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What is the entrainment coefficient of a pure
turbulent line plume?
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Despite its pivotal role in the classic theory of turbulent line plumes, there has been
no consensus on the value of the entrainment coefficient α suitable for a pure plume.
Reported measurements vary by 100 %, from α = 0.1 to α = 0.2, hindering the predictive
capabilities of plume theory. Following our theoretical developments, measurements of
plume entrainment using a new approach and a rigorous assessment of reported values
for α, we conclude that α = 0.11 ± 15 % should be adopted as the consensus value.
Our theoretical framework demonstrates how α is determined from underlying plume
measurements, and places an emphasis on the link between measurement uncertainty
and uncertainty in α. This framework inspired our experimental design, intentionally
conceived to precisely determine α. From measurements of the plume scalar width and
the entrainment velocity outside the plume, we determine that α = 0.108 ± 2 % (95 %
confidence interval). Complementing our experiments is an evaluation of the historical
data which, after we explain why some reported values of α are erroneous, supports the
range 0.095 � α � 0.13. The proposed consensus value thus represents both our precisely
determined value and the variation in the published data. The significance of a consensus
value for α can be summarised as follows: (i) it enhances confidence in the application
of plume theory to practical situations and (ii) it permits more detailed comparison of
entrainment between pure line plumes and related turbulent flows, including forced and
lazy line plumes and wall plumes.

Key words: plumes/thermals

1. Introduction

Turbulent line plumes emerge from long, slender sources. Their widespread occurrence in
natural and built environments has motivated numerous previous studies, including those
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concerned with pollutant transport (Koh & Brooks 1975), eruptions from volcanic fissures
such as Laki in 1783 in Iceland (Stothers 1989), convective flows from both glacial leads
and burning buildings (Ching, Fernando & Noh 1993; Yokoi 1960) and ocean stratification
(Wells & Wettlaufer 2005). Due to the turbulent entrainment of fluid from the surrounding
environment, the physical scale of these buoyancy-driven flows increases with distance
from the source. As such, the rate of entrainment into a line plume is instrumental to their
fundamental behaviour and successful prediction.

Two-dimensional mathematical models for idealised turbulent line plumes from sources
of infinite length have been developed (Batchelor 1954; Lee & Emmons 1961; van den
Bremer & Hunt 2014a). A crucial component of these models is the turbulence closure
that relates the velocity of entrained ambient fluid to a characteristic vertical velocity
in the plume (Morton, Taylor & Turner 1956). While appearing in plume theory in
multiple conventions (Lee & Emmons 1961; van den Bremer & Hunt 2014a; Paillat &
Kaminski 2014a), following Lee & Emmons (1961) we express this closure using the
entrainment coefficient α such that the horizontal entrainment velocity ue is related to
the time-averaged centreline velocity of the plume wc via

ue = αwc. (1.1)

Although line plumes have been studied since Rouse, Yih & Humphreys (1952), a
consensus has not been reached regarding the value of the entrainment coefficient
α, even for the simplest case: a line plume in equilibrium in unstratified quiescent
surroundings where dimensional arguments show that α should be a constant. Summary
tables of experimental measurements produced by Yuan & Cox (1996), van den Bremer
& Hunt (2014a) and Parker et al. (2020) report 0.11 ≤ α ≤ 0.20, 0.10 ≤ α ≤ 0.16 and
0.10 ≤ α ≤ 0.16, respectively. Table 1 collates all the reported values that we could
trace back to experimental measurements. This wide range, with a variation of 100 %
between the minimum and maximum, does not engender confidence in predictions of
plume behaviour. For example, based on classic plume theory, the distance at which fluid
in the plume has diluted to a given value varies by up to 60 % depending on the choice of
α from this table.

The uncertainty surrounding the value of α can also be linked to two factors highlighted
by table 1. First, there is a general scarcity of experimental data on line plumes – to date
only eight independent datasets (nine, including our own (§ 5)) have been used to calculate
α. Second, for three of these datasets, a subsequent analysis by other authors has led to
conflicting values of α being published for the same data – note the table entries for Rouse
et al. (1952), Kotsovinos (1975) and Ramaprian & Chandrasekhara (1989).

There are suggestions or recommendations for a particular value of α within the
range 0.1–0.2. Yuan & Cox (1996), although acknowledging the wide range in values,
recommend α = 0.13. Based on the Poreh et al. (1998) data for two-dimensional spill
plumes, created by a gravity current that ‘spills’ over the end of a horizontal boundary,
Thomas, Morgan & Marshall (1998) show that a line plume model with α = 0.11
describes the far-field plume. Given the non-zero horizontal momentum flux, one cannot
automatically assume that an entrainment coefficient derived from spill plume data
captures the behaviour of classic line plumes, although α = 0.11 sits firmly within the
range reported (table 1) and Thomas et al. (1998) recommended its use in fire safety
models. Paillat & Kaminski (2014a) only compare their measurements with Ramaprian
& Chandrasekhara (1989), commenting on the good agreement, implicitly suggesting
α = 0.12. Clearly, no consensus has been reached on the most appropriate value of α,
as highlighted by recent comments on the significant spread in reported values (Kaye &
Cooper 2018; Parker et al. 2020).
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Measurements Analysis α

Rouse et al. (1952) Various authors 0.16
Rouse et al. (1952) Brooks (1973) 0.14
Rouse et al. (1952) Chen & Rodi (1980) 0.144†

Yokoi (1960) Yuan & Cox (1996) 0.125
Lee & Emmons (1961) Lee & Emmons (1961) 0.16
Kotsovinos (1975) Kotsovinos (1975) 0.11
Kotsovinos (1975) Yuan & Cox (1996) 0.20
Ramaprian & Chandrasekhara (1989) Ramaprian & Chandrasekhara (1989) 0.113
Ramaprian & Chandrasekhara (1989) Yuan & Cox (1996) 0.117
Ramaprian & Chandrasekhara (1989) Paillat & Kaminski (2014a) 0.117
Yuan & Cox (1996) Yuan & Cox (1996) 0.126
Paillat & Kaminski (2014a) Paillat & Kaminski (2014a) 0.126
Parker et al. (2020) Parker et al. (2020) 0.10
Present work Present work 0.108

Table 1. Values of the entrainment coefficient, defined by (1.1), reported for a turbulent line plume. Entries
have been converted from different plume theory conventions when necessary. First column: the author(s) who
report the original data. Second column: the author(s) who report a value for α based on an independent analysis
of the original data. Rouse et al. (1952) do not give a value for α as their work was published before Morton
et al. (1956) introduced the entrainment hypothesis (1.1), but their reported measurements imply α = 0.16.
†Chen & Rodi (1980) do not report a value for α, but this entry is consistent with their analysis, unlike values
closer to 0.13 occasionally attributed to them (Yuan & Cox 1996; van den Bremer & Hunt 2014a). The data
underpinning the values listed above are analysed in § 4, and a summary of revised values for α is given in
table 4.

