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UNIVERSAL CODING AND PREDICTION
ON ERGODIC RANDOM POINTS

ŁUKASZ DĘBOWSKI AND TOMASZ STEIFER

Abstract. Suppose that we have a method which estimates the conditional probabilities of
some unknown stochastic source and we use it to guess which of the outcomes will happen.
We want to make a correct guess as often as it is possible. What estimators are good for
this? In this work, we consider estimators given by a familiar notion of universal coding for
stationary ergodic measures, while working in the framework of algorithmic randomness,
i.e., we are particularly interested in prediction of Martin-Löf random points. We outline the
general theory and exhibit some counterexamples. Completing a result of Ryabko from 2009
we also show that universal probability measure in the sense of universal coding induces a
universal predictor in the prequential sense. Surprisingly, this implication holds true provided
the universal measure does not ascribe too low conditional probabilities to individual symbols.
As an example, we show that the Prediction by Partial Matching (PPM) measure satisfies this
requirement with a large reserve.

§1. Introduction. A sequence of outcomes X1, X2, ... coming from a finite
alphabet is drawn in a sequential manner from an unknown stochastic
source P. At each moment a finite prefix Xn1 = (X1, X2, ... , Xn) is available.
The forecaster has to predict the next outcome using this information. The
task may take one of the two following forms. In the first scenario, the
forecaster simply makes a guess about the next outcome. The forecaster’s
performance is then assessed by comparing the guess with the outcome. This
scenario satisfies the weak prequential principle of Dawid [12]. In the second
case, we allow the forecaster to be uncertain, namely, we ask them to assign a
probability value for each of the outcomes. These values may be interpreted
as estimates of the conditional probabilities P(Xn+1|Xn1 ). Various criteria of
success may be chosen here such as the quadratic difference of distributions
or the Kullback–Leibler divergence. The key aspect of both problems is
that we assume limited knowledge about the true probabilities governing
the process that we want to forecast. Thus, an admissible solution should
achieve the optimal results for an arbitrary process from some general class.
For clarity, term “universal predictor” will be used to denote the solution of
guessing the outcome, while the solution of estimation of probabilities will
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be referred to as “universal estimator,” “universal measure,” or “universal
code” depending on the exact meaning.

The accumulated literature on universal coding and universal prediction
is vast, even when we restrict ourselves to interactions between coding and
prediction (see, e.g., [1, 20, 30, 44, 45, 50, 53]). To begin, it is known that for
a fixed stochastic source P, the optimal prediction is given by the predictor
induced by P, i.e., the informed scheme which predicts the outcome with the
largest conditional probabilityP(Xn+1|Xn1 ) [1]. In particular, we may expect
that a good universal estimator should induce a good universal predictor.
That being said, the devil is hidden in the details such as what is meant by a
“good” universal code, measure, estimator, or predictor.

In this paper, we will assume that the unknown stochastic source P lies in
the class of stationary ergodic measures. Moreover, we are concerned with
measures which are universal in the information-theoretic sense of universal
coding, i.e., the rate of Kullback–Leibler divergence of the estimate and
the true measure P vanishes for any stationary ergodic measure. As for
universal predictors, we assume that the rate of correct guesses is equal to
the respective rate for the predictor induced by measure P. In this setting, a
universal measure need not belong to the class of stationary ergodic measures
and can be computable, which makes the problem utterly practical. Our
framework should be contrasted with universal prediction à la Solomonoff
for left-c.e. semimeasures where the universal semimeasure belongs to the
class and is not computable [50]. In general, existence of a universal measure
for an arbitrary class of probability measures can be linked to separability
of the considered class [48].

Now, we can ask the question whether a universal measure in the above
sense of universal coding induces a universal predictor. Curiously, this simple
question has not been unambiguously answered in the literature (see [37]
for a recent survey), although a host of related propositions were compiled
by Suzuki [53] and Ryabko [44, 45] (see also [46]). It was shown by Ryabko
[45] (see also [46]) that the expected value of the average absolute difference
between the conditional probability for a universal measure and the true
value P(Xn+1|Xn1 ) converges to zero for any stationary ergodic measure P.
Ryabko [45] showed also that there exists a universal measure that induces a
universal predictor. As we argue in this paper, this result does not solve the
general problem.

Completing works [44, 45, 53], in this paper we will show that any universal
measure R in the sense of universal coding that additionally satisfies a
uniform bound

– logR(Xn+1|Xn1 ) ≤ �n
√
n/ ln n, lim

n→∞
�n = 0 (1)

induces a universal predictor, indeed. On our way, we will use the Breiman
ergodic theorem [7] and the Azuma inequality for martingales with bounded
increments [3], which is the source of condition (1). It is left open whether this
condition is necessary. Fortunately, condition (1) is satisfied by reasonable
universal measures such as the Prediction by Partial Matching (PPM)
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measure [10, 44, 47], which we also show in this paper. It may be interesting
to exhibit universal measures for which this condition fails. There is a large
gap between bound (1) and the respective bound for the PPM measure,
which begs for further research.

To add more weight and to make the problem interesting from a com-
putational perspective, we consider this topic in the context of algorithmic
randomness and we seek for effective versions of probabilistic statements.
Effectivization is meant as the research program of reformulating almost
sure statements into respective statements about algorithmically random
points, i.e., algorithmically random infinite sequences. Any plausible class
of random points is of measure one (see [18]), and the effective versions
of theorems substitute phrase “almost surely” with “on all algorithmically
random points.” Usually, randomness in the Martin-Löf sense is the desired
goal [35]. In many cases, the standard proofs are already constructive,
and effectivization of some theorems asks for developing new proofs, but
sometimes the effective versions are false.

In this paper, we will successfully show that the algorithmic randomness
theory is mature enough to make the theory of universal coding and
prediction for stationary ergodic sources effective in the Martin-Löf sense.
The main keys to this success are: the framework for randomness with respect
to uncomputable measures by Reimann and Slaman [42, 43], the effective
Birkhoff ergodic theorem [6, 21, 55], an effective version of Breiman’s ergodic
theorem [7], and an effective Azuma theorem, which follows from the Azuma
inequality [3] and the result of Solovay (unpublished; see [18])—which we
call here the effective Borel–Cantelli lemma. As a little surprise, there is also
a negative result concerning universal forward estimators—Theorem 3.13.
Not everything can be made effective.

The organization of the paper is as follows. In Section 2, we discuss
preliminaries: notation (Section 2.1), stationary and ergodic measures
(Section 2.2), algorithmic randomness (Section 2.3), and some known
effectivizations (Section 2.4). Section 3 contains main results concerning:
universal coding (Section 3.1), universal prediction (Section 3.2), universal
predictors induced by universal backward estimators (Section 3.3) and by
universal codes (Section 3.4), as well as the PPM measure (Section 3.5),
which constitutes a simple example of a universal code and a universal
predictor.

§2. Preliminaries. In this section we familiarize the readers with our
notation, we recall the concepts of stationary and ergodic measures, we
discuss various sorts of algorithmic randomness, and we recall known facts
from the effectivization program.

