A GENERALIZED FREDHOLM THEORY FOR CERTAIN
MAPS IN THE REGULAR REPRESENTATIONS
OF AN ALGEBRA

BRUCE ALAN BARNES

Introduction. Given an algebra A, the elements of 4 induce linear
operators on 4 by left and right multiplication. Various authors have studied
Banach algebras 4 with the property that some or all of these multiplication
maps are completely continuous operators on 4 ; see (1-5). In (3) I. Kaplansky
defined an element # of a Banach algebra 4 to be completely continuous if the
maps ¢ — ua and @ — au, ¢ € A, are completely continuous linear operators.
The set of all completely continuous elements of 4 forms an ideal. Assume that
A is a semisimple Banach algebra, and let B be the intersection of all the
primitive ideals of 4 which contain the socle of 4. Using (1, Theorem 7.2), it
can be shown that the ideal of completely continuous elements of 4 is con-
tained in B.

In general the elements of B are not completely continuous (in fact there are
important algebras 4 where A = B, but zero is the only completely continuous
element of 4). However, the multiplication maps induced by elements # € B
do have special properties similar to those of completely continuous operators.
It is the purpose of this paper to develop a generalized Riesz—Fredholm theory
for these maps. We shall make only the assumption that 4 is semisimple and,
in some cases, that A is a normed algebra. Theorem 3.6 serves as a partial
summary of our results.

1. Preliminaries. Throughout this paper we shall assume that 4 is a
complex semisimple algebra. We assume that the reader is acquainted with such
notions as quasi-regularity of an element of A4, left and right regular representa-
tions of 4 on A, primitive ideals, etc. We use in general the definitions in
C. Rickart’s book (6). For B an algebra, we denote by Ep the set of all minimal
idempotents of B, and by Sg, the socle of B; see (6, pp. 45-47). A non-empty
subset M of Ejp is orthogonal if ¢f = 0 for any two distinct elements ¢ and f in
M.

We shall be interested in the elements in 2(k(S4)), the ideal which is the
intersection of all those primitive ideals of 4 which contain S,. Let B be the
algebra k(h(S,4)). It is not difficult to verify that P is a primitive ideal of B if
and only if P is of the form B M Q where Q is a primitive ideal of 4. Now
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Sp =S4 M B, and this in combination with the previous statement implies
that Sp is contained in no primitive ideal of B. This is a necessary and
sufficient condition that a semisimple algebra B be a modular annihilator
algebra by (1, Theorem 4.3 (4), p. 570). For the definition and elementary
properties of modular annihilator algebras see either (1) or (10). Since
k(h(S4)) is a modular annihilator algebra, we have the following result which is
used repeatedly.

(1.1) If u € k(h(S4)), then u is left (right) quasi-singular, i.e., A(1 —u) # A
(1 —u)A # A),if and only if there exists x € A,x # 0, suchthat (1 —u)x =0

(x(1 —u) =0).
In §3 it will be necessary for us to assume that A is a normed algebra. Assume
for the present that 4 has a norm || - ||. Then B = k(h(S,)) is also a normed

algebra. Let I be the norm closure in B of S,. B/ is then a normed radical
algebra (recall that .S, = Spisincluded in no primitive ideal of B). lf v € B/I
and | - | is the induced norm on the quotient algebra, it follows that [v"|1/* — 0
as n — « ; see (6, Theorem (1.6.3), p. 28). We can draw the following con-
clusion concerning elements in B:

(1.2) Assume A has norm || - ||. If u € k(h(S4)), then there exists a sequence

{sn} C Sasuchthat||u® — s;||'™ - 0asn — .

We do not assume that A has an identity. If 4 does have an identity, we
denote it by 1; and if X\ is a scalar, we denote X - 1 simply by A. If 4 does not
have an identity, 1 and X - 1, denoted again by \, are symbolic, but make sense
when multiplied by an element of 4. Our main concern is with operators defined
on A by left or right multiplication by (A — u) where Nis ascalarandu € 4;
the left multiplication operator on 4 determined by (A — u) is the operator
which takes x € 4 into (\ —u)x € A. If M is any subset of 4, we let
R[M] = {a € A| Ma = 0} and L[M] = {a € A| eM = 0}. With this notation
the null space of the left multiplication operator determined by (A — u) is the
right ideal R[A(A — u)]; the range is the right ideal (A — u)A. The right
multiplication operator on 4 determined by (A — #) has a similar definition
and similar properties.

