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Abstract

We extend the definition of level-crossing ordering of stochastic processes, proposed by
Irle and Gani (2001), to the case in which the times to exceed levels are compared using an
arbitrary stochastic order, and work, in particular, with integral stochastic orders closed
for convolution. Using a sample-path approach, we establish level-crossing ordering
results for the case in which the slower of the processes involved in the comparison is
skip-free to the right. These results are specially useful in simulating processes that
are ordered in level crossing, and extend results of Irle and Gani (2001), Irle (2003),
and Ferreira and Pacheco (2005) for skip-free-to-the-right discrete-time Markov chains,
semi-Markov processes, and continuous-time Markov chains, respectively.
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1. Introduction

In this paper, we consider the level-crossing ordering of stochastic processes [2], [3], [5].
A process X is said to be slower in level crossing than Y if it takes X stochastically longer to
exceed any given level than it does Y . The definition for the case in which random variables
are compared through the stochastic order usual in distribution was proposed in [5], and will
hereby be denoted as level-crossing ordering in the usual sense (or st-sense).

Following this definition, we propose the definition of level-crossing ordering in the �-order
sense, where the associated order ‘≤�’ is an arbitrary stochastic order for random variables,
as being the former definition with the times to exceed levels compared in the �-order sense
instead of the st-sense. In particular, we will consider orders for nonnegative random variables
that, using a terminology due to Whitt [9], belong to the class of integral stochastic orders. An
order ‘≤�’ is an integral stochastic order if, given nonnegative random variables W and Z,

W ≤� Z ⇔ E[g(W)] ≤ E[g(Z)] for all g ∈ G�

whenever the expected values exist, where G� is some set of real functions.
More precisely, we will work with integral stochastic orders ‘≤�’ such that G� contains only

functions that are increasing (more accurately, nondecreasing) on R+ = [0, ∞) and, moreover,
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are closed for convolution, i.e. integral stochastic orders for positive random variables with
increasing functions closed for convolution, or IPICC orders.

For the sake of completeness, we note that the class of IPICC orders includes, in particular,
the usual order (‘st’) as well as the Laplace transform (‘LT’), exponential (‘exp’), increasing
convex (‘icx’), increasing concave (‘icv’), moments (‘M’), expected value (‘EV’), and moment-
generating function (‘MG’) orders (see, for example, [6] and [8] for details of the definitions and
properties of these stochastic orders). In these cases, we can make the following identification
of G�: Gst is the set of all increasing functions, GLT = {gs, s > 0 : gs(x) = −e−sx},
Gexp = {gs, s > 0 : gs(x) = esx}, Gicx is the set of increasing convex functions, Gicv is the
set of increasing concave functions, GM is the set of integer-power functions, GEV is a singular
set containing the identity function, and GMG = {gs, 0 < s < 1 : gs(x) = sx}.

In this paper, we derive sets of sufficient conditions for the level-crossing ordering, in
the IPICC order senses, of discrete-time Markov chains (DTMCs), continuous-time Markov
chains (CTMCs), and semi-Markov processes (SMPs) for the case in which the slower of the
two processes involved in the comparison is skip-free to the right. We recall that a path of a
stochastic process with ordered state space I , order-isomorphic to some bounded or unbounded
interval of Z, is said to be skip-free to the right if it does not have jumps up more than one
level. Moreover, the stochastic process itself is skip-free to the right if its trajectories are almost
surely (a.s.) skip-free to the right.

Our results include results of [5], [3], and the authors’paper [2] for the level-crossing ordering
of DTMCs, CTMCs, and SMPs, under the relaxation of some of their assumptions. Our proofs
use a sample-path approach (see, for example, [1]) and, thus, are of particular interest for the
simulation of stochastic processes ordered in level crossing.

We end the introduction with a brief outline of the paper. In Section 2, we provide an
extension of the definition of level-crossing ordering of stochastic processes in the usual sense
[5] to other stochastic ordering senses, and introduce some notation and basic properties of
the IPICC orders and level-crossing ordering. In Section 3, we establish results for the level-
crossing ordering of two DTMCs in the usual sense. These are used in Section 4 to establish
results for the level-crossing ordering of SMPs in the IPICC order senses. Finally, in Section 5,
we derive sufficient conditions for the level-crossing ordering of CTMCs in the usual sense.

2. Preliminaries

In this section, we introduce a few definitions and some notation. In addition, we provide
useful results on the level-crossing ordering of stochastic processes and on integral stochastic
orders.

We let � denote the set of natural numbers N = {0, 1, 2, . . . }, positive integers N+ =
{1, 2, . . . }, or real nonnegative numbers R+ = [0, ∞). Given a state space I of real numbers,
A ⊆ R, and y ∈ I , we let I = I \ {sup I }, let IA = I ∩ A denote the restriction of I to states
in A, and let I≤y := I (−∞,y] and I≥y :== I [y,∞) respectively denote the restrictions of I to
states smaller than or equal to y and greater than or equal to y. Moreover, if W = (Wt )t∈� is a
stochastic process with state space I , we let RW

y and SW
y respectively denote the hitting times

of the sets of values smaller than or equal to y and greater than or equal to y, i.e.

RW
y = inf{t ∈ � : Wt ≤ y} and SW

y = inf{t ∈ � : Wt ≥ y},
where inf ∅ ≡ ∞. Finally, to introduce the definition of level-crossing ordering of stochastic
processes, we let SW

x,y denote the hitting time of the set of values greater than or equal to y when
departing from state x.
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Definition 2.1. Let X = (Xt )t∈� and Y = (Yt )t∈� be stochastic processes with common
ordered state space I , and let ‘≤�’ be a stochastic order relation for random variables. Then
X is said to be slower in level crossing than Y in the �-sense, denoted X ≤�lc Y , if, for any
common initial state x, SY

x,y ≤� SX
x,y for all y ∈ I , i.e.