2.1. Notation. Throughout this paper, we consider the standard measur-
able space (XZ,X Z) of two-sided infinite sequences over a finite alphabet
X = {a1, ... , aD}, where D ≥ 2. (Occasionally, we also apply the space of
one-sided infinite sequences (XN,XN).) The points of the space are (infinite)
sequences x = (xi)i∈Z ∈ XZ. We also denote (finite) strings xkj = (xi)j≤i≤k ,
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where xj–1
j = � equals the empty string. By X∗ =

⋃
n≥0 X

n we denote the
set of strings of an arbitrary length including the singleton X0 = {�}. We
use random variables Xk((xi)i∈Z) := xk . Having these, the �-field X Z is
generated by cylinder sets (X |�|

–|�|+1 = ��) for all �, � ∈ X∗. We tacitly assume

that P and R denote probability measures on (XZ,X Z). For any probability
measure P, we use the shorthand notations P(xn1 ) := P(Xn1 = xn1 ) and
P(xnj |x

j–1
1 ) := P(Xnj = xnj |X

j–1
1 = xj–1

1 ). Notation logx denotes the binary
logarithm, whereas lnx is the natural logarithm.

2.2. Stationary and ergodic measures. Let us denote the measurable
shift operation T ((xi)i∈Z) := (xi+1)i∈Z for two-sided infinite sequences
(xi)i∈Z ∈ XZ.

Definition 2.1 (Stationary measures). A probability measure P on
(XZ,X Z) is called stationary if P(T –1(A)) = P(A) for all events A ∈ X Z.

Definition 2.2 (Ergodic measures). A probability measure P on (XZ,X Z)
is called ergodic if for each event A ∈ X Z such that T –1(A) = A we have
either P(A) = 1 or P(A) = 0.

The class of stationary ergodic probability measures has various nice
properties guaranteed by the collection of fundamental results called ergodic
theorems. Typically stationary ergodic measures are not computable (e.g.,
consider independent biased coin tosses with a common uncomputable bias)
but they allow for computable universal coding and computable universal
prediction schemes can achieve optimal error rates, as it will be explained in
Section 3.

2.3. Sorts of randomness. Now let us discuss some computability notions.
In the following, computably enumerable is abbreviated as c.e. Given a real r,
the set {q ∈ Q : q < r} is called the left cut of r. A real function f with
arguments in a countable set is called computable or left-c.e. respectively if
the left cuts of f(�) are uniformly computable or c.e. given an enumeration
of �. For an infinite sequence s ∈ XZ, we say that real functions f are s-
computable or s-left-c.e. if they are computable or left-c.e. with oracle s.
Similarly, for a real function f taking arguments in XZ, we will say that f is
s-computable or s-left-c.e. if left cuts of f(x) are uniformly computable or
c.e. with oracles x ⊕ s := (... , x–1, s–1, x0, s0, x1, s1, ...). This induces in effect
s-computable and s-left-c.e. random variables and stochastic processes on
(XZ,X Z), where the values of an s-computable (s-left-c.e.) variable on a
point x are (x ⊕ s)-computable (s-left-c.e.) uniformly in x and the values
of s-computable (s-left-c.e.) process Xi (with natural or integer i) are s-
computable (s-left-c.e.).

For stationary ergodic measures, we need a definition of algorithmically
random points with respect to an arbitrary, i.e., not necessarily computable
probability measure on (XZ,X Z). A simple definition thereof was proposed
by Reimann [42] and Reimann and Slaman [43]. This definition is
equivalent to earlier approaches by Levin [32–34] and Gács [23] as
shown by Day and Miller [13] and we will use it since it leads to
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straightforward generalizations of the results in Section 2.4. The definition
is based on measure representations. Let P(XZ) be the space of probability
measures on (XZ,X Z). A measure P ∈ P(XZ) is called s-computable
if real function (�, �) �→ P(X |�|

–|�|+1 = ��) is s-computable. Similarly, a

representation function is a function � : XZ → P(XZ) such that real function
(�, �, s) �→ �(s)(X |�|

–|�|+1 =��) is computable. Subsequently, we say that an

infinite sequence s ∈ XZ is a representation of measure P if there exists a
representation function � such that �(s) = P. We note that any measure P
is s-computable for any representation s of P.

We will consider two important sorts of algorithmically random points:
Martin-Löf or 1-random points and weakly 2-random points with respect
to an arbitrary stationary ergodic measure P on (XZ,X Z). Note that the
following notions are typically defined for one-sided infinite sequences over
the binary alphabet and computable measures P. In the following parts of
this paper, let an infinite sequence s ∈ XZ be a representation of measure P.

Definition 2.3. A collection of eventsU1, U2, ... ∈ X Z is called uniformly
s-c.e. if and only if there is a collection of setsV1, V2, ... ⊂ X∗ × X∗ such that

Ui =
{
x ∈ XZ : ∃(�, �) ∈ Vi : x|�|–|�|+1 = ��

}
and sets V1, V2, ... are uniformly s-c.e.

Definition 2.4 (Martin-Löf test). A uniformly s-c.e. collection of events
U1, U2, ... ∈ X Z is called a Martin-Löf (s, P)-test if P(Un) ≤ 2–n for every
n ∈ N.

Definition 2.5 (Martin-Löf or 1-randomness). A point x ∈ XZ is called
Martin-Löf (s, P)-random or 1-(s, P)-random if for each Martin-Löf (s, P)-
testU1, U2, ...we have x 
∈

⋂
i≥1Ui . A point is called Martin-Löf P-random

or 1-P-random if it is 1-(s, P)-random for some representation s of P.

Subsequently, an event C ∈ X Z is called a Σ0
2(s) event if there exists a

uniformly s-c.e. sequence of events U1, U2, ... such that XZ \ C =
⋂
i≥1Ui .

Definition 2.6 (Weak 2-randomness). A point x ∈ XZ is called weakly
2-(s, P)-random if x is contained in every Σ0

2(s) event C such thatP(C ) = 1.
A point is called weakly 2-P-random if it is weakly 2-(s, P)-random for some
representation s of P.

The sets of weakly 2-random points are strictly smaller than the respective
sets of 1-random points (see [18]).

In general, there is a whole hierarchy of algorithmically random points,
such as (weakly) n-random points, where n runs over natural numbers. For
our purposes, however, only 1-random points and weakly 2-random points
matter since the following proposition sets the baseline for effectivization:

Proposition 2.7 (Folklore). Let Y1, Y2, ... be a sequence of uniformly s-
computable random variables. If limit limn→∞Yn exists P-almost surely, then
it exists on all weakly 2-(s, P)-random points.
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The above proposition is obvious since the set of points on which limit
limn→∞Yn exists is a Σ0

2(s) event. The effectivization program aims to
strengthen the above claim to 1-P-random points (or even weaker notions
such as Schnorr randomness) but this need not always be feasible. In
particular, one can observe that:

Proposition 2.8 (Folklore). Let P be a non-atomic computable measure
on XN. Then there exists a computable function f : X∗ → {0, 1} such that
the limit limn→∞f(Xn1 ) exists and is equal zero P-almost surely but it is not
defined on exactly one point, which is 1-P-random.

This fact is a simple consequence of the existence of Δ0
2 1-P-random

sequences (for a computable P) and may be also interpreted in terms of
learning theory (cf. [41] and the upcoming paper [52]).

2.4. Known effectivizations. Many probabilistic theorems have been effec-
tivized so far. Usually they were stated for computable measures but their
generalizations for uncomputable measures follow easily by relativization,
i.e., putting a representation s of measure P into the oracle. In this section,
we list several known effectivizations of almost sure theorems which we will
use further.

