 to 3 gives the desired result and proves Lemma 3.2. �

We continue the proof of Theorem 1.1. Obviously,

det( f (S \{xt})) = det(A) = det(B) = det(C).

By Lemma 3.2, the tth column of C is

(0, . . . , 0, 1, uxt (xt+1), . . . , uxt (xn))T ,

the tth row of C is

(0, . . . , 0, 1,−uxt (xt+1)( f ∗ µ)(xt), . . . ,−uxt (xn)( f ∗ µ)(xt)),

the diagonal elements of C are

( f ∗ µ)(x1), . . . , ( f ∗ µ)(xt−1), 1, ( f ∗ µ)(xt+1), . . . , ( f ∗ µ)(xn),

https://doi.org/10.1017/S0004972717000788 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717000788


[9] A certain arithmetical determinant 23

and ci j = 0 for all integers i and j with 1 ≤ j ≤ t − 1 and i , j, or t + 1 ≤ i, j ≤ n and
i , j. Since uy(x)2 = 1 if x/y is squarefree and uxt (xl) = 0 for any integer l with 1 ≤ l < t
and, for any square matrices P and Q,

det
(

P ∗
O Q

)
= det(P) · det(Q),

by Lemmas 2.5 and 3.2,

det(C) = det(diag(( f ∗ µ)(x1), . . . , ( f ∗ µ)(xt−1)))
n∑

l=t

(uxt (xl))2
n∏

k = t
k , l

( f ∗ µ)(xk)

=

( t−1∏
k=1

( f ∗ µ)(xk)
) n∑

l=t

(uxt (xl))2
n∏

k = t
k , l

( f ∗ µ)(xk)

=

n∑
l=t

(uxt (xl))2
n∏

k = 1
k , l

( f ∗ µ)(xk) =

n∑
l=1

(uxt (xl))2
n∏

k = 1
k , l

( f ∗ µ)(xk)

=

n∑
l = 1

xt |xl, xl/xt squarefree

n∏
k = 1
k , l

( f ∗ µ)(xk)

as desired. This finishes the proof of the first part of Theorem 1.1.
We are now in a position to prove the second part of Theorem 1.1. Since f is

multiplicative, f (gcd(xi, x j)) f (lcm(xi, x j)) = f (xi) f (x j). It follows that

( f (lcm(xi, x j)))1 ≤ i, j ≤ n
i , t, j , t

= Λ · ( f −1(gcd(xi, x j)))1 ≤ i, j ≤ n
i , t, j , t

· Λ,

where Λ := diag( f (x1), . . . , f (xt−1), f (xt+1), . . . , f (xn)) is the (n − 1) × (n − 1) diagonal
matrix with f (x1), . . . , f (xt−1), f (xt+1), . . . , f (xn) as its diagonal elements. So

det( f (lcm(xi, x j)))1 ≤ i, j ≤ n
i , t, j , t

=

( n∏
i=1
i,t

f (xi)2
)
· det( f −1(gcd(xi, x j)))1 ≤ i, j ≤ n

i , t, j , t
.

Thus, the first part of Theorem 1.1 applied to f −1 gives the expected formula. This
completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. We apply Theorem 1.1 with f = I. Note that I ∗ µ = ϕ and
(I−1 ∗ µ)(x) = π(x)ϕ(x)/x2 = (−1)ω(x)rad(x)ϕ(x)/x2 for any positive integer x. So by
Theorem 1.1,

det(gcd(xi, x j))1 ≤ i, j ≤ n
i , t, j , t

=

n∑
k = 1

xt |xk , xk/xt squarefree

n∏
k = 1
k , l

ϕ(xk)

=

( n∏
l=1

ϕ(xl)
) n∑

k = 1
xt |xk , xk/xt squarefree

1
ϕ(xk)
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and, similarly,
det(lcm(xi, x j))1 ≤ i, j ≤ n

i , t, j , t

=

( n∏
l = 1
l , t

xl
2
) n∑

k = 1
xt |xk , xk/xt squarefree

n∏
l = 1
l , k

π(xl)ϕ(xl)
x2

l

=
(−1)

∑n
l=1 ω(xl)

x2
t

( n∏
l=1

rad(xl)ϕ(xl)
) n∑

k = 1
xt |xk , xk/xt squarefree

(−1)ω(xk)x2
k

rad(xk)ϕ(xk)

as required. This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Applying Theorem 1.2 with xi = i for 1 ≤ i ≤ n,

det((gcd(i, j)))1 ≤ i, j ≤ n
i , t, j , t

=

( n∏
l=1

ϕ(l)
) n∑

k = 1
t|k, k/t squarefree

1
ϕ(k)

=

( n∏
l=1

ϕ(l)
) bn/tc∑

k = 1
k is squarefree

1
ϕ(kt)

and
det((lcm(i, j)))1 ≤ i, j ≤ n

i , t, j , t

=
(−1)

∑n
l=1 ω(l)

t2

( n∏
l=1

rad(l)ϕ(l)
) n∑

k = 1
t|k, k/t squarefree

(−1)ω(k)k2

rad(k)ϕ(k)

=
(−1)

∑n
l=1 ω(l)

t2

( n∏
l=1

rad(l)ϕ(l)
) bn/tc∑

k = 1
k is squarefree

(−1)ω(tk)(tk)2

rad(tk)ϕ(tk)

= (−1)
∑n

l=1 ω(l)
( n∏

l=1

rad(l)ϕ(l)
) bn/tc∑

k = 1
k is squarefree

(−1)ω(tk)k2

rad(tk)ϕ(tk)

as desired. The proof of Theorem 1.3 is complete.
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