X ≤�lc Y ⇔ SY
x,y ≤� SX

x,y for all x, y ∈ I.

The level-crossing order in the usual sense, ‘≤stlc’, is the level-crossing order introduced in
[5]. With similar notation, if W = (Wt )t∈� is a stochastic process with ordered state space I ,
we let W≤y and W≥y , y ∈ I , respectively denote the restrictions of the process W to the state
spaces I≤y and I≥y in such a way that state y is made absorbing and all states of W greater
than or equal to y, or, respectively, smaller than or equal to y, are collapsed into state y. That is,

W
≤y
t =

{
Wt, t < SW

y ,

y, t ≥ SW
y ,

and W
≥y
t =

{
Wt, t < RW

y ,

y, t ≥ RW
y .

With this notation, we have the following two results on the level-crossing ordering of
stochastic processes.

Lemma 2.1. If X = (Xt )t∈� and Y = (Yt )t∈� are stochastic processes with ordered state
space I and ‘ ≤�’ is a stochastic order relation for random variables, then

X ≤�lc Y ⇔ X≤y ≤�lc Y≤y for all y ∈ I.

Proof. Note that if W = (Wt )t∈� is a stochastic process with ordered state space I , then,
for each x, y ∈ I , SW

x,y = SW≤z

x,y for all z ≥ max(x, y). As a consequence, if X = (Xt )t∈� and
Y = (Yt )t∈� are stochastic processes with state space I and ‘≤�’ is a stochastic order relation
for random variables, then

X ≤�lc Y ⇔ SY
x,y ≤� SX

x,y for all x, y ∈ I

⇔ SY≤z

x,y ≤� SX≤z

x,y for all x, y ∈ I, z ∈ I≥max{x,y}

⇔ SY≤z

x,y ≤� SX≤z

x,y for all z ∈ I, x, y ∈ I≤z

⇔ X≤z ≤�lc Y≤z for all z ∈ I.

Lemma 2.2. Let X = (Xt )t∈� and Y = (Yt )t∈� be stochastic processes with state space I ,
I ⊆ R, unbounded from below (i.e. I ∩ (−∞, z] 
= ∅, for all z ∈ R), whose paths are a.s.
bounded from below on any bounded time interval. Then

X≥z ≤stlc Y≥z for all z ∈ I �⇒ X ≤stlc Y.

Proof. Let X, Y , and I be as stated and choose x, y ∈ I arbitrarily. To simplify the notation,
set X0 = Y0 = x and X

≥z
0 = Y

≥z
0 = x for all z ∈ I≤x . Note that, for W = X, Y , t ≥ 0, and

z ∈ I≤x ,

P(SW
y > t) − P(RW

z ≤ t, SW
y > t) = P(RW

z > t, SW
y > t)

= P(RW≥z

z > t, SW≥z

y > t)

= P(SW≥z

y > t) − P(RW≥z

z ≤ t, SW≥z

y > t).
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Moreover, since the paths of W are a.s. bounded from below on any bounded time interval,

lim
z→−∞ P(RW

z ≤ t, SW
y > t) = lim

z→−∞ P(RW
z ≤ t) = 0,

lim
z→−∞ P(RW≥z

z ≤ t, SW≥z

y > t) = lim
z→−∞ P(RW≥z

z ≤ t) = 0.

Thus, by taking the limit as z → −∞ in the previous equation, we conclude that

P(SW
y > t) = lim

z→−∞ P(SW≥z

y > t), t ≥ 0.

Now suppose that X≥z ≤stlc Y≥z for all z ∈ I , meaning that P(SX≥z

y > t) ≤ P(SY≥z

y > t)

for all z ∈ I≤x and t ≥ 0. Using the last equality, it then follows that

P(SX
y > t) = lim

z→−∞ P(SX≥z

y > t) ≤ lim
z→−∞ P(SY≥z

y > t) = P(SY
y > t)

for all x, y ∈ I and t ≥ 0, i.e. X ≤stlc Y .

A result similar to the restatement of the previous lemma applied to DTMCs was proved in
the final part of the proof of Theorem 4.1 of [5], but there the definition of the process formed
from W by restricting the state space to I≥z is slightly different from ours, in that state z was
not made absorbing.

In order to integrate the results of Lemmas 2.1 and 2.2 into the next theorem, it is useful to
note that if W = (Wt )t∈� is a stochastic process with ordered state space I and x, y ∈ I are
such that x < y, then (W≥x)≤y = (W≤y)≥x = W [x,y], with W [x,y] denoting the process W

restricted to the state space I ∩ [x, y] in such a way that the states x and y are made absorbing,
all states of W smaller than or equal to x are collapsed into state x, and all states of W greater
than or equal to y are collapsed into state y.

Theorem 2.1. Let X = (Xt )t∈� and Y = (Yt )t∈� be stochastic processes with ordered state
space I , order-isomorphic to a subset of R unbounded from below, whose paths are a.s. bounded
from below on any bounded time interval. Then

X[x,y] ≤stlc Y [x,y] for all x, y ∈ I such that x ≤ y �⇒ X ≤stlc Y.

The next definition will be useful when we come to state some of the later results of the
paper.