As shown by Solovay (unpublished; see [18]), we have this effective version
of the Borel–Cantelli lemma:

Proposition 2.9 (Effective Borel–Cantelli lemma). Let P be a probability
measure. If a uniformly s-c.e. sequence of events U0, U1, ... ∈ X Z satis-
fies

∑∞
i=1 P(Un) <∞ then

∑∞
i=1 1{x ∈ Un} <∞ on each 1-(s, P)-random

point x.

By the effective Borel–Cantelli lemma, Proposition 2.9 follows the effective
version of the Barron lemma [5, Theorem 3.1]:

Proposition 2.10 (Effective Barron lemma). For any probability measure
P and any s-computable probability measure R, on 1-(s, P)-random points we
have

lim
n→∞

[
– logR(Xn1 ) + logP(Xn1 ) + 2 log n

]
= ∞. (2)

In the following, we make an easy but important observation—
probabilities conditioned on an infinite past are defined on random points.
First, we need to recall the notion of a martingale process and prove an
effective version of Doob’s martingale convergence.

Definition 2.11 (Martingale process). A process (Xi)i∈N is called a
martingale process relative to the sequence of �-algebras F1 ⊂ F2 ⊂ ···
(called a filtration) if the following conditions hold:

1. Xn are Fn-measurable for all n;
2. E(|Xn|) <∞ for all n;
3. E(Xn+1|Fn) = Xn for all n almost surely.

The proof of Doob’s martingale convergence can be easily made effective.
This was already observed by Takahashi [54], who stated the effective
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martingale convergence for a specific filtration generated by cylinders Xn1 .
The following upcrossing inequality can be used to define a test which
enforces convergence.

Proposition 2.12 (Doob upcrossing inequality). Let (Xi)i∈N be a mar-
tingale process and let Cn will be the random variable denoting the number
of upcrossings of interval [a, b] (with a, b ∈ R) by time n and suppose that
supn E(|Xn|) <∞. Then for each n, we have

E
(

sup
n
Cn

)
≤ |a| + supn E(|Xn|)

b – a
.

Proposition 2.13 (Effective Doob martingale convergence). Let (Xi)i∈N
be a uniformly s-computable martingale process with supn E(|Xn|) <∞. Then,
limit limn→∞Xn exists and is finite on each 1-(s, P)-random point.

Proof. Suppose that process (Xi)i∈N does not converge on some random
point x. Then there exist rational a, b such that the number of upcrossings
of the interval [a, b] by Xi(x) is infinite. Let Cn be the random variable
denoting the number of upcrossings of interval [a, b] by the process (Xi)i∈N
by the time n. Let C∞ denote supn Cn and let f : N → N be a monotonic
function. Consider a collection of sets U1, U2, ... such that for all i > 0

Ui = {� : C∞(�) > f(n)}.

By Proposition 2.12 (Doob upcrossing inequality) and the Markov
inequality, we have

P(Ui) ≤
|a| + supn E(|Xn|)
f(n)(b – a)

.

Note that if f grows sufficiently fast, then
∑∞
i=1 P(Ui) converges. Moreover,

the collection of sets U1, U2, ... is uniformly s-c.e. It follows by Proposition
2.9 (effective Borel–Cantelli lemma) that C∞(x) <∞ for every 1-(s, P)-
random point x, which is a contradiction.

It remains to observe that the limit of (Xi)i∈N is finite. This follows easily
if one considers the collection of sets V1, V2, ... with

Vi = {x : sup
n
Xn(x) > 2n},

which are uniformly s-c.e. By the Markov inequality and the monotone con-
vergence theorem, we have P(Vi) ≤ 2–i supn E(Xn). We apply Proposition
2.9 to conclude that Xn are bounded on every 1-(s, P)-random point. �

Random variables P(x0|X –1
–n ) for n ≥ 1 form a uniformly s-computable

martingale process with respect to the filtration generated by cylinder
sets X –1

–n for any representation s of P. Thus applying the effective Doob
martingale convergence, we obtain an effective version of the Lévy law in
particular. In this work, our attention is limited to the following form.
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Proposition 2.14 (Effective Lévy law). On 1-P-random points there exist
limits

P(x0|X –1
–∞) := lim

n→∞
P(x0|X –1

–n ). (3)

Now let us proceed to a celebrated result of the algorithmic randomness
theory, which is the effective Birkhoff ergodic theorem [6, 21, 28, 29, 39,
55]. In the following, EX :=

∫
XdP stands for the expectation of a random

variable X with respect to measure P.

Proposition 2.15 (Effective Birkhoff ergodic theorem [6, Theorem 10]).
For a stationary ergodic probability measure P and an s-left-c.e. real random
variable G such that G ≥ 0 and EG <∞, on 1-(s, P)-random points we have

lim
n→∞

1
n

n–1∑
i=0

G ◦ T i = EG. (4)

We note in passing that if a point is not 1-random for a computable P then
(4) fails on this point for some computable real random variable G and some
computable transformation T [22].

The proof of the next proposition is an easy application of Proposition
2.15 and properties of left-c.e. functions.

Proposition 2.16 (Effective Breiman ergodic theorem [51]). For a
stationary ergodic probability measure P and uniformly s-computable real
random variables (Gi)i≥0 such that Gn ≥ 0, E supn Gn <∞, and limit
limn→∞Gn exists P-almost surely, on 1-(s, P)-random points we have

lim
n→∞

1
n

n–1∑
i=0

Gi ◦ T i = E lim
n→∞

Gn. (5)

Proof. Let Hk := supt>k Gt ≥ 0. Then Gt ≤ Hk for all t > k and
consequently,

lim sup
n→∞

1
n

n–1∑
i=0

Gi ◦ T i ≤ lim sup
n→∞

1
n

n–1∑
i=0

Hk ◦ T i . (6)

Observe that the supremum Hk of uniformly s-computable functions
Gk+1, Gk+2, ... is s-left-c.e. Indeed, to enumerate the left cut of the supremum
Hk(x) we simultaneously enumerate the left cuts of Gk+1(x), Gk+2(x), ....
This is possible since every s-computable function is also s-left-c.e. Moreover,
we are considering only countably many functions, and hence we can
guarantee that an element of each left cut appears in the enumeration at
least once.

Now, since for all k ≥ 0 random variables Hk are s-left-c.e. then by
Theorem 2.15 (effective Birkhoff ergodic theorem), on 1-(s, P)-random
points we have

lim sup
n→∞

1
n

n–1∑
i=0

Gi ◦ T i ≤ EHk. (7)
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Since Hk ≥ 0 and E supk Hk <∞ then by the dominated convergence,

inf
k≥0

EHk = lim
k→∞

EHk = E lim
k→∞

Hk = E lim
n→∞

Gn. (8)

Thus,

lim sup
n→∞

1
n

n–1∑
i=0

Gi ◦ T i ≤ E lim
n→∞

Gn. (9)

For the converse inequality, consider a natural number M and put random
variables H̄k :=M – inf t>k min {Gt,M} ∈ [0,M ]. We observe that H̄k are
also s-left-c.e. since Gt are uniformly s-computable by the hypothesis. By
Theorem 2.15 (effective Birkhoff ergodic theorem), on 1-(s, P)-random
points we have

M – lim inf
n→∞

1
n

n–1∑
i=0

min {Gi,M} ◦ T i ≤ E H̄k. (10)

Since 0 ≤ H̄k ≤M then by the dominated convergence,

inf
k≥0

E H̄k = lim
k→∞

E H̄k = E lim
k→∞

H̄k =M – E min
{

lim
n→∞

Gn,M
}
. (11)

Hence, regrouping the terms we obtain

lim inf
n→∞

1
n

n–1∑
i=0

Gi ◦ T i ≥ lim inf
n→∞

1
n

n–1∑
i=0

min {Gi,M} ◦ T i

≥ E min
{

lim
n→∞

Gn,M
}
−−−−→
M→∞

E lim
n→∞

Gn, (12)

where the last transition follows by the monotone convergence. By (9) and
(12) we derive the claim. �

The almost sure versions of Propositions 2.15 and 2.16 concern random
variables which need not be nonnegative [7].