In the course of studying left and right multiplication operators on 4, we
make important use of the concepts of ascent and descent of a linear operator.
For the definitions and elementary properties of these concepts, see (8,
pp. 271-274). We denote the ascent of the left (right) multiplication operator on
A determined by (A — #) by a;(A — %) (a,(A — u)) and the descent by

6 (N — u) (6,(N — u)).

Finally we denote the spectrum of an elementu € A4 by o(u).

2. Ideals of finite order and elements of the socle. In the generalized
Fredholm theory that we develop for elements in k((S4)), the concept of a
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left or right ideal of finite order replaces that of finite-dimensional subspace. In
this section we study the elementary properties of ideals of finite order, and
using these results, derive basic information concerning the socle of 4.

Definition. A right (left) ideal K of 4 has finite order if and only if K can be
written as the sum of a finite number of minimal right (left) ideals of 4. We
define the order of K to be the smallest number of minimal right (left) ideals of
A which have sum K. For convenience we say that the zero ideal has finite
order 0.

If I is a two-sided ideal of A4, the definition of the order of I is ambiguous.
However, it is a corollary of Theorem 2.2 that the order of I considered as a
right ideal is the same as the order of I considered as a left ideal. Thus we shall
ignore the ambiguity.

THEOREM 2.1. Assume that M is a left ideal of A of finite order n. If f1, fo, . .., [
are m Ey, Af1 + Afe 4 ... + Afn C M, and this sum s direct, then m < n.
A similar statement holds for right ideals of finite order.

Proof. Choose ey, €5, ..., e, € E4such that M = Ae; + Aes 4 ... + Ae,.
Since f1 € M, there exist elements x;, € A such thatf; = x1e1 4+ ... + x, €,
Assume thatx; e; # 0. Then

Aej = ij €; C ( Z A6k> + Afl.
i
Thus M must be the sum on the right-hand side of this inclusion. Now f, € M,
and therefore there exist elementsy;, € A andz € A such that

fo=zf1 + kZ‘i Vi €.
[y
Since the sum Af; + Af: + ... 4+ Afn is direct, y;e; = 0 for some ¢ # j. Then,
proceeding as before, we have that

M=Af1+Af2—|—< > Aek>.
By continuing in this manner, we can at each successive step replace an ideal
Ae, by an ideal Af,. If m > n, then at the end of this process we have
M = Afi + Afs + ... + Af,. But this contradicts the assumption that the
sum Afy + ...+ Af,isdirect. Therefore m < n.

THEOREM 2.2. Assume that K is a non-zero right ideal of finite order n. Then
any maximal orthogonal set of minimal idempotents in K contains n elements, and
if M = {ey, €2, ...,e,} issuchaset, then K = e, wheree = ey + e+ ... + e,

Proof. Let M be a maximal orthogonal set of minimal idempotents in K. By
Theorem 2.1, I must be a finite set (note thatif {f1, ..., fx} is an orthogonal
set of minimal idempotents, then the sum f; 4 4+ ... 4 f; 4 is direct), so we
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write M = {ey, €2, ..., ¢y}. Now assume that g is a minimal idempotent in K
such thate, g = Ofor 1 < & < p. By the maximality of I, ge, 5 O for some &,
1 < k < p. By renumbering the elements of It we may assume that ge; # 0 if
1 <j<mandge; = 0ifj > m. Let

f=g- Z £ex.
k=1

Since fg = g # 0, then f # 0. Itis easy to verify thate;f = fe, = 0 for all &,
1 <k<p Also

F= (g -2 gek)f= g =1
and fA = gfA = gA; thus f is a minimal idempotent. This contradicts the
definition of I as a maximal orthogonal set of minimal idempotent in K. Thus

there can be no minimal idempotents g € K such thate, g = Oforalle, € .
Now takey € K and define

P
W=0— D eo.
k=1

Thene,w = Oforallk, 1 < &k < p. If w0, then since wd C K C S, there
existsg € E suchthatg € wA.Butthene,g = Oforl < k < p. Therefore w
must be 0. Thus it follows that foranyv € K,

D
V=) eo.
k=1

Lete = e, + ¢4+ ...+ ¢, Wehave proved that K = ¢A4.