Definition 2.2. Let � denote some property, and let W be a stochastic process on an ordered
state space I . Then W has the lower-� property if and only if the process W≤x has the �
property for all x ∈ I .

We next introduce some notation and properties of the IPICC stochastic orders that are used
in the rest of the paper. We let ‘≥�’ denote the reverse of ‘≤�’, and let ‘=�’ denote stochastic
equality in the �-sense. Order relation symbols are applied to compare either random variables
or their associated distribution functions, e.g. W ≤� Z is equivalent to FW ≤� FZ , for random
variables W and Z with respective distribution functions FW and FZ .

We recall that, given two random variables W and Z, the variable W is said to be smaller
than Z in the usual sense, W ≤st Z, if P(W ≥ x) ≤ P(Z ≥ x) for all x ∈ R. Accordingly,
given probability vectors p = (pi)i∈I and q = (qi)i∈I with indices in an ordered set I , we
say that p is smaller than q in the usual sense, p ≤st q, if

∑
i≥j pi ≤ ∑

i≥j qi for all j ∈ I .
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A stochastic order ‘≤�’ is closed for convolution if W1 + W2 ≤� Z1 + Z2 for pairs, (W1, W2)

and (Z1, Z2), of independent random variables such that Wi ≤� Zi, i = 1, 2. As the usual
order is closed for convolution and Gst is the set of all increasing functions, it follows that, for
nonnegative random variables W and Z,

W ≤a.s. Z ⇒ W ≤st Z ⇒ W ≤� Z for any IPICC order �, (2.1)

where ‘≤a.s.’ stands for almost-sure ordering.
Finally, we state an important universal property of integral stochastic orders that is re-

lated to their property (also universal) of being closed under mixture – the property MI in
[6, Definition 2.4.1].

Lemma 2.3. Let X and Y be two random variables defined on a common product probability
space � = �1 × �2, with �i = (�i, F i , Pi ), i = 1, 2, such that X(ω1, ·) and Y (ω1, ·) are
random variables on �2 for each ω1 ∈ �1.

Then X ≤� Y for each integral stochastic order ‘ ≤�’ such that

X(ω1, ·) ≤� Y (ω1, ·) �1-a.s. (2.2)

Proof. Let ≤� be an integral stochastic order with an associated set of functions G�. Then,
for W = X, Y and g ∈ G�, we have

E�[g(W)] =
∫

�1

E�2 [g(W(ω1, ·))] P1(dω1),

where, for each ω1 ∈ �1,

E�2 [g(W(ω1, ·))] =
∫

�2

g(W(ω1, ω2)) P2(dω2).

As, in view of (2.2), E�2 [g(X(ω1, ·))] ≤ E�2 [g(Y (ω1, ·))] �1-a.s., it thus follows that
E�[g(X)] ≤ E�[g(Y )] for any g ∈ G�; that is, X ≤� Y , as required.

We end the section with some notation used in the rest of the paper. Given a matrix A =
(Aik)i,k∈I , we let Ai· = (Aij )j∈I denote the row vector comprising row i of A. In addition,
if p denotes a probability vector and Z denotes a random variable or distribution, such as the
exponential distribution with rate α (Exp(α)), then we let p−1 and Z−1 respectively denote the
generalized inverses of the distribution functions associated with p and Z. Moreover, we let 1A

denote the indicator function of the statement A, i.e. 1A = 1 if A is true and 1A = 0 otherwise.
Furthermore, we let I be a set that is order-isomorphic to some bounded or unbounded interval
of Z, and let X = (Xt )t∈� and Y = (Yt )t∈� be stochastic processes with common state space I .

3. Discrete-time Markov chains

Irle and Gani [5, Theorem 4.1] asserted that the level-crossing ordering of two skip-free-to-
the-right DTMCs in the usual sense follows from the ordering in distribution of their transition
probabilities for any common initial state. In this section, we provide a sample-path proof of
this result in a slightly more general form, as we only require the slower DTMC involved in
the comparison to be skip-free to the right. For convenience, as the result will subsequently
be used to prove results involving SMPs, we will denote the DTMCs involved in the result by
X̄ and Ȳ .
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Theorem 3.1. Let X̄ and Ȳ be two DTMCs with state space I and transition probability
matrices P X and P Y , respectively. If X̄ is skip-free to the right and P X

i· ≤st P Y
i· for all i ∈ I ,

then X̄ ≤stlc Ȳ .

Proof. Let X̄ and Ȳ be two DTMCs on I (an ordered set order-isomorphic to some bounded
or unbounded interval of Z) such that P X

i· ≤st P Y
i· for all i ∈ I . For j ∈ I , let FX

j and
FY

j respectively denote the distribution functions associated with P X
j · and P Y

j · . Note that

FX
j (x) ≥ FY

j (x) for each j ∈ I and x ∈ R, since P X
j · ≤st P Y

j · for j ∈ I . Thus,

[FX
j ]−1(p) ≤ [FY

j ]−1(p) for all j ∈ I and p ∈ (0, 1).

We must prove that SȲ
i,l ≤st SX̄

i,l for all i, l ∈ I . As the result is necessarily true when
i = sup I and sup I ∈ I (since then SȲ

sup I,l = SX̄
sup I,l = 0), we will consider only the cases in

which i ∈ I . Thus, we let i ∈ I and l ∈ I be two arbitrary states and prove that SȲ
i,l ≤st SX̄

i,l by
constructing two processes, X̂ and Ŷ , on a common probability space �1 = (�1, F1, P1), such
that X̂ =st X̄|X̄0=i , Ŷ =st Ȳ |Ȳ0=i , and SŶ

l (ω1) ≤ SX̂
l (ω1) for all ω1 ∈ �1. The processes X̂ and

Ŷ are constructed from (Un)n∈N+ and (Vn)n∈N+ , two independent sequences of independent
uniform(0, 1) random variables defined on �1.