An important result for universal prediction is the Azuma inequality [3],
whose following corollary will be used in Sections 3.2 and 3.4.

Theorem 2.17 (Effective Azuma theorem). For a probability measure P
and uniformly s-computable real random variables (Zn)n≥1 such that Zn =
g(Xn1 , s) and |Zn| ≤ �n

√
n/ ln n with limn→∞ �n = 0, on 1-(s, P)-random

points we have

lim
n→∞

1
n

n∑
i=1

[
Zi – E

(
Zi

∣∣X i–1
1

)]
= 0. (13)

Proof. Define

Yn :=
n∑
i=1

[
Zi – E

(
Zi

∣∣X i–1
1

)]
. (14)
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Process (Yn)n≥1 is a martingale with respect to process (Xn)n≥1 with
increments bounded by inequality∣∣Zn – E

(
Zn

∣∣Xn–1
1

)∣∣ ≤ cn := 2�n
√
n/ ln n. (15)

By the Azuma inequality [3] for any � > 0 we obtain

P(|Yn| ≥ n�) ≤ 2 exp
(

–
�2n2

2
∑n
i=1 c

2
i

)
≤ n–αn , (16)

where

αn :=
�2n

8
∑n
i=1 �

2
i

. (17)

Since αn → ∞, we have
∑∞
n=1 P(|Yn| ≥ n�) <∞ and by Proposition 2.9

(effective Borel–Cantelli lemma), we obtain (13) on 1-(s, P)-random
points. �

§3. Main results. This section contains results concerning effective
universal coding and prediction, predictors induced by universal measures,
and some examples of universal measures and universal predictors.

3.1. Universal coding. Let us begin our considerations with the problem
of universal measures, which is related to the problem of universal coding.
Suppose that we want to compress losslessly a typical sequence generated by
a stationary probability measure P. We can reasonably ask what is the lower
limit of such a compression, i.e., what is the minimal ratio of the encoded
string length divided by the original string length. In information theory,
it is well known that the greatest lower bound of such ratios is given by
the entropy rate of measure P. For a stationary probability measure P, we
denote its entropy rate as

hP := lim
n→∞

1
n

E
[
– logP(Xn1 )

]
= lim
k→∞

E
[
– logP(Xk+1|Xk1 )

]
, (18)

which exists for any stationary probability measure.
The entropy rate has the interpretation of the minimal asymptotic rate of

lossless encoding of sequences emitted by measure P in various senses: in
expectation, almost surely, or on algorithmically random points, where the
last interpretation will be pursued in this subsection.

To furnish some theoretical background for universal coding let us recall
the Kraft inequality

∑
w∈A 2–|w| ≤ 1, which holds for any prefix-free subset

of stringsA ⊂ {0, 1}∗. The Kraft inequality implies in particular that lossless
compression procedures, called prefix-free codes, can be mapped one-
to-one to semi-measures. In particular, if we are seeking for a universal
code, i.e., a prefix-free code w �→ C (w) ∈ {0, 1}∗ which is optimal for some
class of stochastic sources P, we can equivalently seek for a universal semi-
measure of formw �→ R(w) := 2–|C (w)|. (Similar correspondence holds also
for uniquely decodable codes [36].) Consequently, the problem of universal
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coding will be solved if we point out such a semi-measure R that

lim
n→∞

1
n

[
– logR(Xn1 )

]
= lim
n→∞

1
n

∣∣C (Xn1 )
∣∣ = hP (19)

for some points that are typical of P.
As it is well established in information theory, some initial insight into

the problem of universal coding or universal measures is given by the
Shannon–McMillan–Breiman (SMB) theorem, which states that function
1
n

[
– logP(Xn1 )

]
tends P-almost surely to the entropy rate hP . The classical

proofs of this result were given by Algoet and Cover [2] and Chung [9]. An
effective version of the SMB theorem was presented by Hochman [26] and
Hoyrup [27] (cf. [38, 55] for related partial and weaker results).

Theorem 3.1 (Effective SMB theorem [26, 27]). For a stationary ergodic
probability measure P, on 1-P-random points we have

lim
n→∞

1
n

[
– logP(Xn1 )

]
= hP. (20)

The essential idea of Hoyrup’s proof, which is a bit more complicated, can
be retold using tools developed in Section 2.4. Observe first that we have

1
n

[
– logP(Xn1 )

]
=

1
n

n∑
i=1

[
– logP(Xi |X i–1.

1 )
]
. (21)

Moreover, we have the uniform bound

E sup
n≥0

[
– logP(X0|X –1

–n )
]
≤ E

[
– logP(X0)

]
+ log e ≤ log eD <∞ (22)

(see [49, Lemma 4.26])—invoked by Hoyrup as well. Consequently, the
effective SMB theorem follows by Proposition 2.16 (effective Breiman
ergodic theorem) and Proposition 2.14 (effective Lévy law). In contrast,
the reasoning by Hoyrup was more casuistic and his effective version of the
Breiman ergodic theorem is weaker than the one proven here.

We note in passing that it could be also interesting to check whether one
can effectivize the textbook sandwich proof of the SMB theorem by Algoet
and Cover [2] using the decomposition of conditionally algorithmically
random sequences by Takahashi [54]. However, this step would require some
novel theoretical considerations about conditional algorithmic randomness
for uncomputable measures. We mention this only to point out a possible
direction for future research.

As a direct consequence of the effective SMB theorem and Proposition
2.10 (effective Barron lemma), we obtain this effectivization of another well-
known almost sure statement:

Theorem 3.2 (Effective source coding). For any stationary ergodic measure
P and any s-computable probability measure R, on 1-(s, P)-random points we
have

lim inf
n→∞

1
n

[
– logR(Xn1 )

]
≥ hP. (23)
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In the almost sure setting, relationship (23) holds P-almost surely for
any stationary ergodic measure P and any (not necessarily computable)
probability measure R.

Now we can define universal measures.

Definition 3.3 (Universal measure). A computable (not necessarily
stationary) probability measure R is called (weakly) n-universal if for any
stationary ergodic probability measure P, on (weakly) n-P-random points
we have

lim
n→∞

1
n

[
– logR(Xn1 )

]
= hP. (24)

In the almost sure setting, we say that a probability measure R is almost
surely universal if (24) holds P-almost surely for any stationary ergodic
probability measure P. By Proposition 2.7, there are only two practically
interesting cases of computable universal measures: weakly 2-universal
ones and 1-universal ones, since every computable almost surely universal
probability measure is automatically weakly 2-universal. We stress that we
impose computability of (weakly) n-universal measures by definition since
it simplifies statements of some theorems. This should be contrasted with
universal prediction à la Solomonoff for left-c.e. semimeasures where the
universal element belongs to the class and is not computable [50].