The lack of consensus is not just problematic for the accuracy of predictions based on
classic plume theory. A consensus value for α would also greatly benefit the analysis of
non-equilibrium forced and lazy plumes (Lee & Emmons 1961; van den Bremer & Hunt
2014a). It is well accepted (Kotsovinos 1975; Kotsovinos & List 1977; Yannopoulos 2006;
van den Bremer & Hunt 2014a; Paillat & Kaminski 2014a) that the entrainment coefficient
of a line plume is about twice that of a line jet, despite reported values for a line plume
showing the same factor of two difference. Similarly, an improved reference value for α

could aid the development and enable experimental verification of more complex plume
models such as those considering non-Boussinesq effects (van den Bremer & Hunt 2014b)
or self-similarity drift (Paillat & Kaminski 2014a). Wall plumes, resulting from either
a vertically distributed source of buoyancy or a line source at the base of the wall, are
commonly compared with line plumes (Grella & Faeth 1975; Baines 2002; Kaye & Cooper
2018; Parker et al. 2020). However, efforts to establish the quantitative effect of the wall
on entrainment are clearly hindered by the uncertainty in α. Understanding and predicting
the transition of a free plume from near-field line-like behaviour to an axisymmetric
asymptotic state would also benefit from a well-established value for α (Yokoi 1960). In
order to better understand these related flows and improve the predictions of line plume
models we require an answer to the broader question: what is the entrainment coefficient
of a pure turbulent line plume?

We address this question with a multi-faceted approach. First, we review and extend the
plume model developed by Lee & Emmons (1961) and Yuan & Cox (1996), placing an
emphasis on the relationships between plume measurements and calculated values of the
entrainment coefficient. These relationships reveal non-trivial links between uncertainties
in measured quantities and uncertainties in the calculated values of α which illuminate
both experimental design and the analysis of past experiments. Second, using this
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theoretical framework, we assess the literature to identify the reasons for the variation
in past measurements of α. Our analysis leads us to conclude that the value for α falls
within a considerably smaller range than suggested by table 1. Third, using our theoretical
framework as a guide, we design an experiment which enables α to be determined
more precisely than in past studies. Our measurements of the entrainment velocity into
a turbulent saline plume are a first in this context and, combined with measurements
of the scalar field, lead us to deduce α = 0.108. This value is in good agreement with
the new understanding of the literature and we conclude that, based on all the evidence,
α = 0.11 ± 15 %.

2. Theoretical framework

2.1. Plume theory
Consider a turbulent plume that develops from an infinitely long slender source of
buoyancy flux per unit length B0 (dimension L3T−3, where L is length and T is time),
in an otherwise quiescent and miscible environment of uniform density ρe, subject to the
gravitational acceleration g. Let the vertical coordinate z denote the distance from the
source in the streamwise direction, x the cross-stream coordinate where x = 0 is the plume
centreline and y the spanwise coordinate. The effect of the buoyancy force, characterised
by the buoyancy of the plume relative to the environment g′ = g(ρe − ρ)/ρe, where ρ is
the local density of the plume, is to induce a vertical velocity w. Here, g′ and w are the
time- and spanwise-averaged quantities at a point (x, z).

As is standard, the integral fluxes of volume Q (L2T−1), specific momentum M (L3T−2)
and buoyancy B through a horizontal cross-section are then defined as

Q =
∫ ∞

−∞
w dx, M =

∫ ∞

−∞
w2 dx, B =

∫ ∞

−∞
wg′ dx. (2.1a–c)

Following the assumptions made to the Navier–Stokes equations by Morton et al. (1956)
and Lee & Emmons (1961), the plume is modelled by conservation equations for these
integral quantities. For an unstratified environment these are

dQ
dz

= 2ue,
dM
dz

=
∫ ∞

−∞
g′ dx,

dB
dz

= 0. (2.2a–c)

To close (2.2a–c), we must specify the cross-plume variation of w and g′ and relate ue
to the integral quantities. It is at this stage that various conventions for the entrainment
coefficient are introduced. One convention assumes ‘top-hat’ profiles whereby the plume
is modelled as having a uniform average velocity wT = M/Q and buoyancy g′

T = B0/Q
across a finite width 2bT = Q2/M and zero vertical velocity and buoyancy outside. The
top-hat entrainment coefficient αT is then defined such that ue = αTM/Q. A second
convention, based on observations that the time-averaged cross-stream profiles of velocity
and buoyancy are self-similar and Gaussian-like (Rouse et al. 1952; Kotsovinos 1975;
Ramaprian & Chandrasekhara 1989; Paillat & Kaminski 2014a; Parker et al. 2020),
assumes that the profiles are the Gaussians

w(x, z) = wc(z) exp
(

− x2

b2

)
, g′(x, z) = g′

c(z) exp
(

− x2

(λb)2

)
. (2.3a,b)

In (2.3a,b), g′
c is the centreline buoyancy and b and λb are the characteristic half-widths

of the profiles where the velocity and buoyancy, respectively, drop to 1/e (where ln e = 1)
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of the centreline value. Experimental measurements show that the buoyancy profile is
wider than the velocity profile, i.e. the profile coefficient λ > 1 (e.g. Ramaprian &
Chandrasekhara 1989). Via (2.1a–c), these profiles correspond to the integral quantities

Q = √
π wcb, M =

√
π

2
w2

cb, B = λ
√

π√
λ2 + 1

wcbg′
c. (2.4a–c)

For the idealised case of a true line plume source, the source volume and momentum fluxes
are zero and the plume is in an asymptotic state whereby α (or αT) and λ are constants for
any z > 0. Solution of (2.2a–c) for this idealised case, based on the top-hat convention,
yields

Q = (2αT)2/3B1/3
0 z, M = (2αT)1/3B2/3

0 z, B = B0, (2.5a–c)

and based on the Gaussian convention

Q = 25/6(1 + λ2)1/6α2/3B1/3
0 z, M = 21/6(1 + λ2)1/3α1/3B2/3

0 z, B = B0. (2.6a–c)

Clearly, there is a requirement that Q, M and ue be identical irrespective of the form of
the profile assumed and, thus, the values of αT and α are linked. For example, αT = √

2α

on taking λ = 1 as is a typical simplification in the top-hat model (van den Bremer &
Hunt 2014a; Paillat & Kaminski 2014a). This link is outlined here given top-hat profiles
are widely adopted in applications of classic plume theory. However, for interpreting
experimental measurements, it is convenient to work using the Gaussian convention as
the majority of the reported values for α (table 1) were calculated from fits to measured
Gaussian-like time-averaged velocity and buoyancy profiles.