The construction of Ŷ is similar to the usual generation (i.e. simulation) of a DTMC from
a sequence of independent and identically distributed uniform random variables, as presented,
for example, in [7]. That is, for each ω1 ∈ �1, the sequence (Un(ω1))n∈N+ is used to construct
Ŷ (ω1) recursively in the following way:

Ŷ0(ω1) = i, Ŷm+1(ω1) = [FY

Ŷm(ω1)
]−1(Um+1(ω1)), m ∈ N.

As regards the construction of X̂(ω1), we will use both (Un(ω1))n∈N+ and (Vn(ω1))n∈N+
to simultaneously generate X̂(ω1) and an increasing sequence of times (Tn(ω1))n∈N such that
T0(ω1) = 0 and, if Tm(ω1) is finite for some m ∈ N,

X̂Tm(ω1) = Ŷm(ω1),

Tm+1(ω1) = inf{n > Tm(ω1) : X̂n(ω1) ≥ Ŷm+1(ω1)},
meaning that X̂n(ω1) < Ŷm+1(ω1) when Tm(ω1) < n < Tm+1(ω1). Specifically, we let
X̂0(ω1) = i and T0(ω1) = 0 and then proceed recursively as follows. When Tm(ω1), m ∈ N,
is finite, we first let

X̂Tm+1(ω1) = [FX

X̂Tm(ω1)
]−1(Um+1(ω1))

and then, starting with n = Tm(ω1) + 1 and while X̂n(ω1) < Ŷm+1(ω1), let

X̂n+1(ω1) = [FX

X̂n(ω1)
]−1(Vn+1(ω1))

and increment n by one unit. If this cycle ends then Tm+1(ω1) is (set equal to) the value of n

at the end of the cycle, m is incremented by one unit, and the procedure repeated. Otherwise,
Tj (ω1) is set equal to ∞ for j ≥ m + 1.

Note that, by construction, X̂ =st X̄|X̄0=i and Ŷ =st Ȳ |Ȳ0=i and, moreover, since X̄ is skip-
free to the right, X̂(ω1) is skip-free to the right for all ω1 ∈ �1. Furthermore, Tm(ω1) ≥ m for
all m ∈ N and, if Tm(ω1) is finite and m < inf{n : Ŷn(ω1) = sup I }, then

X̂Tj
(ω1) = Ŷj (ω1), j = 0, 1, . . . , m,

X̂k(ω1) < Ŷj+1(ω1), Tj (ω1) < k < Tj+1(ω1), j ∈ {0, 1, . . . , m}. (3.1)
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We now argue that SX̂
l (ω1) ≥ SŶ

l (ω1). As the result is necessarily true when either i ≥ l

(since then SX̂
l (ω1) = SŶ

l (ω1) = 0) or SX̂
l (ω1) = ∞, we assume for the rest of the proof

that SX̂
l (ω1) = n for some n ∈ N+, and let m < n be the natural number such that Tm(ω1) <

n ≤ Tm+1(ω1). Then, in view of (3.1) and the fact that X̂ is skip-free to the right, it follows
that

SX̂
l (ω1) = n ≥ Tm(ω1) + 1 ≥ m + 1 = SŶ

l (ω1).

Thus, SX̂
l (ω1) ≥ SŶ

l (ω1), as required.

The previous result will be used in the next section to provide sample-path-based proofs of
results for the level-crossing ordering of SMPs in the IPICC order senses.

4. Semi-Markov processes

In this section, we use a sample-path approach to establish sufficient conditions for the
level-crossing ordering of two SMPs in the case in which the slower of the compared SMPs
is skip-free to the right. The derived results are an extension of [3, Theorem 2.1], which
is itself a generalization of [5, Theorem 4.1] (which corresponds to Theorem 3.1 with the
stronger assumption that both X̄ and Ȳ are lower-regular skip-free-to-the-right DTMCs). Irle [3,
Theorem 2.1] established that the level-crossing ordering (in the usual sense) of two skip-free-
to-the-right SMPs follows from both the ordering in distribution of their transition probabilities
from states and the reversed order (in the usual sense) of the holding times in states before the
processes make transitions.

It is convenient to introduce some notation for SMPs. Let P = (Pij )i,j∈I denote a transition
probability matrix and F = (F(i,j))i,j∈I a matrix of distribution functions such that if Pij = 0,
then F(i,j)(x) = 1, x ∈ R+. We then say that the process W = (Wt )t∈R+ with state space I is
an SMP with parametrization (P , F ) if Wt = Zn, Sn ≤ t < Sn+1, for some Markov renewal
process (Z, S) = (Zn, Sn)n∈N with phase space I and parametrization (P , F ), i.e.

P(Zn+1 = j, Sn+1 − Sn ≤ t | Zn = i) = PijF(i,j)(t), i, j ∈ I, t ∈ R+.

Thus, W is an SMP with kernel Q = P • F , where ‘•’ denotes the Schur or element-wise
multiplication of matrices.

We next state and prove the main result of the paper, which improves on [3, Theorem 2.1]
by removing the stochastic ordering conditions involving the transition probabilities from
the highest state (if it exists), removing the lower regularity and the skip-free to the right
properties of the faster of the two processes, and relaxing the conditions on the comparison of
the times between transitions in X and Y (namely that FX

(a,b) ≥st FY
(a,c) for all a, b, c ∈ I ) to

FX
(a,b) ≥st FY

(a,c) for all a ∈ I and b, c ∈ I such that b ≤ c. In fact, we establish an analogous
result for the level-crossing ordering of SMPs in the IPICC order senses.