Computable almost surely universal measures exist if the alphabet X is
finite. An important example of an almost surely universal and, as we will see
in Section 3.5, also 1-universal measure is the Prediction by Partial Matching
(PPM) measure [10, 44, 47]. As we have mentioned, universal measures are
closely related to the problem of universal coding (data compression) and
more examples of universal measures can be constructed from universal
codes, for instance given in [8, 14, 31, 56], using the normalization by Ryabko
[45]. This normalization is not completely straightforward, since we need to
forge semi-measures into probability measures.

3.2. Universal prediction. Universal prediction is a problem similar to
universal coding. In this problem, we also seek for a single procedure that
would be optimal within a class of probabilistic sources but we apply a
different loss function, namely, we impose the error rate being the density
of incorrect guesses of the next output given previous ones. In spite of
this difference, we will try to state the problem of universal prediction
analogously to universal coding. A predictor is an arbitrary total function
f : X∗ → X. The predictor induced by a probability measure P will be
defined as

fP(xn1 ) := arg max
xn+1∈X

P(xn+1|xn1 ), (25)

where arg maxx∈X g(x) := min
{
a ∈ X : g(a) ≥ g(x) for all x ∈ X

}
for the

total order a1 < ··· < aD on X = {a1, ... , aD}. Moreover, for a stationary
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measure P, we define the unpredictability rate

uP := lim
n→∞

E
[

1 – max
x0∈X
P(x0|X –1

–n )
]
. (26)

It is natural to ask whether the unpredictability rate can be related to
entropy rate. Using the Fano inequality [19], a classical result of information
theory, and its converse [16], both independently brought to computability
theory by Fortnow and Lutz [20], yields this bound:

Theorem 3.4. For a stationary measure P over a D-element alphabet,

D

D – 1
	

(
1
D

)
uP ≤ hP ≤ 	(uP) + uP log(D – 1), (27)

where 	(p) :=– p logp – (1 – p) log(1 – p).

Moreover, Fortnow and Lutz [20] found out some stronger inequalities,
sandwich-bounding the unpredictability of an arbitrary sequence in terms
of its effective dimension. The effective dimension turns out to be a
generalization of the entropy rate to arbitrary sequences [27], which are
not necessarily random with respect to stationary ergodic measures.

In the less general framework of stationary ergodic measures, using
the Azuma theorem, we can show that no predictor can beat the
induced predictor and the error rate committed by the latter equals the
unpredictability rate uP . The following proposition concerning the error
rates effectivizes the well-known almost sure proposition (the proof in the
almost sure setting is available in [1]).

Theorem 3.5 (Effective source prediction). For any stationary ergodic
measure P and any s-computable predictor f, on 1-(s, P)-random points we
have

lim inf
n→∞

1
n

n–1∑
i=0

1
{
Xi+1 
= f(X i1 )

}
≥ uP. (28)

Moreover, if the induced predictor fP is s-computable then (28) holds with the
equality for f = fP .

Proof. Let measure P be stationary ergodic. In view of Theorem 2.17
(effective Azuma theorem), for any s-computable predictor f, on 1-(s, P)-
random points we have

lim
n→∞

1
n

n–1∑
i=0

[
1
{
Xi+1 
= f(X i1 )

}
– P(Xi+1 
= f(X i1 )|X i1 )

]
= 0. (29)

Moreover, we have

P(Xi+1 
= f(X i1 )|X i1 ) ≥ 1 – max
xi+1∈X

P(xi+1|X i1 ). (30)

Subsequently, we observe that limits limn→∞ P(x0|X –1
–n ) exist on 1-

(s, P)-random points by Proposition 2.14 (effective Lévy law). Thus by
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Proposition 2.16 (effective Breiman ergodic theorem) and the dominated
convergence, on 1-(s, P)-random points we obtain

lim
n→∞

1
n

n–1∑
i=0

[
1 – max

xi+1∈X
P(xi+1|X i1 )

]
= E lim

n→∞

[
1 – max

x0∈X
P(x0|X –1

–n )
]

= uP. (31)

Hence inequality (28) follows by (29)–(31). Similarly, the equality in (28) for
f = fP follows by noticing that inequality (30) turns out to be the equality
in this case. �

In the almost sure setting, relationship (28) holds P-almost surely for
any stationary ergodic measure P and any (not necessarily computable)
predictor f.

We can see that there can be some problem in the effectivization of
relationship (28) caused by the induced predictor fP possibly not being
s-computable for certain representations s of measure P—since sometimes
testing the equality of two real numbers cannot be done in a finite time.
However, probabilities P(Xi+1 
= fP(X i1 )|X i1 ) are always s-computable.
Thus, we can try to define universal predictors in the following way.

Definition 3.6 (Universal predictor). A computable predictor f is called
(weakly) n-universal if for any stationary ergodic probability measure P, on
(weakly) n-P-random points we have

lim
n→∞

1
n

n–1∑
i=0

1
{
Xi+1 
= f(X i1 )

}
= uP. (32)

In the almost sure setting, we say that a predictor f is almost surely
universal if (32) holds P-almost surely for any stationary ergodic probability
measure P. Almost surely universal predictors exist if the alphabet X is finite
[1, 4, 24, 25, 40]. In [51] it was proved that the almost sure predictor by [25]
is also 1-universal.

3.3. Predictors induced by backward estimators. The almost surely uni-
versal predictors by [1, 4, 24, 25, 40] were constructed without a reference
to universal measures. Nevertheless, these constructions are all based on
estimation of conditional probabilities. For a stationary ergodic process one
can consider two separate problems: backward and forward estimation. The
first problem is naturally connected to prediction. We want to estimate the
conditional probability of (n + 1)-th bit given the first n bits. Is it possible
that, as we increase n, our estimates converge to the true value at some point?
To be precise, we ask whether there exists a probability measure R such that
for every stationary ergodic measure P we have P-almost surely

lim
n→∞

∑
xn+1∈X

∣∣R(xn+1|Xn–1
1 ) – P(xn+1|Xn–1

1 )
∣∣ = 0. (33)
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It was shown by Bailey [4] that this is not possible. As we are about to see, we
can get something a bit weaker, namely, the convergence in Cesaro averages.
But to get there, it will be helpful to consider a bit different problem.

Suppose again that we want to estimate a conditional probability but the
bit that we are interested in is fixed and we are looking more and more into
the past. In this scenario, we want to estimate the conditional probability
P(x0|X –1

–∞) and we ask whether increasing the knowledge of the past can
help us achieve the perfect guess. Precisely, we ask if there exists a probability
measure R such that for every stationary ergodic measure P we have P-almost
surely

lim
n→∞

∑
x0∈X

∣∣R(x0|X –1
–n ) – P(x0|X –1

–∞)
∣∣ = 0. (34)

It was famously shown by Ornstein that such estimators exist. (Ornstein
proved this for binary-valued processes but the technique can be generalized
to finite-valued processes.)