On dimensional grounds, the characteristic velocity profile half-width, centreline
velocity and centreline buoyancy of a turbulent plume from a line source can be expressed
as

b = Cbz, wc = CwB1/3
0 , g′

c = CgB2/3
0 z−1, (2.7a–c)

where Cb, Cw and Cg are dimensionless coefficients. Equating (2.4a–c) with (2.6a–c) and
substituting for (2.7a–c) shows that these coefficients are related to α and λ as follows:

√
πCwCb = 25/6(1 + λ2)1/6α2/3, (2.8)

√
πC2

wCb = 22/3(1 + λ2)1/3α1/3, (2.9)
√

πCwCgCb = λ−1(1 + λ2)1/2. (2.10)

These three coupled algebraic equations, expressed in similar forms by Lee & Emmons
(1961) and Yuan & Cox (1996), have five unknowns. Thus, the measurement of a pair of
coefficients is necessary before λ, the remaining coefficients and our ultimate target, α,
can be deduced. The pairings are not limited to the coefficients appearing in (2.8)–(2.10),
and at this stage it is convenient to define the following four coefficients:

λb = Cλbz, Q = CQB1/3
0 z, M = CMB2/3

0 z, ue = CeB1/3
0 . (2.11a–d)

These coefficients are readily linked to α and λ following substitution into (2.8)–(2.10) via
(1.1), (2.6a–c) and (2.7a–c).
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2.2. Determining α and λ
Only a small fraction of all the possible pairings of coefficients have been used previously
to determine α and λ. Kotsovinos (1975) and Paillat & Kaminski (2014a) used the
pair (Cb, Cλb), i.e. measurements of the widths of the velocity and buoyancy profiles.
Rearrangement of (2.8) and (2.9), and the definition of λ, leads to

α =
√

π

2
Cb, λ = Cλb

Cb
. (2.12a,b)

The straightforward forms of (2.12a,b) plausibly explains why the pair (Cb, Cλb) is one of
the most commonly selected to determine α and λ. Notably, only measurement of Cb is
needed to estimate α.

In contrast, Yuan & Cox (1996) designed their experiment to determine α and λ (Yuan &
Cox (1996) use β = 1/λ2) from measurements of the centreline velocity and buoyancy, i.e.
the pair (Cw, Cg). For this pairing, (2.8) and (2.10) lead to the more complex relationships

α =
√

2C2
g + C4

w

2C3
wCg

, λ = C2
w√

2Cg
. (2.13a,b)

Yuan & Cox (1996) used this pair to calculate a value of α (and λ) from measurements
made by themselves and others – note the entries in table 1 linked to their analysis. In doing
so, they appear to have been the first authors to reexamine past data by using a different
coefficient pair than the original experimentalist(s).

There are
(5

2

) = 10 possible pairings of the five most commonly measured coefficients
Cb, Cλb, Cw, Cg and CQ; the expressions for these pairings are listed in Appendix A. In
addition to (Cb, Cλb) and (Cw, Cg), only two more of the possible pairings have been
chosen previously to determine α and λ, namely, (Cλb, Cg) by Lee & Emmons (1961)
and (Cw, CQ) by Ramaprian & Chandrasekhara (1989). Our measurements of Ce (§ 5) can
be related to α and λ via relationships involving CQ: the change in volume flux being
the result of entrainment into the two sides of the plume (CQ = 2Ce). We additionally
include the relationships for two pairs involving the coefficients CM and CB = wcg′

cz/B0,
although do not include every possible combination. The pair (CM, CQ) is closely linked
to the top-hat plume width measured by Parker et al. (2020). The pair (Cg, CB) uses
centreline measurements of the buoyancy and the product of the buoyancy and velocity,
and highlights how experimental capabilities could motivate the study of additional pairs;
in this case, possibly using a combined temperature and heat-flux sensor.

3. Quantifying the consequences of experimental error

Given there are numerous ways that an experiment could be designed, a key question
arises: of the possible coefficient pairs, is there a specific pair that should be targeted
in order to best determine α? In particular, are there pairings that are less susceptible to
experimental uncertainty and, thereby, will yield more reliable estimates for α?

Assuming that random measurement errors are small and uncorrelated, the uncertainty
in the value of α calculated from the pair (C1, C2) is

δα =
√(

∂α

∂C1
δC1

)2

+
(

∂α

∂C2
δC2

)2

, (3.1)

where δ indicates an uncertainty in the quantity, such as the standard deviation or the
width of a confidence interval. This assumption may not be strictly true depending on the
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Table 2. (a) Estimates of the uncertainty multiplier k1 for a given pair (C1, C2) used to calculate α.
(b) Estimates of the uncertainty multiplier k3 for a given pair (C1, C2) used to calculate λ. Values are
either integers or reported to two decimal places. As CQ = 2Ce, conclusions drawn regarding the uncertainty
multipliers for Ce are identical to those for CQ.

experimental approach deployed. For example, Cw and CQ will be correlated if both are
determined from measurements of the velocity profile, but could be uncorrelated if CQ
were instead determined using a technique to measure the volume flux directly (Zukoski,
Kubota & Cetegen 1981; Baines 1983).

We are relatively unconcerned whether it is more appropriate to sum uncertainties
linearly or in quadrature, and are not suggesting that all past measurements should be
rigorously analysed within this framework. Indeed, most studies consist of a relatively
small number of individual experiments or do not report standard deviations, hindering
detailed interpretation, statistical or otherwise. Nevertheless, the partial derivatives
account for the sensitivity of α to changes in the coefficient values, even if it is unclear
whether the uncertainties should be added in quadrature.

A similar expression to (3.1) can be written for δλ. For every coefficient pair, the
required partial derivatives can be evaluated and expressed in the normalised forms

δα

α
=

√
k2

1

(
δC1

C1

)2

+ k2
2

(
δC2

C2

)2

,
δλ

λ
=

√
k2

3

(
δC1

C1

)2

+ k2
4

(
δC2

C2

)2

, (3.2a,b)

where we refer to the positive values of ki, i = {1, . . . , 4}, as uncertainty multipliers. The
expressions for ki for each coefficient pair are listed in Appendix A. While ki can be
evaluated using measurements from a particular experiment, for the purpose of calculating
the representative uncertainty multipliers presented in table 2, we use the coefficient values
that can be calculated from α = 0.11 and λ = 1.2, the values that we conclude (§ 7)
best represent the available experimental evidence. These values for α and λ yield the
following set: Cb = 0.1241, Cλb = 0.1489, Cw = 2.157, Cg = 2.743 and CQ = 0.4746 (to
four significant figures (s.f.) to minimise rounding errors).

The entries in table 2 are the uncertainty multipliers for C1 when paired with C2.
For example, to calculate the uncertainty in α determined from the pair (Cλb, Cw), the
uncertainty in the measurements of Cλb is multiplied by k1 = 0.37 (reading off table 2(a)
using C1 = Cλb and C2 = Cw (purple entries)). Reversing the order and setting C1 = Cw
and C2 = Cλb, the multiplier for Cw when paired with Cλb is k1 = 1.89.