Theorem 4.1. Let X and Y be SMPs with state space I and parametrizations (P X, FX) and
(P Y , F Y ) such that

P X
i· ≤st P Y

i· , i ∈ I , (4.1)

and, for some IPICC order �,

FX
(a,b) ≥� F Y

(a,c) (4.2)

holds simultaneously for all a ∈ I and b, c ∈ I, b ≤ c, such that P X
ab P Y

ac > 0.
If X is skip-free to the right and lower regular, then X ≤�lc Y .
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Proof. Let X and Y be as stated, with the condition (4.2) holding for some IPICC order �.
We must prove that SY

i,l ≤� SX
i,l for all i, l ∈ I . Thus, we let i, l ∈ I be two arbitrary states

and consider first the case in which X is regular; the case in which X is only lower regular
will be addressed at the end of the proof. To prove the desired result, we will construct two
processes, X� and Y �, on a common product probability space (�, F , P) = �1 × �2, with
�i = (�i, Fi , Pi ), i = 1, 2, such that X� =st X|X0=i , Y � =st Y |Y0=i , and SY�

l ≤� SX�

l . For
this purpose, we again let (Un)n∈N+ and (Vn)n∈N+ denote independent sequences of independent
uniform(0, 1) random variables defined on �1. Furthermore, we let (An)n∈N+ and (Bn)n∈N+
denote independent sequences of independent uniform(0, 1) random variables defined on �2.

For ω = (ω1, ω2) ∈ �, we use (Un(ω1))n∈N+ and (Vn(ω1))n∈N+ to construct processes
X̂(ω1) and Ŷ (ω1) on �1, such that X̂ and Ŷ are distributed equally to X̄|X̄0=i and Ȳ |Ȳ0=i (exactly
as in the proof of Theorem 3.1), where X̄ = (X̄n)n∈N and Ȳ = (Ȳn)n∈N are embedded DTMCs
of Markov renewal processes with parametrizations (P X, FX) and (P Y , F Y ), respectively.
Thus, we will again employ the notation related to X̂(ω1) and Ŷ (ω1) in the proof of Theorem 3.1.
At the same time, the sequences (An(ω2))n∈N+ , (Bn(ω2))n∈N+ , X̂(ω1) = (X̂n(ω1))n∈N, and
Ŷ (ω1) = (Ŷn(ω1))n∈N are used to generate the sequences HX�

(ω) = (HX�

n (ω))n∈N+ and
HY�

(ω) = (HY�

n (ω))n∈N+ , which consist of the time intervals between state transitions in
X�(ω) and Y �(ω), in such a way that HX�

n and HY�

n have the respective distributions of the
corresponding time intervals between state transitions in X and Y .

Specifically, we construct HY�
(ω) recursively, using the sequences (An(ω2))n∈N+ and

(Ŷn(ω1))n∈N, as follows:

HY�

n+1(ω) = [FY

(Ŷn,Ŷn+1)(ω1)
]−1(An+1(ω2)), n ∈ N. (4.3)

For the construction of HX�
(ω), we will use the random sequences (An(ω2))n∈N+ and

(Bn(ω2))n∈N+ and the increasing sequence of times (Tn(ω1))n∈N used, as explained in the
proof of Theorem 3.1, to construct X̂(ω1). Starting with m = 0 and T0(ω1) = 0, we proceed
recursively, as follows. When Tm(ω1), m ∈ N, is finite, we let

HX�

Tm+1(ω) = [FX

(X̂Tm ,X̂Tm+1)(ω1)
]−1(Am+1(ω2)) (4.4)

and, for those n such that Tm(ω1) < n < Tm+1(ω1), we let

HX�

n+1(ω) = [FX

(X̂n,X̂n+1)(ω1)
]−1(Bn+1(ω2)) (4.5)

and increment m by one unit. Finally, we define X�(ω) and Y �(ω) by letting

W�
t (ω) = Ŵn(ω1), SW�

n (ω) ≤ t < SW�

n+1(ω), W = X, Y, (4.6)

with SW�

0 (ω) = 0 and SW�

m+1(ω) = SW�

m (ω) + HW�

m+1(ω), m ∈ N.
Note that we have X� =st X|X0=i and Y � =st Y |Y0=i , by construction, and (3.1) holds,

meaning that

X̂Tn(ω1) = Ŷn(ω1) ∧ X̂Tn+1(ω1) ≤ Ŷn+1(ω1) for ω1 ∈ �1 and n < NŶ (ω1), (4.7)

where NŶ (ω1) = inf{m : Ŷm(ω1) = sup I }. Since (An+1)n∈N is a sequence of independent
and identically uniform(0, 1)-distributed random variables defined on �2, the random variables
HX�

Tn+1(ω1, ·) and HY�

n+1(ω1, ·), n < NŶ (ω1), are independent and have respective distribution
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functions FX

(X̂Tn ,X̂Tn+1)(ω1)
and FY

(Ŷn,Ŷn+1)(ω1)
, in view of (4.4) and (4.3). By (4.7) and (4.2), this

implies that

HX�

Tn+1(ω1, ·) ≥� HY�

n+1(ω1, ·) for ω1 ∈ �1 and n < NŶ (ω1),

and, as the IPICC orderings are closed for convolution,

k∑
n=0

HX�

Tn+1(ω1, ·) ≥�

k∑
n=0

HY�

n+1(ω1, ·), ω1 ∈ �1, k < NŶ (ω1). (4.8)

Now assume that X is regular. Let �
(l)
1 = {ω1 ∈ �1 : SX̂

l (ω1) < ∞} and �(l) = �
(l)
1 × �2.