Theorem 3.7 (Ornstein theorem [40]). Let the alphabet be finite. There
exists a computable measure R such that for every stationary ergodic measure
P we have P-almost surely that

lim
n→∞

∑
x0∈X

∣∣R(x0|X –1
–n ) – P(x0|X –1

–∞)
∣∣ = 0. (35)

Definition 3.8. We call a measure R an almost surely universal backward
estimator when it satisfies condition (35) P-almost surely for every stationary
ergodic measure P, whereas it is called a (weakly) n-universal backward
estimator if R is computable and convergence (35) holds on all respective
(weakly) n-P-random points.

One can come up with a naive idea: What if we take a universal backward
estimator and use it in a forward fashion? Surprisingly, this simple trick gives
us almost everything we can get, i.e., a forward estimator that converges to
the conditional probability on average. Bailey [4] showed that for an almost
surely universal backward estimator R and for every stationary ergodic
measure P we have P-almost surely

lim
n→∞

1
n

n–1∑
i=0

∑
xi+1∈X

∣∣R(xi+1|X i1 ) – P(xi+1|X i1 )
∣∣ = 0. (36)

The proof of this fact is a direct application of the Breiman ergodic theorem.
Since we have a stronger effective version of the Breiman theorem (Theorem
2.16), we can strengthen Bailey’s result to an effective version as well. It turns
out that even if we take a backward estimator that is good only almost surely
(possibly failing on some random points), then the respective result for the
forward estimation will hold in the strong sense—on every 1-P-random
point.
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Theorem 3.9 (Effective Bailey theorem). Let R be a computable almost
surely universal backward estimator. For every stationary ergodic measure P
on 1-P-random points we have (36).

Proof. Let R be a computable almost surely universal backward
estimator. Fix an x ∈ X. By Proposition 2.14 (effective Lévy law), for every
stationary ergodic probability measure P we have P-almost surely

lim
n→∞

∣∣R(x|X –1
–n ) – P(x|X –1

–n )
∣∣ = 0. (37)

Note that the bound 0 ≤
∣∣R(x|X –1

–n ) – P(x|X –1
–n )

∣∣ ≤ 1 holds uniformly.
Moreover, variables R(x|X –1

–n ) – P(x|X –1
–n ) are uniformly s-computable for

any representation s of P. Hence, we can apply Theorem 2.16 (effective
Breiman ergodic theorem) to obtain

lim
n→∞

1
n

n–1∑
i=0

∣∣R(x|X i1 ) – P(x|X i1 )
∣∣ = E 0 = 0 (38)

for 1-P-random points. The claim follows from this immediately. �

Definition 3.10. We call a measure R an almost surely universal forward
estimator when it satisfies condition (36) P-almost surely for every stationary
ergodic measure P, whereas it is called a (weakly) n-universal forward
estimator if R is computable and convergence (36) holds on all respective
(weakly) n-P-random points.

One can expect that the predictor fR induced by a universal forward
estimator R in the sense of Definition 3.10 is also universal in the sense of
Definition 3.6. This is indeed true. To show this fact, we will first prove a
certain inequality for induced predictors, which generalizes the result from
[17, Theorem 2.2] for binary classifiers. This particular observation seems
to be new.

Proposition 3.11 (Prediction inequality). Let p and q be two probability
distributions over a countable alphabet X. For xp = arg maxx∈X p(x) and
xq = arg maxx∈X q(x), we have inequality

0 ≤ p(xp) – p(xq) ≤
∑
x∈X

∣∣p(x) – q(x)
∣∣ . (39)

Proof. Without loss of generality, assume xp 
= xq . By the definition of
xp and xq , we have p(xp) – p(xq) ≥ 0 and q(xq) – q(xp) ≥ 0. Hence we
obtain

0 ≤ p(xp) – p(xq) ≤ p(xp) – p(xq) – q(xp) + q(xq)

≤
∣∣p(xp) – q(xp)

∣∣ +
∣∣p(xq) – q(xq)

∣∣ ≤ ∑
x

∣∣p(x) – q(x)
∣∣ . (40)

�
Now we can show a general result about universal predictors induced by

forward estimators of conditional probabilities.
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Theorem 3.12 (Effective induced prediction I). For a 1-universal forward
estimator R, the induced predictor fR is 1-universal if fR is computable.

Proof. Let R be 1-universal forward estimator. By the definition, for
every stationary ergodic measure P and all 1-P-random points

lim
n→∞

1
n

n–1∑
i=0

∑
xi+1∈X

∣∣P(xi+1|X i1 ) – R(xi+1|X i1 )
∣∣ = 0. (41)

Consequently, combining this with Proposition 3.11 (prediction inequality)
yields on 1-P-random points

lim
n→∞

1
n

n–1∑
i=0

[
P(Xi+1 
= fR(X i1 )|X i1 ) – P(Xi+1 
= fP(X i1 )|X i1 )

]
= 0. (42)

Now, we notice that by (29), we have on 1-P-random points

lim
n→∞

1
n

n–1∑
i=0

[
1
{
Xi+1 
= fR(X i1 )

}
– P(Xi+1 
= fR(X i1 )|X i1 )

]
= 0, (43)

lim
n→∞

1
n

n–1∑
i=0

[
1
{
Xi+1 
= fP(X i1 )

}
– P(Xi+1 
= fP(X i1 )|X i1 )

]
= 0. (44)

Combining the three above observations completes the proof. �
Interestingly, it suffices for a measure to be a computable almost surely

universal backward estimator to yield a 1-universal forward estimator and,
consequently, a 1-universal predictor. In contrast, we can easily see that a
computable almost surely universal forward estimator does not necessarily
induce a 1-universal predictor.

Theorem 3.13. There exists a computable almost surely universal forward
estimator R such that the induced predictor fR is not 1-universal.

Proof. Let us take X = {0, 1} and restrict ourselves to one-sided
space XN without loss of generality. Fix a computable almost surely
universal forward estimator Q. Let P0 be the computable measure of
a Bernoulli(
) process, i.e., P0(xn1 ) =

∏n
i=1 


xi (1 – 
)1–xi , where 
 > 1/2
is rational. Observe that by Proposition 2.8 there exists a point y ∈ XN

which is 1-P0-random and a computable function g : X∗ → {0, 1} such that
P0(A) = 0 and A = {y} for event

A := (#
{
i ∈ N : g(X i1 ) = 1

}
= ∞). (45)

In other words, there is a computable method to single out some 1-P0-
random point y out of the set of sequences XN. In particular, we can use
function g to spoil measure Q on that point y while preserving the property
of an almost surely universal forward estimator. We will denote the spoilt
version of measure Q by R. Conditional distributions R(Xm+1|Xm1 ) will
differ from Q(Xm+1|Xm1 ) for infinitely many m on point y and for finitely
many m elsewhere.
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Let K(xn1 ) := #
{
i ≤ n : g(xi1) = 1

}
. The construction of measure R

proceeds by induction on the string length together with an auxiliary
counter U. We let R(x1) := Q(x1) and U (x1) := 0. Suppose that R(xn1 )
and U (xn1 ) are defined but R(xn+1

1 ) is not. If U (xn1 ) ≥ K(xn1 ) then we put
R(xn+1|xn1 ) := Q(xn+1|xn1 ) andU (xn+1

1 ) := U (xn1 ). Else, ifU (xn1 ) < K(xn1 )
then we putR(xn+N

n+1 |xn1 ) :=
∏n+N
i=n+1 


1–xi (1 – 
)xi (reverted compared to the
definition of P0!) and U (xn+N ) := K(xn1 ) where N is the smallest number
such that

1
n +N

[
n–1∑
i=0

P0(Xi+1 
= fR(xi1)|X i1 = xi1) +N


]
≥ 1

2
. (46)

Such number N exists since P0(Xi+1 
= fR(xi1)|X i1 = xi1) > 1 – 
. This
completes the construction of R.