The links between a pair of coefficients and α and λ are, in general, nonlinear, and
the use of the truncated Taylor series to express (3.2a,b) will introduce some error. The
significance of this error will depend on the given measurements for a pair, but a more
considered calculation of the uncertainty – for example, using higher-order terms in
the Taylor series approximation – may be necessary in certain cases. Nevertheless, the
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uncertainty multipliers in table 2 provide immediate insight into the implications of
selecting a given coefficient pair and, thereby, a particular experimental approach. First,
consider the example pairing (Ce, Cλb), i.e. the red entries in table 2(a). In this case, the
estimate for α is clearly dominated by the uncertainty in Ce, as the square of its multiplier
exceeds that for Cλb by a factor of (2.13/0.42)2 ≈ 26. In a similar vein, the direct link
between Cb alone and α (2.12a) is indicated in table 2(a) by k1 = 0 for any other coefficient
paired with Cb. Second, while the majority are broadly comparable in magnitude, the
uncertainty multipliers for (Cλb, Cg) stand out as being considerably larger. Thus, the
pairing (Cλb, Cg) would not be a wise choice to determine α, unless particularly precise
measurements of the buoyancy field could be made. Indeed, in light of this uncertainty
analysis it is ironic that, of the six datasets which only include two coefficients, four
measure the pair (Cλb, Cg) (Lee & Emmons 1961; Harris 1967; Anwar 1969; Sangras, Dai
& Faeth 1998), although we note these experimentalists were not focused on determining
α. With reference to table 2(b), similar deductions can be made concerning the multipliers
that underlie the uncertainty in λ.

We do not assert that the uncertainty multipliers in table 2 dictate that a particular
coefficient pair should be chosen. Many of the multipliers are similar in value, and
differences in how precisely a coefficient can be determined will also have an impact. It is
also unlikely that experimentalists would agree on whether it is preferable to measure two
coefficients relatively well, or choose a pair where one coefficient can be the focus of the
measurement campaign. However, if one could make good estimates for how precisely
each coefficient could be measured, then the uncertainty multipliers would point to a
particular pair. At the very least, the multipliers should play a guiding role in experimental
design.

In what follows, further insights gained from the uncertainty multipliers are brought
to bear, both in our assessment of past experiments (§ 4) and in informing the design
of our original new experiments (§ 5) that centre around the evaluation of a previously
unconsidered coefficient pair.

4. Experimental data assessment

Given α is not measured directly, further investigation into the variation of the values
reported for α requires consideration of the variation in the underlying measurements.
These are recorded in table 3 with the pertinent experimental details, including the source
length L and width s = 2b0 (where b0 is the physical half-width of the source), the vertical
position of the measurement region zm and the presence, or otherwise, of end walls.

A cursory examination of table 3 reveals that the range of reported values for α is not
simply a result of different interpretations of the measurements: the measurements alone
show considerable variation. For example, measurements of Cb vary by 60 % across the
experiments which is noteworthy as many reported values for α are calculated using Cb.
Given the broad range of experimental conditions used to study line plumes (table 3),
our assessment of the experimental data continues by considering whether there is any
systematic link between the experimental geometry and the reported values of α.

4.1. Effects of experimental conditions
It is natural to enquire if the reported variations in α can be attributed to differences in how
‘line like’ the experimental set-ups were. In an ideal scenario, measurements would be
made from a long and slender source (L/s � 1) at downstream distances zm that are small
relative to the source length (L/zm � 1) and large relative to the source width (zm/s � 1).
Practically, it is infeasible to insist that s � zm � L and, consequently, experimentalists
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Measurements Experimental conditions

Author Cb Cλb Cw Cg CQ CM L (mm) s (mm) zm (mm) L/s End walls Buoyancy source

Rouse et al. (1952)
0.177 0.156 1.8 2.6

— — 1220 — 400–1100 — Yes Fire
0.162 0.168 1.91 2.5

Yokoi (1960) — — 2.05 2.58 — — 1000 10 500–1400 100 No Fire
Lee & Emmons (1961) — 0.162 — 2.58 — — 1980 14.3 1680 138 Yes Fire
Kotsovinos (1975) 0.111 0.142 1.66 2.38 — — 130 10, 20 60–430 6.5, 13 Yes Heated water
Ramaprian & Chandrasekhara (1989) 0.132 0.160 2.13 2.56 0.48 0.74 250 5 100–300 50 Yes Heated water
Yuan & Cox (1996) — — 2.04 2.6 0.51 — 500 15, 50 1200 10, 33.3 No Fire
Paillat & Kaminski (2014a) 0.142 0.183 2.15 2.85 — — 185 0.5, 1 60–140 185, 370 No Saline solution

2.17 2.64 0.405 0.608
Parker et al. (2020) 0.110 0.128 2.30 2.95 0.430 0.684 150 1 165–325 150 Yes Saline Solution

2.22 2.75 0.415 0.638

Table 3. Summary of experimental measurements used to calculate α and the corresponding experimental conditions. Single-valued entries for zm imply the measurement
region extended from near the source to the upper bound given; the reported coefficient values were determined only from the region where far-field plume behaviour
was demonstrated. Entries in italics (given to 3 s.f.) indicate that we performed some manipulation or calculation on the information from the original literature source. A
majority of the calculations were simply algebraic to switch to the convention used herein or to work backwards from given values of α and λ. Entries for Cw and Cg from
Paillat & Kaminski (2014a) and zm from Lee & Emmons (1961) involved estimating values from their plots. The Kotsovinos (1975) entries for Cb and Cλb were calculated
from their plume width data (Appendix C). The entries for Parker et al. (2020) were calculated from provided data (§ 4.7 and Appendix D); the multiple entries for four of
the coefficients are because three different representative buoyancy fluxes (source, mean and total) were used to normalise the measurements. The second row of entries for
Rouse et al. (1952) are revised fits to their measurements proposed by Chen & Rodi (1980) (see § 4.2). Rouse et al. (1952) state that the heat source is line like, but do not
report on the source width.
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200 4000

0.11

0.22

α

0 1 2 0 200 400 Yes No

Rouse et al. (1952) Yokoi (1960) Lee & Emmons (1960) Kotsovinos (1975)
Kotsovinos (1975), analysed by Yuan & Cox (1996) Ramaparian & Chandrasekhara (1989)

Yuan & Cox (1996) Paillat & Kaminski (2014a) Parker et al. (2020)

L/s L/zmax zmax/s End walls

(a) (b) (c) (d )

Figure 1. Variation of the reported values for α with experimental geometry. (a) α vs the source aspect ratio
L/s; both values for L/s are shown where two aspect ratios were studied, (b) α vs the source length L scaled on
the largest downstream distance that measurements are reported zmax, (c) α vs zmax scaled on the source width;
both values are shown where two different source widths were used, (d) The presence of end walls; note that
three ‘No’ data points overlap (Yokoi 1960; Yuan & Cox 1996; Paillat & Kaminski 2014a).

are forced to compromise on what conditions are appropriate. In general, an experiment
can be deemed increasingly ‘line like’ if the ratios L/s, L/zm and zm/s are larger, and if
there are end walls to encourage a two-dimensional induced-flow field.

The variation in the reported values for α with the experimental geometry is shown in
figure 1. There is no clear evidence in these plots for a systematic relationship between how
line-like experiments are and the value of α. Further support for this claim is provided by
Yuan & Cox (1996) and Paillat & Kaminski (2014a) whose measurements of plumes from
sources of two different widths show no systematic difference in the centreline properties.