It remains to be shown that p = n. First by Theorem 2.1, p < . But p
cannot be strictly less than # by the definition of the order of an ideal and the
factthat K = e¢; 4 4+ ... + e, A. This completes the proof of the theorem.

If K is any left or right ideal of finite order and 9 is a maximal orthogonal
set of minimal idempotents in K, we shall call It an orthogonal basis for K. It
is not difficult to verify that if K is a left ideal of finite order and J is a left
ideal such that J C K, then J has finite order; furthermore, if J is properly
contained in K, then the order of J is strictly less than the order of K, and any
orthogonal basis for J can be extended to an orthogonal basis for K.

Now we turn to the investigation of the elements in .S4, although we state the
next lemma more generally for elements in £(4(S,)).

LemMA 2.3. Assume thatu € k(h(S4)). Furthermore, assume that R[A(1 — u)™]
s of finite order and that o (1 — u) = m. Then

(1) 8:.(1 — u) =m;

2) AQ —u) = AL — e), where ¢ is an idempotent in S, such that
R[A(1 — u)] = eA.

Proof. By Theorem 2.2 there exists an idempotent e, € S, such that
R[AQ1 — u)™] = e, A. Now consider the left ideal M = A((1 — u)™ — e,)
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which is of the form A(1 — v) where v € k(h(S,)). We shall prove that
R[M] = 0.Suppose that Mx = 0. Then (1 — #)™x = e, xand

A —u)™c =1 —u)"enx = 0.

Butsince a;(1 — #) = m, then R[A(1 — u)*™] = R[4A(1 — u)™]; it follows that
(1 —u)"x =0ande,x =0.Butx € R[A(1 — #)™], and hencex = ¢, x = 0.
Thus R[M] = Oand, by (1.1), M = A.

Now suppose thaty € A(1 — )" for some # > m. Then ye, = 0. But also
y =2((1 —u)™ —e,) for some z € A. Then ze, = ye, = 0, and hence
y =2(1 —u)™.Thusy € A(1 — u)™, and itfollows that

AQ —u)* = A1 — u)™

This proves in fact that §,(1 — u) = m.
Since M = A,wehave A(1 — u)™ + Ae, = 4.

R[AQ —u)] CR[AQ1 — w)"],

and is therefore of finite order. Let ¢ be an idempotent in S4 such that
R[A(1 — u)] = eA.Let B = k(h(S4)),andlet N = B(1 — u) + Be. Nisaleft
ideal of B, and it is easy to verify that the right annihilator of N in B is 0.
Since B is a modular annihilator algebra and N is a modular left ideal of B,
it follows that B = N. Thus

Aen CB =B —u) +Be C A1 — u) + Ae.
Butalso A(1 — u)™ C A(1 — u). Then
A=A0 —u)™ + Ae, C A1l — u) + Ae.

Assume that 2 € A(1 — e). z is of the form 2 = w(1 — u) + ye for some
w,y € A. But ye =2¢ =0. Thus z = w(l —u), and it follows that
A(l —u) = A1 — e).

Next we prove our main result concerning elements of the socle of 4. All
considerations are completely algebraic, as they have been up to this point in
the paper.

THEOREM 2.4. Assume that s € S,4. Then

(1) R[A(Q — s)] and L[(1 — s)A] are of finite order;

2) (1 —5) =6,(1 —35) =a(1 —s) =26 —s) and all these quantities
are finite;

8) A(1 — s) = A(1l — e) whereeis an idempotent in S, such that

R[A(Q — 5)] = ed;
(4) o(s) is finite.