As, by construction, SX�

l (ω) < ∞ for any ω such that S X̂
l (ω1) < ∞, it follows that SX�

l (ω) <∞
for any ω ∈ �(l). Furthermore, as X� is regular and SX̂

l (ω1) = ∞ for all ω1 ∈ �1 \ �
(l)
1 , we

conclude that SX�

l (ω) = ∞ for almost any ω ∈ � \ �(l). Thus,

∞ = SX�

l (ω) ≥ SY�

l (ω) for almost any ω ∈ � \ �(l) = (�1 \ �
(l)
1 ) × �2.

As SX�

l (ω) ≥ SY�

l (ω) is necessarily true when i ≥ l (since then SX�

l (ω) = SY�

l (ω) = 0), we
now assume that i < l and ω1 ∈ �

(l)
1 . Then, by construction and in view of (3.1), it follows

that
1 ≤ SŶ

l (ω1) ≤ T
SŶ

l −1
(ω1) + 1 ≤ SX̂

l (ω1) < ∞.

Thus, using (2.1), (4.8), and the fact that SX�

l (ω) = ∑SX̂
l (ω1)

n=1 HX�

n (ω), we conclude that

SX�

l (ω) ≥
T

SŶ
l

(ω1)−1
+1∑

n=1

HX�

n (ω)

=
SŶ

l (ω1)−2∑
m=0

Tm+1(ω1)∑
n=Tm(ω1)+1

HX�

n (ω) + HX�

T
SŶ
l

−1
+1(ω)

≥
SŶ

l (ω1)−1∑
m=0

HX�

Tm+1(ω1, ·)

≥�

SŶ
l (ω1)−1∑
m=0

HY�

m+1(ω1, ·)

= SY�

l (ω1, ·). (4.9)

Accordingly, in view of (2.1) and the results obtained upon assuming that X is regular, we
conclude that SX�

l (ω1, ·) ≥� SY�

l (ω1, ·) �1-a.s. By Lemma 2.3, this implies that SX�

l ≥� SY�

l ,
which is equivalent to having SY

i,l ≤� SX
i,l , as required.

If, instead of being regular, the process X is only lower regular, then X≤m is regular for all
m ∈ I . By applying this result to the regular processes X≤m and Y≤m, m ∈ I , instead of the
processes X and Y , we conclude that X≤m ≤�lc Y≤m for all m ∈ I when (4.1) and (4.2) hold.
In view of Lemma 2.1, this is equivalent to having X ≤�lc Y , which concludes the proof of the
theorem.
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As we state in the next result, the conditions (4.2) in Theorem 4.1 – on the stochastic ordering
of the holding times between transitions – can be further relaxed, at the cost of obtaining
conditions that are more difficult to check.

Theorem 4.2. Let X and Y be SMPs with state space I and parametrizations (P X, FX) and
(P Y , F Y ), respectively, such that both (4.1) holds, i.e. P X

i· ≤st P Y
i· , i ∈ I , and, for some IPICC

order �, the condition

FX
(a,b) ⊕ FX

(b,b+1) ⊕ FX
(b+1,b+2) ⊕ · · · ⊕ FX

(min(c,a+1)−1,min(c,a+1)) ≥� F Y
(a,c), (4.10)

where ‘ ⊕’ denotes convolution, holds simultaneously for all a ∈ I and b, c ∈ I, b ≤ c, such
that

P Y
ac > 0 and P X

ab

min(c,a+1)∏
k=b+1

P X
k−1,k > 0.

If X is skip-free to the right and lower regular, then X ≤�lc Y .

Proof. Let X and Y be as stated, with the condition (4.10) holding for some IPICC order �.
We must prove that SY

i,l ≤� SX
i,l for all i, l ∈ I . To this end, we let i, l ∈ I be two arbitrary

states and construct two processes, X� and Y �, on a common product probability space

� = (�, F , P) = �1 × �2 × �3

with �i = (�i, Fi , Pi ), i = 1, 2, 3, such that X� =st X|X0=i , Y � =st Y |Y0=i , and SY�

l ≤� SX�

l .
As in Theorem 4.1, let (Un)n∈N+ and (Vn)n∈N+ be independent sequences of independent

uniform(0, 1) random variables defined on �1, and let (An)n∈N+ and (Bn)n∈N+ be independent
sequences of independent uniform(0, 1) random variables defined on �2. Moreover, let

R
(a,b,c)
(m,t) = (R

(a,b,c)
(m,t,0), R

(a,b,c)
(m,t,1), . . . , R

(a,b,c)
(m,t,min(c,a+1)−b))

where m ∈ N+, t ∈ R+, and a, b, c ∈ I, b ≤ c, be independent random quantities defined on
�3 such that

R
(a,b,c)
(m,t) =st

[
(ZX

(a,b), Z
X
(b,b+1), . . . , Z

X
(min(c,a+1)−1,min(c,a+1)))

∣∣∣∣ ZX
(a,b)+

min(c,a+1)∑
j=b+1

ZX
(j−1,j) = t

]
,

where the ZX
(j,k) are independent random variables with distribution functions FX

(j,k).
For ω = (ω1, ω2, ω3) ∈ �, we use (Un(ω1))n∈N+ and (Vn(ω1))n∈N+ to construct processes