The sets of 1-P-random sequences are disjoint for distinct stationary
ergodic P by Theorem 2.15 (effective Birkhoff ergodic theorem). Hence
K(Xn1 ) is bounded P-almost surely for any stationary ergodic P. Conse-
quently, since U (Xn1 ) is non-decreasing then P-almost surely there exists a
random numberM <∞ such that for all m > M we have R(Xm+1|Xm1 ) =
Q(Xm+1|Xm1 ). Hence R inherits the property of an almost surely universal
forward estimator from Q.

Now let us inspect what happens on y. Since K(Xn1 ) is unbounded on y
then by the construction of R, we obtain on y that U (Xn1 ) < K(Xn1 ) holds
infinitely often and

lim sup
n→∞

1
n

n∑
i=0

P0(Xi+1 
= fR(X i1 )|X i1 ) ≥ 1
2
> uP0 = 1 – 
. (47)

Hence predictor fR is not 1-universal. �

3.4. Predictors induced by universal measures. Following the work of
Ryabko [45] (see also [46]), we can ask a natural question whether predictors
induced by some universal measures in the sense of Definition 3.3, such as the
PPM measure [10, 44, 47] to be discussed in Section 3.5, are also universal.
Ryabko was close to demonstrate the analogous implication in the almost
sure setting but did not provide the complete proof. He has shown this
proposition:

Theorem 3.14 (Theorem 3.3 in [44]). Let R be an almost surely universal
measure and P be a stationary ergodic measure. We have that

lim
n→∞

E
1
n

n–1∑
i=0

∣∣P(Xi+1|X i0 ) – R(Xi+1|X i0 )
∣∣ = 0. (48)

At the first glance, condition (48) may seem close to condition (36),
i.e., the universal forward estimator, which—as we have shown in Theorem
3.12—implies universality of the induced predictor. However, this average-
case result is too weak for our needs as we seek the almost-sure and
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effective version thereof. If we tried to derive universality of the induced
predictor directly from (48), there are two problems on the way (in the
following, Yn ≥ 0 stands for the expression under the expectation): Firstly,
limn→∞ EYn = 0 does not necessarily imply E limn→∞Yn = 0 since the limit
may not exist almost surely and, secondly, if E limn→∞Yn = 0 then Yn = 0
holds almost surely but this equality may fail on some 1-random points.

In this section, we will show that each 1-universal measure, under a
relatively mild condition (1), satisfied by the PPM measure, is a 1-universal
forward estimator and hence, in the light of the previous section, it induces
a 1-universal predictor. We do not know yet whether this condition is
necessary. We will circumvent Theorem 3.14 by applying Proposition 2.16
(effective Breiman ergodic theorem) and Theorem 2.17 (effective Azuma
theorem). The first stage of our preparations includes two statements which
can be called the effective conditional SMB theorem and the effective
conditional universality.

Proposition 3.15 (Effective conditional SMB theorem). Let the alphabet
be finite and let P be a stationary ergodic probability measure. On 1-P-random
points we have

lim
n→∞

1
n

n–1∑
i=0

⎡
⎣–

∑
xi+1∈X

P(xi+1|X i1 ) logP(xi+1|X i1 )

⎤
⎦ = hP. (49)

Proof. Let us write the conditional entropy

Wi :=

⎡
⎣–

∑
xi+1∈X

P(xi+1|X i1 ) logP(xi+1|X i1 )

⎤
⎦ . (50)

We have 0 ≤Wi ≤ logD with D being the cardinality of the alphabet.
Moreover by Proposition 2.14 (effective Lévy law), on 1-P-random points
there exists limit

lim
n→∞

Wn ◦ T –n–1 =

⎡
⎣–

∑
x0∈X
P(x0|X –1

–∞) logP(x0|X –1
–∞)

⎤
⎦ . (51)

Hence by Proposition 2.16 (effective Breiman ergodic theorem), on 1-(s, P)-
random points

lim
n→∞

1
n

n–1∑
i=0

Wi = E

⎡
⎣–

∑
x0∈X
P(x0|X –1

–∞) logP(x0|X –1
–∞)

⎤
⎦ = hP (52)

since E
[
– logP(X0|X –1

–∞)
]

= limn→∞
[
– logP(Xn1 )

]
/n = hP . �

Proposition 3.16 (Effective conditional universality). Let the alphabet be
finite and let P be a stationary ergodic probability measure. If measure R is
1-universal and satisfies

– logR(xn+1|xn1 ) ≤ �n
√
n/ ln n, lim

n→∞
�n = 0, (53)

https://doi.org/10.1017/bsl.2022.18 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2022.18


406 ŁUKASZ DĘBOWSKI AND TOMASZ STEIFER

then on 1-P-random points we have

lim
n→∞

1
n

n–1∑
i=0

⎡
⎣–

∑
xi+1∈X

P(xi+1|X i1 ) logR(xi+1|X i1 )

⎤
⎦ = hP. (54)

Proof. Let us write the conditional pointwise entropy Zi :=–
logR(Xi+1|X i1 ). Now suppose that measure R is 1-universal and satisfies
(53). Then by Theorem 2.17 (effective Azuma theorem), on 1-P-random
points we obtain

lim
n→∞

1
n

n–1∑
i=0

E
(
Zi

∣∣X i1)
= lim
n→∞

1
n

n–1∑
i=0

Zi = lim
n→∞

1
n

[
– logR(Xn1 )

]
= hP,

(55)

which is the claim of Proposition 3.16. �

In the second stage of our preparations, we recall the famous Pinsker
inequality used by Ryabko [45] to prove Theorem 3.14.

Proposition 3.17 (Pinsker inequality [11]). Let p and q be probability
distributions over a countable alphabet X. We have

[∑
x∈X

∣∣p(x) – q(x)
∣∣]2

≤ (2 ln 2)
∑
x∈X
p(x) log

p(x)
q(x)

. (56)

Now we can show the main result of this section, namely, that every
universal measure which satisfies a mild condition induces a universal
predictor.

Theorem 3.18 (Effective induced prediction II). If measure R is 1-universal
and satisfies (53) then it is a 1-universal forward estimator.

Proof. Let R be a 1-universal measure, whereas P be the stationary
ergodic measure. By Propositions 3.15 (effective conditional SMB theorem)
and 3.16 (effective conditional universality), on 1-P-random points we
obtain

lim
n→∞

1
n

n–1∑
i=0

[∑
xi+1

P(xi+1|X i1 ) log
P(xi+1|X i1 )
R(xi+1|X i1 )

]
= 0. (57)

Hence by Proposition 3.17 (Pinsker inequality), we derive on 1-P-random
points

lim
n→∞

1
n

n–1∑
i=0

[∑
xi+1

∣∣P(xi+1|X i1 ) – R(xi+1|X i1 )
∣∣]2

= 0. (58)
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Subsequently, the Cauchy–Schwarz inequality EY 2 ≥ (EY )2 yields on
1-P-random points

0 ≥ lim
n→∞

[
1
n

n–1∑
i=0

∑
xi+1

∣∣P(xi+1|X i1 ) – R(xi+1|X i1 )
∣∣]2

=

[
lim
n→∞

1
n

n–1∑
i=0

∑
xi+1

∣∣P(xi+1|X i1 ) – R(xi+1|X i1 )
∣∣]2

≥ 0. (59)

Consequently, R is a 1-universal forward estimator. �

Combining Theorems 3.18 and 3.12, we obtain that predictor fR is
1-universal provided measure R is 1-universal and satisfies condition (53)—
if predictor fR is computable itself. Condition (53) does not seem to have
been discussed in the literature of universal prediction.