Proof. Let K = R[A(1 — s)]. If x € K, then (1 — s)x =0, and thus
x = sx € sA. But then K C sA4, and since s4 is of finite order, K must be of
finite order. By a similar proof, we find that L[(1 — s) 4] is of finite order.
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Next we prove that «,(1 — s) is finite. Suppose it is not; then setting
K, = R[A(1 — s5)"], we have that K, is a proper subset of K, for all z > 0.
We may choose an orthogonal sequence {e;} C E,4 with the property that
e, € K, (choose first orthogonal bases I, for each K, such that I, is an
extension of M, ; next, choose ¢, to be an element in IN; not in M;_1). But then
(1 — s)%, = 0, and this implies thate, € sA4. This contradicts the fact thatsA4
is of finite order. Therefore a;(1 — s) must be finite. With a similar proof we
find that o,(1 — s) is finite. By Lemma 2.3 (1) we have a;(1 — s) = §,(1 — )
and «,(1 —s) = §;(1 — ). Finally, «;(1 —s) = §,(1 — s) since when the
ascent and descent of an everywhere defined linear operator are both finite,
they are equal by (8, Theorem 5.41-E, p. 273). This completes the proof of (2).

Now having proved (2), (3) follows immediately by Lemma 2.3 (2).

Lastly, we prove (4). Assume that {\,} is an infinite sequence of distinct non-
zero elements in o(s). We may assume that there is a sequence {e;} C E 4 such
that se; = A\; ex; see (1.1). It follows that e; € sA for all k. Suppose that there
arex; € A such that

e1x1 +exs+...4+e,x, =0
and thate, x, % 0. Then
—en Xy = €1%1 + ...+ 1 Xp—1.
Therefore
0= A1 —u)e—u) ... N1 — U)ey Xy
= ()\1 — )\n)()\z — >\n) .o ()\n—l —_ )\n)en Xn.

This contradiction implies that for any #z > 1, thesum
e1rA+eA+...+e A

is direct. This in turn contradicts the fact that s 4 has finite order.

3. The elements in k(#(S,)). In this section we generalize the results of
§2 concerning elements in .S, to the elements in k(£(S4)). The first theorem is an
easy extension of Theorem 2.4 (1).

THEOREM 3.1. If u € A s quast-regular modulo Sy, then R{A(1 — u)] and
L[(1 —u)A] are of finite order. In particular, this conclusion holds whenever
u € k(h(SA))'

Proof. 1f u is left quasi-regular modulo Sy, then there exists w € 4 and
s € Sysuch that (1 —w)(1 —u) = (1 —s). Then A1 —s) C A1 — u). It
follows that R[A(1 — u)] C R[A(1 — s)], and since R[A(1 — s)] is of finite
order by Theorem 2.4 (1), then R[4 (1 — #)] must have finite order. Similarly,
if u is right quasi-regular modulo S, then L[(1 — %) A] must have finite order.
Now B = k(h(S4)) is a modular annihilator algebra, and thus B/S, is a
radical algebra. It follows in the case when u# € k(h(S4)) that u is quasi-regular
modulo S,.
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We shall usually find it necessary in this section to assume that 4 is a
normed algebra. The proof of the next theorem depends in a crucial way upon
this assumption. In the proof we use a version of a result proved by A. F.
Ruston concerning a bounded linear operator I" defined on a Banach space X
which has the property that lim,, |[|T" — G,||*/* = 0 (where || - || is the
operator norm) for some sequence {C,} of completely continuous operators on
X. Ruston’s proof of the result we use (7, Lemma 3.2, p. 323) does not require
X to be a Banach space in the given norm. The conclusion of Ruston’s Lemma
3.2 is that the ascent of I — 7" must be finite where [ is the identity operator
on X.

THEOREM 3.2. Let A be a normed algebra with norm || - ||. Assume that
u € k(h(S4)). Then ay(1 — u) and o, (1 — u) are finite.