X̂(ω1) and Ŷ (ω1) on �1, and use (An(ω2))n∈N+ along with Ŷ (ω1) = (Ŷn(ω1))n∈N to con-
struct a process HY�

(ω) = (HY�

n (ω))n∈N+ , exactly as in the proof of Theorem 4.1. For the
construction of HX�

(ω) = (HX�

n (ω))n∈N+ we will use the random sequences (An(ω2))n∈N+
and (Bn(ω2))n∈N+ , the random variables R

(a,b,c)
(m,t) (ω3), and the increasing sequence of times

(Tn(ω1))n∈N used to construct X̂(ω1) (see the proof of Theorem 3.1).
Starting with m = 0 and T0(ω1) = 0, we proceed recursively, as follows. When Tm(ω1) is

finite, we let
Mm(ω1) = min(Ŷm+1(ω1), X̂Tm(ω1) + 1) − X̂Tm+1(ω1)

and define
I �
m,k(ω1) = inf {n ≥ Tm(ω1) + 1 : X̂n(ω1) ≥ X̂Tm+1(ω1) + k}
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for k = 0, 1, . . . , Mm(ω1). Note that I �
m,k(ω1) is the first time after Tm(ω1) at which X̂(ω1)

reaches the level X̂Tm+1(ω1) + k and, since X̂(ω1) is skip-free to the right, I �
m,k(ω1) is increasing

in k and takes values in {Tm(ω1) + 1, Tm(ω1) + 2, . . . , Tm+1(ω1)}. Then, with

(a, b, c) = (X̂Tm(ω1), X̂Tm+1(ω1), Ŷm+1(ω1)),

we consecutively let

Cm+1(ω1, ω2) = [FX
(a,b) ⊕ FX

(b,b+1) ⊕ · · · ⊕ FX
(min(c,a+1)−1,min(c,a+1))]−1(Am+1(ω2)),

(4.11)

(HX�

I�
m,0(ω1)

(ω), HX�

I�
m,1(ω1)

(ω), . . . , HX�

I�
m,Mm

(ω1)
(ω)) = R

(a,b,c)
(m,Cm+1(ω1,ω2))

(ω3),

which specifies the construction of HX�

n (ω) for

n ∈ I �
m(ω1) :=

Mm(ω1)⋃
k=0

{I �
m,k(ω1)}.

For n such that Tm(ω1) ≤ n < Tm+1(ω1) and (n+1) /∈ I �
m(ω1), we instead make the assignment

(4.5). After doing this, we increment m by one unit and continue with the recursion procedure.
Finally, we define X�(ω) and Y �(ω) as in the proof of Theorem 4.1 (see (4.6)).

Note that, by construction, we have X� =st X|X0=i and Y � =st Y |Y0=i and, as in
Theorem 4.1, (4.7) holds. Since (An+1)n∈N is a sequence of independent and identically
uniform(0, 1)-distributed random variables defined on �2, the random variables Cm+1(ω1, ·),
m < NŶ (ω1), are independent and have distribution functions

FX
(a,b) ⊕ FX

(b,b+1) ⊕ FX
(b+1,b+2) ⊕ · · · ⊕ FX

(min(c,a+1)−1,min(c,a+1)),

with
(a, b, c) = (X̂Tm(ω1), X̂Tm+1(ω1), Ŷm+1(ω1)),

whereas, by the same line of reasoning, the random variables HY�

m+1(ω1, ·), m < NŶ (ω1), are
independent and have distribution functions FY

(Ŷm,Ŷm+1)(ω1)
= FY

(a,c). By (4.7), (4.11), (4.3),
and (4.10), this implies that

Cm+1(ω1, ·) ≥� HY�

m+1(ω1, ·) for ω1 ∈ �1 and m < NŶ (ω1),

and that

k∑
m=0

Cm+1(ω1, ·) ≥�

k∑
m=0

HY�

m+1(ω1, ·), ω1 ∈ �1, k < NŶ (ω1), (4.12)

since the IPICC orderings are closed for convolution.
We now assume that X is regular. For l ∈ I , let �

(l)
1 = {ω1 ∈ �1 : SX̂

l (ω1) < ∞} and
�(l) = �

(l)
1 × �2 × �3. As, by construction, SX�

l (ω) < ∞ for any ω such that S X̂
l (ω1) < ∞,

it follows that SX�

l (ω) < ∞ for any ω ∈ �(l). Moreover, as X� is regular and SX̂
l (ω1) = ∞

for all ω1 ∈ �1 \ �
(l)
1 , we conclude that SX�

l (ω) = ∞ for almost any ω ∈ � \ �(l). Thus,
∞ = SX�

l (ω) ≥ SY�

l (ω) for almost any ω ∈ � \ �̂(l) = (�1 \ �
(l)
1 ) × �2 × �3. As
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SX�

l (ω) ≥ SY�

l (ω) is necessarily true when i ≥ l (since then SX�

l (ω) = SY�

l (ω) = 0), in the
remainder of the proof we assume that i < l and ω1 ∈ �

(l)
1 , in which case Tm(ω1) ≥ m for all

m ∈ N, SX̂
l (ω1) ≥ T

SŶ
l −1

(ω1) + 1, and SŶ
l (ω1) > 0.