3.5. PPM measure. In this section, we will discuss the Prediction by
Partial Matching (PPM) measure. The PPM measure comes in several flavors
and was discovered gradually. Cleary and Witten [10] coined the name PPM,
which we prefer since it is more distinctive, and considered the adaptive
Markov approximations PPMk defined roughly in Equation (63). Later,
Ryabko [44, 47] considered the infinite series PPM defined in Equation (64),
called it the measure R, and proved that it is a universal measure. Precisely,
Ryabko used the Krichevsky–Trofimov smoothing (+1/2) rather than the
Laplace smoothing (+1) applied in (63). This difference does not affect
universality. As we will show now, the series PPM provides an example of
a 1-universal measure that satisfies condition (53) and thus yields a natural
1-universal predictor.

Upon the first reading, the definition of the PPM measure may appear
cumbersome but it is roughly a Bayesian mixture of all Markov chains of
all orders. Its universality can be then motivated by the fact that Markov
chains with rational transition probabilities are both countable and dense in
the class of stationary ergodic measures [48]. Our specific definition of the
PPM measure is as follows.

Definition 3.19 (PPM measure). Let the alphabet be X = {a1, ... , aD},
where D ≥ 2.

Define the frequency of a substring wk1 in a string xn1 as

N (wk1 |xn1 ) :=
n–k+1∑
i=1

1
{
xi+k–1
i = wk1

}
. (60)

Adapting the definitions by [10, 15, 44, 47], the PPM measure of order k ≥ 0
is defined as

PPMk(xk+1
1 ) := D–k–1, (61)
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PPMk(xn+1|xn1 ) :=
N (xn+1

n+1–k |xn1 ) + 1

N (xnn+1–k |xn–1
1 ) +D

, n ≥ k + 1, (62)

PPMk(xn1 ) := PPMk(xk+1
1 )

n∏
i=k+1

PPMk(xi+1|xi1). (63)

Subsequently, we define the total PPM measure

PPM(xn1 ) :=
∞∑
k=0

[
1
k + 1

–
1
k + 2

]
PPMk(xn1 ). (64)

The infinite series (64) is computable since PPMk(xn1 ) = D–n fork≥ n – 1.
The almost sure universality of the total PPM measure follows by the Stirling
approximation and the Birkhoff ergodic theorem (see [15, 44, 47]). Since the
Birkhoff ergodic theorem can be effectivized for 1-random points in the form
of Proposition 2.15, we obtain in turn this effectivization.

Theorem 3.20 (Effective PPM universality; cf. [44]). The PPM measure is
1-universal.

Proof. As we have mentioned, computability of the PPM measure fol-
lows since series (64) can be truncated with the constant term PPMk(xn1 ) =
D–n for k ≥ n – 1 and thus values PPM(xn1 ) are rational.

To show 1-universality of the PPM measure, we first observe that

PPMk(Xn1 ) = D–k
∏
wk1

∏
wk+1

1 · 2 · ··· ·N (wk+1
1 |xn1 )

D · (D + 1) · ··· · (N (wk1 |xn–1
1 ) +D – 1)

= D–k
∏
wk1

(D – 1)!
∏
wk+1
N (wk+1

1 |xn1 )!

(N (wk1 |xn–1
1 ) +D – 1)!

. (65)

In contrast, the empirical (conditional) entropy of string xn1 of order k ≥ 0
is defined as

hk(xn1 ) :=
∑
wk+1

1

N (wk+1
1 |xn1 )
n – k

log
N (wk1 |xn–1

1 )

N (wk+1
1 |xn1 )

. (66)

Using the Stirling approximation for the factorial function, the PPM
measure of order k ≥ 0 can be related to the empirical entropy. In particular,
by Theorem A4 in [15], we have the bound

0 ≤– log PPMk(xn1 ) – k logD – (n – k)hk(xn1 ) ≤ Dk+1 log[e2n]. (67)

Subsequently, by Proposition 2.15 (effective Birkhoff ergodic theorem),
on 1-P-random points we have

lim
n→∞

N (wk+1
1 |Xn1 )
n – k

= P(wk+1
1 ). (68)
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Then by (67),

lim
n→∞

1
n

[
– log PPMk(Xn1 )

]
= hk,P := E

[
– logP(Xk+1|Xk1 )

]
. (69)

Since

– log PPM(xn1 ) ≤ 2 log(k + 2) – log PPMk(xn1 ), (70)

then

lim sup
n→∞

1
n

[
– log PPM(Xn1 )

]
≤ inf
k≥0
hk,P = hP (71)

on 1-P-random points, whereas the reverse inequality for the lower limit
follows by Proposition 2.10 (effective Barron lemma) and Theorem 3.1
(effective SMB theorem). �

Finally, we can show that predictor fPPM induced by the PPM measure is
1-universal. First, we notice explicitly these bounds:

Theorem 3.21 (PPM bounds). We have

– log PPM(xn1 ) ≤ 2 log(n + 1) + n logD, (72)

– log PPM(xn+1|xn1 ) ≤ 3 log(n +D). (73)

Proof. Observe that PPMk(xn1 ) = D–n for k ≥ n – 1. Hence by (70), we
obtain claim (72). The derivation of claim (73) is slightly longer. First, by
the definition of PPMk , we have

– log PPMk(xn+1|xn1 ) ≤ log
[
N (xnn–k+1|xn–1

1 ) +D
]
≤ log(n +D). (74)

Now let us denote

G := arg max
k≥0

PPMk(xn1 ). (75)

We have G ≤ n – 1, since PPMk(xn1 ) = D–n for k ≥ n – 1. Moreover, we
have a bound reverse to (70), namely

– log PPM(xn1 ) ≥– log PPMG(xn1 ). (76)

Combining the above with (70) yields

– log PPM(xn+1|xn1 ) =– log PPM(xn+1
1 ) + log PPM(xn1 )

≤ 2 log(G + 2) – log PPMG(xn+1
1 ) + log PPMG(xn1 )

= 2 log(G + 2) + log PPMG(xn+1|xn1 ) ≤ 3 log(n +D). (77)

�
Now comes the main theorem.

Theorem 3.22. The predictor fPPM is 1-universal.

Proof. Computability of the predictor fPPM follows since values
PPM(xn1 ) are rational so the least symbol of those having the maximal
conditional probability can be computed in a finite time. Consequently, the
claim follows by Theorems 3.18, 3.20, and 3.21. �
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We think that 1-universality of the predictor fPPM is quite expected and
intuitive. But as we can see, the PPM measure satisfies condition (53) with a
large reserve. It is an open question whether there are 1-universal measures
such that conditional probabilitiesR(xn+1|xn1 ) converge to zero much faster
than for the PPM measure but they still induce 1-universal predictors. It
would be interesting to find such measures. Maybe they have some other
desirable properties, also from a practical point of view.
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