Proof. We prove only that a;(1 — «) is finite. Denote the right ideal
R[AQ — u)] N (1 — u)*4 by K,. Assume that K, # 0 for all # > 0. Now by
Theorem 3.1, R[A(1 — )] is of finite order. Also note that for all 2 > 0,
(1 —u)*14 C (1 — u)*A. It follows that there exists an integer m such that
whenever n > m, then K, = K,,. Since K,, # 0, there exists an ¢ € E4 such
thate € K,. Thene € K, for all u > 0. It follows that for all integers & > 0,

e € (R[A(1 — u)] M Ae) N\ (1 — u)¥Ae.

Let ¢ — T, be the left regular representation of 4 on Ae(T,(xe) = axe for
allxe € Ae). Aeis a normed linear space and 7, is a bounded operator on Ae.
Now by assumption # € k(h(S,)). Therefore there exists a sequence {s,} C S4
such that ||u® — s,||'* — 0 as » — « by (1.2). Let |T,| denote the operator
norm of T, on the normed linear space Ae. Then we have immediately that
T, — T,,|''" — 0 as n — . But it can be shown that T, is an operator of
finite rank on Ae. By Ruston’s result (see the discussion preceding the state-
ment of this theorem), the ascent of I — T, on Ae must be finite. Lemma 3.4
(9, p. 22) implies that a linear operator W has finite ascent if and only if there
exists an integer p such that the intersection of the null space of W with the
range of W7 is 0. Letting W represent the operator I — T, on Ae, we have that
(R[A(Q — u)] M\ Ae) N (1 — u)?Ae must be 0 for some p. This is a contradic-
tion, and we conclude that K,, = 0 for some m. But now let W represent the
left multiplication operator on 4 determined by (1 — u).

0=K,=R[A1 —u)]N (1 —u)"4,

and this last object is exactly the intersection of the null space of W with the
range of W™, Therefore a;(1 — ) is finite.

THEOREM 3.3. Assume that A is a normed algebra. If u € k(h(Sy4)), then

1) a1 —u) =61 —u) = a,(1 —u) =61 — u) and all these quantities
are finite;

2) AQ —u) = A1 —e), where e is an idempotent in S, such that
R[A(1 — u)] = eA.
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Proof. By Theorem 3.1, R[A(1 — u)*] is of finite order for all 2 > 1. By
Theorem 3.2, a;(1 — #) and «,(1 — u) are finite. Now (2) follows directly
from Lemma 2.3 (2). Also by Lemma 2.3 (1), «;(1 — %) = 6,(1 — «). Then
since the ascent and descent of an operator are equal if they are finite by (8,
Theorem 5.41-E, p. 273), it follows that

(1 —u) = a,(1 —u) =680 —u) =a(l —u).

The next theorem concerns the spectrum of elements in k(k(S4)). It has a
direct application to modular annihilator algebras which we state as a corollary.

THEOREM 3.4. Assume that A is normed with norm || - ||. If u € k(h(S4)),
then o(u) s either finite or countable and has no non-zero limit points.

Proof. Assume that A 5% 0 is in o(x), and that {)\,} is a sequence of distinct
non-zero elements in ¢(#) such that \, — \ as # — . We may assume by
appealing to (1.1) that there exists a sequence {e,} C E, with the property
that (\, — #)e, = Oforn > 1. By Theorem 3.3 (1),

a,(1 —u) =61 —u) =m

for some integer m. Let K = L[(A\ — u)™A]. By (8, Theorem 5.41-F, p. 273)
A=A\ — u)™ 4+ K. Now define M to be the left ideal

tv € Al [[oen/llea]| [| >0 as n— o},

Now (A — u)™ex, = (A — A\)™e; for all & > 1, and therefore AN — u)™ C M.
It also follows that e, € (A — u#)™A4 for all & > 1. Therefore Ke, = 0 for all
k> 1.ThenK C M,andfinally 4 = K + A\ — u)™ C M. But

luew/llex] || = |\l
for all &, which implies that« ¢ M, a contradiction.

COROLLARY. If A is a semisimple normed modular annihilator algebra, then the
spectrum of any element in A 1is either finite or countable, and has no non-gero limat
points.