In addition to plumes from a large aspect ratio line-like source, Yokoi (1960) studied
plumes from sources with L/s = 1.4, 2.7 and 5.5. His measurements of g′

c above these
small aspect ratio sources show that the departure from the two-dimensional scaling
(g′

c ∼ z−1) toward the axisymmetric scaling (g′
c ∼ z−5/3) occurs for z/L ≈ 6–7. As all

of the experiments reported in table 3 have sources with L/s > 5.5 and only report
measurements for z/L � 3, the apparent absence of systematic effects due to the source
geometry is not surprising.

While in principle there should be no difference between measurements of dynamically
equivalent plumes in water or air, possible systematic differences can be identified. For
example, plumes above a fire source are subject to non-Boussinesq effects (van den Bremer
& Hunt 2014b) while those in water tanks will be affected by the confining walls and
filling-box effects (Baines & Turner 1969; Barnett 1991). A brief analysis suggests that the
fire plume measurements reported in table 3 were unaffected by non-Boussinesq effects
(Appendix B). In contrast, confinement effects could not be ruled out, and we discuss
their possible impact on α in § 6; however, we did not identify a systematic variation due
to confinement. Other possible effects, such as similarities in the design of the source,
or measurement instrumentation and techniques, were not considered (and because of the
small number of measurements, it is not clear that such an analysis would be fruitful).

As the variation in α cannot be explained by systematic differences between the
experiments, we proceed by analysing the experimental campaigns in turn (§§ 4.2–4.7).
We summarise the main findings in § 4.8 where we present a new curated table of values
for α (table 4). Although some of the changes are relatively minor, the analysis results
in several significant modifications. In particular, we identify an alternative (and more
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Rouse et al. (1952)
Chen & Rodi (1980)
Least-squares fit
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Figure 2. A redrawing of the comparison that Chen & Rodi (1980) made between the original fit of Rouse
et al. (1952) and the revised profiles proposed by Chen & Rodi (1980). A least-squares Gaussian fit to the data
points is included for comparison.

appropriate) value for α using the measurements of Lee & Emmons (1961) and we reject
the value that Yuan & Cox (1996) attribute to Kotsovinos (1975). As a result, we show that
0.095 � α � 0.13 is a better representation of the variation in past measurements.

4.2. Rouse et al. (1952)
Rouse et al. (1952) measured w(x) and g′(x) at different heights in a thermal plume created
by a line of gas burners. Although they do not calculate α, the coefficients Cb, Cλb, Cw
and Cg can be determined from their reported profiles. These profiles were chosen to fit
their measurements subject to constraints imposed by the conservation of momentum and
buoyancy flux. The appropriateness of their fits was, however, challenged by Brooks (1973)
who claimed that redrawing the curves to better fit the data showed that α = 0.14 and
λ = 1.0 (the redrawn curves are not reproduced in Brooks 1973). Further challenge comes
from Chen & Rodi (1980) who propose new fits on the basis that the original fits implied
λ < 1, despite the measurements showing λ > 1. The coefficients for these revised fits,
subject to the conservation constraints, are reported in table 3. Despite the small apparent
difference between the Rouse et al. (1952) and Chen & Rodi (1980) fits relative to the
scatter in the measurements (figure 2), the effect on α and λ is significant: α = 0.160
decreases to α = 0.144 and λ = 0.88 increases to λ = 1.04. Here, α and λ were calculated
using the pair (Cb, Cλb), although, because these fits were constrained by conservation of
momentum and buoyancy, calculations using any pairing of Cb, Cλb, Cw and Cg result in
the same values (subject to rounding errors).

To assess the appropriateness of either reported fit we have added an (unconstrained)
Gaussian least-squares fit to figure 2, which yields the following coefficients:
Cb = 0.167, Cλb = 0.175, Cw = 1.72 and Cg = 2.63. While a comparison with the
least-squares fit does not definitively show that Chen & Rodi (1980) achieved a better
fit to the data than Rouse et al. (1952), the least-squares fit does support the Chen & Rodi
(1980) claim that the measurements show λ > 1 (Cλb/Cb = 1.05). While the least-squares
fit might be expected to be more appropriate than the two constructed fits, this is not
true for the purpose of calculating α. There are four possible values for α that can be
calculated from the least-squares coefficients: 0.148 (Cb), 0.182 (Cλb, Cw), 0.178 (Cw, Cg)
and 0.079 (Cλb, Cg). This poor agreement between values calculated with different pairs
is not inevitable – in §§ 4.5 and 4.7 we show that unconstrained Gaussian fits to data can
result in a set of values for α in much closer agreement.
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We do not include values of α determined from the Rouse et al. (1952) measurements
in our curated list (table 4) as there is too much uncertainty regarding which coefficients
best represent their measurements. However, the Rouse et al. (1952) measurements are
important in the historical context, not only as the first of their kind and as revealing
the self-similar nature of the profiles, but also because the reported coefficient values
influenced the analysis of later measurements, particularly those of Lee & Emmons (1961).

4.3. Yokoi (1960)
Yokoi (1960) measured w(x) and g′(x) at different heights above a line fire. In his analysis,
Yokoi adopts Prandtl’s momentum transfer theory (Prandtl 1925) and Taylor’s vorticity
transfer theory (Taylor 1932), rather than the framework of the Morton et al. (1956) plume
model. With modifications to these theories based on his measurements, Yokoi (1960)
shows that

Cw = 1.040c−2/9 and Cg = 0.663c−4/9, (4.1a,b)

and obtains c2/3 = 0.13 from experiment. It would appear that the values Cw = 2.05 and
Cg = 2.6, and the corresponding values of α = 0.125 and λ = 1.15, that Yuan & Cox
(1996) attribute to Yokoi (1960) result from (4.1a,b). Yuan & Cox (1996) also report that
Yokoi (1960) ‘explicitly’ measured λ = 1.01. We could not find reference to this, but Yokoi
(1960) does present plots of velocity and buoyancy profiles. As these plots do not clearly
indicate Gaussian-like profiles, we have not attempted to use them to determine Cb or Cλb,
but they do appear to support λ ≈ 1.0 (and not λ = 1.15).

There are difficulties with the interpretation of Yokoi’s results, principally, as no clear
statement is given as to how c was measured, or inferred, so judgements concerning its
accuracy or precision cannot be readily made. Moreover, the constant c is a component in
his analysis using modified transfer theories and non-Gaussian profiles, and it is unclear
how this analysis can be reconciled with the Morton et al. (1956) entrainment hypothesis
and Gaussian-profile framework adopted here. Although it is unclear how Yokoi (1960)
interpreted his measurements, we follow Yuan & Cox (1996) and use (4.1a,b) to calculate
the entries reported for Yokoi (1960) in table 3, which are in broad agreement with others.
However, we do not include entries for Yokoi’s measurements in table 4.