Since

SX�

l (ω1, ·) =
SX̂

l (ω1)∑
n=1

HX�

n (ω1, ·),

by using (4.12) we conclude that

SX�

l (ω1, ·) =
SŶ

l (ω1)−2∑
m=0

Tm+1(ω1)∑
n=Tm(ω1)+1

HX�

n (ω1, ·) +
SX̂

l (ω1)∑
n=T

SŶ
l

−1
(ω1)+1

HX�

n (ω)

≥
SŶ

l (ω1)−1∑
m=0

∑
n∈I �

m(ω1)

HX�

n (ω1, ·)

=
SŶ

l (ω1)−1∑
m=0

Cm+1(ω1, ·)

≥�

SŶ
l (ω1)−1∑
m=0

HY�

m+1(ω1, ·)

= SY�

l (ω1, ·).
By repeating the argument following (4.9) in the proof of Theorem 4.1, we find that Theorem 4.2
now follows.

5. Continuous-time Markov chains

In this section, we derive sufficient conditions for the level-crossing ordering (in the usual
sense) of CTMCs for the case in which the slower of the compared CTMCs is skip-free to
the right. Similar to the sufficient conditions derived in the previous section for the compar-
ison of SMPs, these conditions for CTMCs involve only comparisons of transition rates and
probabilities for common departure states.

We recall that a CTMC W with state space I and generator matrix Q = (qij )i,j∈I , whose
corresponding transition rate from state i is qi ≡ −qii = ∑

j 
=i qij , may be interpreted
as an SMP with one-step embedded transition probability matrix P = (Pij )i,j∈I , where
Pij = (1 − δij )qij /qi if qi > 0 and Pij = δij if qi = 0, and holding times in state i

exponentially distributed with rate qi , irrespective of the state visited at the next transition.
Moreover,

∑
j≥k Pij = 1{k≤i} if qi = 0 and

∑
j≥k

Pij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j≥k

qij

qi

, k > i,

1 +
∑
j≥k

qij

qi

, k ≤ i,
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otherwise. In addition, if W is a CTMC with ordered state space I and generator matrix Q,
and x, y ∈ I are such that x ≤ y, then W [x,y] is a CTMC with state space I [x,y] and generator
matrix QW [x,y]

such that qW [x,y]
ij = 0 for i = x, y and

qW [x,y]
ij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

qij , x < i, j < y,∑
k≥y

qik, x < i < j = y,

∑
k≤x

qik, x = j < i < y.

(5.1)

The next result follows from a convenient application of Theorem 4.1 to CTMCs.

Theorem 5.1. Let X and Y be CTMCs with state space I , generator matrices QX and QY ,
vectors qX and qY of transition rates from states, and one-step embedded transition probability
matrices P X and P Y , respectively. Then X ≤stlc Y if either

(i) X is skip-free to the right and lower regular, and

qX
i ≤ qY

i and P X
i· ≤st P Y

i· for all i ∈ I ; (5.2)

or

(ii) X andY are lower regular, X is skip-free to the right, and there exists a vector ᾱ = (αi)i∈I ,
with entries in (0, 1], such that∑

n≥m

qX
in ≤ αi

∑
n≥m

qY
in for all i ∈ I and m ∈ I. (5.3)

Proof. Let X and Y be CTMCs as stated. We treat the cases (i) and (ii) separately.
Case (i). Suppose that X is skip-free to the right and lower regular, and that X and Y are

such that (5.2) holds. Then, as (5.2) is a direct translation of the conditions of Theorem 4.1, for
the usual stochastic order, with the CTMCs X and Y viewed as SMPs, it follows that X ≤stlc Y .

Case (ii). Suppose that X and Y are lower-regular CTMCs and that (5.3) holds for a given
vector ᾱ = (αi)i∈I , αi ∈ (0, 1]. For each x, y ∈ I such that x ≤ y, the processes X[x,y] and
Y [x,y] are CTMCs with respective generator matrices QX[x,y]

and QY [x,y]
such that, in view of

(5.1),
∑

n≥m qX[x,y]
in ≤ αi

∑
n≥m qY [x,y]

in for all i ∈ I [x,y) and m ∈ I [x,y]. Thus, by appealing
to Theorem 2.1 we may, without loss of generality, assume that X and Y have a finite state
space, i.e. I is bounded. As a consequence, X and Y are uniformizable. Thus, we consider the
uniformized CTMCs X and Y with state-dependent uniformization rates in such a way that if,
at a certain instant, X and Y are in states j and k, respectively, then X and Y are uniformized
with rates αjλj and λk , respectively, with λn ≥ max{qY

n , qX
n /αn} being positive.

More specifically, we let λ = (λn)n∈I and consider the uniformized CTMCs X and Y with
one-step embedded transition probability matrices

P̂ X = I + [diag(α • λ)]−1QX and P̂ Y = I + [diag(λ)]−1QY ,

where α = (αi)i∈I with αsup I chosen arbitrarily in (0, 1] if I is bounded. As the conditions
(5.3) imply that P̂ X

i. ≤st P̂ Y
i. for all i ∈ I , and αiλi ≤ λi for all i ∈ I , the result of case (i) for

the uniformized CTMCs X and Y gives X ≤stlc Y , as required.
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In the proof of the previous result, we have used state-dependent uniformization rates for both
CTMCs under consideration. This is similar to an idea suggested in a personal communication
by Irle [4]. For uniformizable skip-free-to-the-right CTMCs, Theorem 5.1 generalizes [2,
Theorem 3.1] in two ways: it requires only the slower CTMC to be skip-free to the right, rather
than both of them, and relaxes the conditions∑

n≥m

qX
in ≤ α

∑
n≥m

qY
in for all i ∈ I and m ∈ I,

for some constant α ∈ (0, 1], to (5.3).
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