THEOREM 3.5. Assume that A is normed. Then if u € k(h(S4)), the order of
R[AQ — u)] is the same as the order of L{(1 — u)A]. If u € S4, the same
conclusion holds without the hypothesis that A have a norm.

Proof. We prove the theorem for the case where u € k(h(S,)) and 4 is
normed. By Theorem 3.1, we may assume that R[4 (1 — «)] has finite order »
and that L[(1 — «)A] has finite order m. The proof proceeds by induction on 7.
In the case when # = 0, m = 0 by Theorem 3.3 (1). Now assume thatz > 1,
and that the theorem holds for all 2 such that 0 < 2 < #n. First note that

m > 1, again by Theorem 3.3 (1). Let I = {e), ..., e,}] be a maximal
orthogonal set of minimal idempotentsin R[4 (1 — )], and let
Sﬁ = {fly- . yfm}

be a maximal orthogonal set of minimal idempotents in L[(1 — u)A].
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Suppose that f; Ae; = Oforallk, 1 < kB < m.Let P = L[Ae;]; then Pisa
primitive ideal of 4. Let B = 4/P,and let m: 4 — B be the natural projection
of A onto the quotient algebra B. Note that B is a primitive normed algebra
and that =(u) € k(h(Sp)). Clearly w(e;) %0 and (1 — w(u))w(e;) = 0.
Then there exists x € 4 such that 7(x) # 0 and 7(x)(1 — =(u)) = 0 by
Thorem 3.3 (1).Now by (1, Proposition 3.1 (1), p. 567), P = L[de,] =
Rle; A]. Then since m(x — xu) = 0,e; A(x — xu) = 0. Thus

(1 Ax) CA(fi+ ... +fa) CP;
hence (e; Ax) C P. Then (e; A)(e1 Ax) = 0, and it follows that e; Ax = 0.
Thus v(x) = 0, a contradiction.

Therefore there exists some j, 1 < j < m, such that f; Ae; # 0. We may
assume thatj = 1. Choosey € A such thatf;ye; # 0, and letw = u + f; ye;;
note thatw € k(h(S,)). Assume that A (1 — w)y = 0. Then

(I —upv = (fiye))o.
Multiplying this equation on the left by f;, we have that (fiye;)v = 0. It
follows that 0 = A(fiye;v) = Ae;v, and hence that e;v = 0. But also
(1 — u)v = 0. Thus
v=(e14+e+...+e)v=1(e24+ ...+ e

Therefore R[A(1 — w)] = (2 + ... 4+ e,)A. In a similar fashion we find that
L[(1 —w)4] = A(f: + ...+ fu). By the induction hypothesis, it follows that
n = m.

The last theorem of this section is a summary of the main results given in this
paper. We use the notations A (W), «(W), and §(W) to stand for the null space,
the ascent, and the descent of a linear operator W, respectively. We hope that
the notation and the particular formulation of the results presented in this
theorem will make explicit the concept of a generalized Fredholm theory for
elements in k(k(S,)).

THEOREM 3.6. Assume that A is a semisimple normed algebra, and that
u € k(h(S4)). Let a — T, be the left regular representation of A on A, and let
a — 17, be the right regular representation of A on A. Assume that \ is a non-zero
scalar. Then:

(1) The orders of /(NI — T,) and V(N — T",) arefinite and equal.

2) a(N = T,) =6\ —T,) =a(M —T",) = 6(\] — T",) and all these
quantities are finite.

(8) The equation N\ — T,)x = vy has a solution x € A if and only if zy = 0
for all z € /(NI — T",). The equation (\I — T',)x = y has a solution x € A
ifand only if yz = Oforallz € /(N[ — T,).

(4) The equation (N[ — Ty)x = v has a solution x € A for all giveny € A,
except for at most a countable set of \. If there is an infinite sequence of such
exceptional values {\,}, then N, — Qasn — o.

(5) If u € Sy, then (1)—(4) hold without the assumption that A have a norm,
and in factin (4) only a finite number of exceptional values is possible.
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