4.4. Lee & Emmons (1961)
Lee & Emmons (1961) also studied the thermal plume above a line fire. Unlike Rouse et al.
(1952) and Yokoi (1960) they only measured temperature profiles and, consequently, could
only determine Cλb and Cg. Lee & Emmons (1961) present the inverse relations, i.e. Cg
and Cλb in terms of α and λ, which can be rearranged to show

α =
√

πCλb
2

(
A ±

√
A2 − 1

)
, λ = A ∓

√
A2 − 1, where A = π√

2
C3

gC2
λb. (4.2a,b)

The solutions for α and λ in (4.2a,b) share the same basic form and, for a given value
of A > 1, there are clearly two pairs of real-valued solutions. Lee & Emmons (1961)
report α = 0.16 and λ = 0.9, which closely align with the values determined from the
fits reported by Rouse et al. (1952). However, they do not comment on the existence of
multiple solutions or the possibility that measurement error could result in non-real-valued
solutions.

The solution pair α = 0.16 and λ = 0.9 can be calculated to 2 s.f. using Cλb = 0.16248
and Cg = 2.5786, the latter requiring 5 s.f. in order to achieve the aforementioned
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precision. This extreme sensitivity is reflected by the large values of the uncertainty
multipliers for this pair (table 2). These same coefficient values can be used to calculate
a previously unreported second solution pair for which λ > 1, namely, α = 0.13 and
λ = 1.1. It is impossible to select one pair over the other from measurements of the
buoyancy profile alone: two different velocity profiles, one ‘faster’ and narrower than the
other, each implying different values of α and λ, could be paired with the buoyancy profile
and satisfy the conservation equations. In contrast, a coefficient pair with at least one
measurement of the velocity profile does not lead to such an ambiguity. It is unclear if
Lee & Emmons (1961) deliberately chose the solution branch which agreed more closely
with the fits originally reported by Rouse et al. (1952) (which erroneously suggested
λ < 1) or if they were only aware of the branch chosen. Regardless, the revised fits to
the Rouse et al. (1952) data (Chen & Rodi 1980) and all subsequent measurements of
(Cb, Cλb) (Kotsovinos 1975; Ramaprian & Chandrasekhara 1989; Paillat & Kaminski
2014a; Parker et al. 2020) show λ > 1. Consequently, we consider α = 0.13 to be the
correct interpretation of the Lee & Emmons (1961) measurements.

A similar analysis error has propagated in the fire plume literature (e.g. Thomas 1987;
Poreh et al. 1998) where, because the transport of smoke is of particular concern, there is
emphasis on the coefficient for the variation of volume flux, CQ, rather than on α. Using
the framework set out in § 2

CQ = 25/6α2/3(1 + λ2)1/6. (4.3)

Thomas (1987) used (4.3) to calculate CQ = 0.58 using the original, but seemingly
erroneous, values for α and λ reported by Lee & Emmons (1961). With the revised values
for α and λ (> 1), we obtain CQ = 0.52, which is in closer agreement with the other
measurements (table 3). Given the potential for ambiguity, we recommend CQ also be
related to the measured quantities directly, viz.

CQ = 1
Cg

√
2A

A ± √
A2 − 1

, (4.4)

a form that does not obscure the fact that two solutions are possible. Thomas et al. (1998)
describe how the excess plume volume flux implied by the values of α and λ originally
reported by Lee & Emmons (1961) resulted in unnecessarily complex spill plume models
used by the Building Research Establishment (BRE) and state that this ‘complexity
can be removed by decoupling early BRE work from the experiments of Lee and
Emmons’.

A final conclusion concerning the use of the Lee & Emmons (1961) data for estimating
α is worthy of mention. The magnitudes of their uncertainty multipliers are 18.1 (Cλb)
and 28.7 (Cg), values that (i) are considerably larger than typical multipliers (table 2)
and (ii) render the use of (3.2a) inappropriate. Using (4.2a), we note that if both values
of (Cλb, Cg) were 1 % smaller then A < 1 and α could not be determined, but if both
values were 1 % larger then α would reduce from 0.13 to 0.10 (both changes being more
significant than would be predicted using (3.2a)). Given such sensitivity, the accuracy and
precision of their measurements is particularly important but information on this is not
provided.

4.4.1. Other measurements of Cλb and Cg
Harris (1967), Anwar (1969) and Sangras et al. (1998) each measured g′(x, z). However,
these measurements have not proven helpful in determining a value for α and are only
occasionally cited in this context.
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Harris (1967) measured the temperature distribution of a two-dimensional jet of warm
water in a cooler freshwater environment. Chen & Rodi (1980) attribute values of
Cg = 2.3 and Cλb = 0.163 to the Harris (1967) measurements (values converted to account
for different plume width conventions). We were unable to independently verify these
values, primarily because it was unclear which measurements were from regions where
the flow was in the far-field equilibrium state of interest. Regardless, this pair of values
results in A = 0.718, and thus (4.2a) cannot be used to determine α.

Physically, the condition A < 1 implies that the measured Gaussian buoyancy profile
does not have a corresponding Gaussian velocity profile which will satisfy the
conservation equations (2.2a–c). This condition is widespread and, besides the constrained
fits to the Rouse et al. (1952) data, only the measurements of Lee & Emmons (1961)
and Paillat & Kaminski (2014a) show A > 1. Other measurements lead to values for
A just below one – such as A = 0.85 (Kotsovinos 1975) and A = 0.95 (Ramaprian &
Chandrasekhara 1989) – which could be reasonably attributed to (small) measurement
errors. Crucially, these datasets include measurements of other pairs which can be used
to determine α, and there is no need to rely on the pair (Cλb, Cg). These measurements
of A < 1 lend credence to the plausible concern that the assumptions underlying plume
theory are not always appropriate.

Measurements by both Anwar (1969) and Sangras et al. (1998) suffer from the same
problem as the Harris (1967) data: the buoyancy profiles show A < 1 and no other
coefficients are measured. Anwar (1969) does not explicitly state values for Cλb and Cg
for his study of freshwater plumes in a saltwater environment, but Chen & Rodi (1980)
attribute Cλb = 0.156 and Cg = 2.57 to those measurements. This appears to be a fair
assessment of the Anwar (1969) results, and these values yield A = 0.92. Sangras et al.
(1998) measured the concentration of an iodine tracer in a helium plume in air and
determined Cλb = 0.120 and Cg = 2.10. Their values yield A = 0.30.

4.5. Kotsovinos (1975) and Ramaprian & Chandrasekhara (1989)
Both Kotsovinos (1975) and Ramaprian & Chandrasekhara (1989) measured w(x) and
g′(x) at a number of downstream locations in a thermal plume in water.

It is evident from table 1 that there is a peculiarity regarding the data of Kotsovinos
(1975): Kotsovinos (1975) reports α = 0.11 based on his own measurements of the velocity
profile width (2.12a), while Yuan & Cox (1996) report α = 0.20 using (2.13a) and the
Kotsovinos (1975) data for (Cw, Cg). By contrast, independent assessments of the data of
Ramaprian & Chandrasekhara (1989) yield only marginal variations in α: Ramaprian &
Chandrasekhara (1989) determined α = 0.113 from their own measurements of (Cw, CQ),
while calculations by Yuan & Cox (1996), using (Cw, Cg), and Paillat & Kaminski (2014a),
using Cb, both concluded α = 0.117.

In general, it is not surprising that different coefficient pairs should lead to marginally
different values for α on account of small errors in measurement or in the fitting
of Gaussian profiles to determine Cb, Cλb, Cw and Cg. The least-squares fit to the
Rouse et al. (1952) data highlighted the challenge in achieving a consistent set of values
for α determined from different pairs. However, the difference between α = 0.11 and
α = 0.20 cannot be simply explained by a small error and suggests that the measurements
made by Kotsovinos (1975) are not self-consistent.

Chen & Rodi (1980), Ramaprian & Chandrasekhara (1989) and Parker et al. (2020)
have all cast doubt on some aspects of the Kotsovinos (1975) measurements, and it seems
likely that the Kotsovinos (1975) value of Cw is erroneous. Consequently, we reject the
value α = 0.20 calculated by Yuan & Cox (1996). Looking beyond Cw, we could not
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identify any specific reason that the widths of the velocity and scalar profiles would be
incorrect, and the values of α = 0.10 and λ = 1.28 that result from the pair (Cb, Cλb)
are not unreasonable. These values are slightly different to those usually attributed to
Kotsovinos (1975), as explained in Appendix C.

The values of the measurements reported by Ramaprian & Chandrasekhara (1989) are
in good agreement with others (table 3), and are seemingly self-consistent given the
close similarities in the independently calculated values of α. We further demonstrate the
self-consistency in § 4.7 where we attribute the value α = 0.115 to their dataset. However,
some aspects of their dataset raise concern. They report on only four experiments,
including one where the plume buoyancy flux drops by over 50 % in their measurement
region. The small number of experiments is concerning as the (unreported) variation of
the value of CQ in individual experiments exceeds 10 %.

4.6. Yuan & Cox (1996)
The approach of Yuan & Cox (1996) is an exemplar of the application of plume theory
in the design of experiments. They showed that measuring only the centreline properties,
rather than entire plume profile(s), is sufficient to deduce α. Although they could not then
show the self-similarity of cross-stream profiles, they confirm that their measurements
were of a fully developed line plume by showing that their centreline measurements
followed the power laws g′

c ∝ B2/3
0 z−1 and wc ∝ B1/3

0 z0. Their measurements of volume
flux using the hood method (Zukoski et al. 1981), while not as comprehensive, were
complementary and the measured value of CQ = 0.51 is in good agreement with the value
CQ = 0.48 which they calculated using their values of (Cw, Cg) (table 3). Yuan & Cox
(1996) do not report any uncertainties for their measurements, but their well-populated
plots of centreline temperature and velocity show minimal scatter.

4.7. Paillat & Kaminski (2014a) and Parker et al. (2020)
Paillat & Kaminski (2014a) and Parker et al. (2020) measured w(x, z) and g′(x, z) in
the central plane of a saline plume using particle image velocimetry and laser induced
fluorescence. Paillat & Kaminski (2014a) report values of α and λ calculated using
(Cb, Cλb). While values for (Cw, Cg) are not reported, Cw ≈ 2.1–2.2 and Cg ≈ 2.8–2.9
can be read from their plots and are listed in table 3 as the mid-range values: Cw = 2.15
and Cg = 2.85.

Parker et al. (2020) report αT = 0.14 for the top-hat entrainment coefficient, which
corresponds to α = 0.10 (approximately). While they do not report values for the
coefficients Cb, Cλb, Cw, Cg or CM , our analysis of the data they provide allows these
coefficients to be estimated (Appendix D). Values resulting from this analysis are included
in table 3.

The three sets of entries in table 3 for Parker et al. (2020) account for the three different
representative buoyancy fluxes that we used to normalise their profile measurements: the
source buoyancy flux B0,S (determined from the volume flux and buoyancy of the source
fluid), the mean buoyancy flux B0,M measured in the plume and the total buoyancy
flux B0,T measured in the plume (determined as the sum of the mean and turbulent
components). Classic plume theory assumes that the turbulent component is relatively
small, and, thus, B0,S ≈ B0,M ≈ B0,T . However, Parker et al. (2020) measured, on average,
B0,M = 0.84B0,S and B0,T = 0.94B0,S, and normalising their measurements by these
buoyancy fluxes results in differences in coefficient values of similar magnitude to the
differences between the other experimental campaigns (table 3). There is no obvious
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Figure 3. Values of α calculated from coefficient pairs or αT . Error bars show 95 % confidence intervals
calculated with (3.2a), for pairs where the confidence interval for the measurements could be determined.
Note: PBPL (Parker et al. 2020), PK (Paillat & Kaminski 2014a), RC (Ramaprian & Chandrasekhara 1989).

consensus from past campaigns on the ‘most’ representative buoyancy flux as all three have
been used – Rouse et al. (1952) normalise using the mean, Ramaprian & Chandrasekhara
(1989) normalise with the total and Lee & Emmons (1961) normalise with the source
buoyancy flux – although these choices are, in part, a result of experimental capabilities.

Based on the coefficient values we have determined from the data of Paillat & Kaminski
(2014a) and Parker et al. (2020), α may now be estimated in multiple ways, a selection of
which are plotted in figure 3. To aid wider comparisons, also plotted are the values for α

determined from (i) the measurements of αT by Parker et al. (2020), (ii) from the dataset
of Ramaprian & Chandrasekhara (1989), where we have normalised the measurements by
B0,M in Appendix E, and (iii) from our own measurements (§ 5).

Amidst the range of values of α in figure 3, we can highlight four key results. First,
for a dataset where at least three coefficients are measured it is potentially misleading
to report a single value for α (i.e. as determined from a single coefficient pair) given a
different coefficient pairing could lead to a significantly different value for α. While the
value α = 0.113 reported by Ramaprian & Chandrasekhara (1989) using the pair (Cw, CQ)

is the median value of the seven values calculated for their data, the value α = 0.126
reported by Paillat & Kaminski (2014a) using Cb is the highest of the three values for
theirs.

Second, the choice of normalisation (by B0,S, B0,M or B0,T ) only impacts certain
coefficient pairs. As would be expected, there is no impact if α is determined from Cb,
where only the velocity profile width matters, or from the pairs (Cw, CQ) and (CQ, CM),
where the buoyancy flux ‘cancels out’. However, for other pairings such as (Cw, Cg)
or (Cg, CQ) the difference can be significant. Intriguingly, normalising the Parker et al.
(2020) measurements by B0,M results in very consistent values for α, with an absolute
difference of only 0.005 between the largest and smallest value. This consistency is
perhaps unsurprising given that only the mean buoyancy flux is considered in classic
plume theory and van Reeuwijk et al. (2016) reached a similar conclusion with their
direct numerical simulation data for axisymmetric plumes. Normalisation with B0,M did
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not result in a more consistent set using the Ramaprian & Chandrasekhara (1989) data,
although there are concerns with the dataset (§ 4.5).

Third, while selecting a single value for α to represent each dataset is not necessarily
trivial, the median of the plotted values yields the following representative values
(rounded to the nearest 0.005): α = 0.095 (Parker et al. 2020), α = 0.115 (Ramaprian
& Chandrasekhara 1989) and α = 0.120 (Paillat & Kaminski 2014a). The rounded
values for Ramaprian & Chandrasekhara (1989) and Parker et al. (2020) are the same
for each ‘set’ of coefficient measurements, irrespective of the normalising buoyancy
flux.

Fourth, the 95 % confidence intervals for the Parker et al. (2020) measurements span
a considerable range of values for α, and the size of the interval varies with the
coefficient pairing. The smallest interval is ±6 % for (Cλb, Cw) when the measurements
are normalised by the mean or total buoyancy flux. From the standard deviation of
±7 % that Paillat & Kaminski (2014a) reported for Cb (based on measurements from ten
experiments), we calculate a confidence interval of ±5 %. The ±2 % interval determined
from our experiments (§ 5) compares favourably with these past measurements.

Figure 3 also shows the link between α calculated using the pair (CQ, CM) and based on
αT = d(Q2/M)/dz, as the values determined from these two approaches using the data of
Parker et al. (2020) are almost identical. While this agreement is not surprising given the
dual reliance on the measurements of the volume and momentum flux, the difference in the
confidence intervals calculated using either approach highlights that care should be taken
when evaluating the uncertainty in an experiment or a particular pair. In this case, where
Q and M are determined from the same velocity profile and thus correlated, the approach
described in § 3 may not be the most appropriate; the narrower confidence intervals around
the value determined from αT are likely better reflections of the precision achieved when
using measurements of the volume and momentum flux.

The range of values for λ calculated from different coefficient pairings (figure 4) can
be analysed in a similar manner, and we only highlight the following points herein. The
variation in the individual values for λ, and the extent of the confidence intervals, is
larger than for α, although this is not surprising given the larger uncertainty multipliers
for λ (table 2). The representative values reported in table 4 for these datasets were
determined in a similar manner to α: determining the median values and rounding to the
nearest 0.05.

4.8. Summary of the analysis of the experimental literature
The primary objective of the preceding analysis was to determine the underlying reasons
for the wide variation in the reported values for α, which we achieved by reasoning why
three of the largest reported values for α are not appropriate. While doubts about aspects
of the experiments of Rouse et al. (1952), Lee & Emmons (1961) and Kotsovinos (1975)
have been previously raised, we believe we are the first to identify that an alternate value of
α can be calculated from the Lee & Emmons (1961) measurements. In addition, using the
measurements of Ramaprian & Chandrasekhara (1989) and Parker et al. (2020) we showed
that the theoretical extension to determine α from a multitude of coefficient pairings
was appropriate, as the many calculated values were broadly in agreement, allowing
for uncertainty (figure 3). By considering multiple pairs, we also determined a single
representative value of α for each of the datasets reported by Ramaprian & Chandrasekhara
(1989), Paillat & Kaminski (2014a) and Parker et al. (2020). Table 4 is the culmination of
our analysis and contains a curated list of values which we have reasoned represents the
spread in the values of α. The range 0.095 � α � 0.13 is narrower than 0.10 � α � 0.20,
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Cλb, Ce

CQ, CM

Cg, CQ

Cw, CQ

Cw, Cg

Cλb, CQ

Cλb, Cw

Cb, CQ

Cb, Cg

Cb, Cw

Cb, Cλb

λ

PBPL (Source)
PBPL (Mean)
PBPL (Total)
PK
RC (Mean)
RC (Total)
Present Work

Figure 4. Values of λ calculated using different coefficient pairs. Error bars show 95 % confidence intervals
for λ calculated using (3.2b), for pairs where the confidence interval for the measurements could be determined.
Note: PBPL (Parker et al. 2020), PK (Paillat & Kaminski 2014a), RC (Ramaprian & Chandrasekhara 1989).

Measurements α λ

Lee & Emmons (1961) 0.13 1.1
Kotsovinos (1975) 0.10 1.28
Ramaprian & Chandrasekhara (1989) 0.115 1.25
Yuan & Cox (1996) 0.126 1.13
Paillat & Kaminski (2014a) 0.120 1.30
Parker et al. (2020) 0.095 1.15
Present work 0.108 1.03

Table 4. Updated list of values for the entrainment coefficient and profile coefficient of a turbulent line plume
following analysis of the literature. Summary of differences from table 1: erroneous values for Lee & Emmons
(1961) and Kotsovinos (1975) have been removed; entries for Rouse et al. (1952) and Yokoi (1960) have been
removed because of concerns regarding the interpretation of their data; based on consideration of multiple
coefficient pairs, the entries for Ramaprian & Chandrasekhara (1989), Paillat & Kaminski (2014a) and Parker
et al. (2020) are now a single representative value.

and more appropriately represents the uncertainty surrounding α. Also summarised therein
are the values of λ determined from these datasets, and we consider λ = 1.2 (average
value, rounded to 2 s.f.) to be the representative value.

5. A new measurement approach to determine the entrainment coefficient

Our analysis (§§ 2–4) has reduced the range of α, arguably by about 70 %. Rather than
merely to add to the small array of previously published measurements, a set-up was
designed and a programme of experiments conceived with the specific goal of determining
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α to a greater precision. To this end, we took a previously unconsidered measurement
approach and made measurements of a greater number of plumes than in other recent
experimental campaigns. In this way, we were able to better account for the inherent
variability in turbulent plumes, and determine α with a confidence interval smaller than
was achieved with past experiments.

While some pairings carry a lower uncertainty, there is no obvious pairing of
coefficients that should be targeted (§§ 2–3). Given the definition of α (1.1), an approach
conceived to measure the entrainment velocity ue directly would appear to be a natural
choice. Although observations of plume-induced flows have been made (Harris 1967;
Kotsovinos 1975), we found no published reports of α determined from measurement
of ue. To complete the pair and thereby estimate α, we sought to measure the width of the
scalar profile Cλb, as this coefficient has the smallest uncertainty multiplier when paired
with Ce (table 2a). For completeness, λ was also estimated using this pair.

5.1. General set-up and approach
Experiments to determine both Ce and Cλb were initiated by steadily releasing a sodium
chloride solution from a slender rectangular source into a freshwater-filled clear acrylic
visualisation tank of horizontal dimensions 2770 mm × 250 mm and vertical dimension
500 mm. After accounting for residual temperature differences between the freshwater and
saline solution, the source density difference was determined to within 1 % using an Anton
Paar 5000M densitometer.

The source was a slot of length L = 220 mm machined in the lower face of a bespoke
constant head tank, centred in the visualisation tank and supported 400 mm above the base.
Using digital callipers, the width of the slot (s = 2b0) was measured as 3.00 ± 0.15 mm
at ten points along its length, giving L/s = 73.3. Besides the 15 mm wall thickness at
either end, the source spanned the entire 250 mm dimension of the visualisation tank. The
constant head tank was supplied with saline solution using an Ismatec MCP-Z Process
gear pump. Near uniform conditions were produced along the full length of the slot as
shown in figure 5. While the majority of the experiments considered the central plane of
the visualisation tank (y = 0), ten experiments involved measurements at y ≈ 0.25L to
verify the two-dimensionality of the flow field. The source flow rate Q0 (cm2 s−1) was
determined by tracking the free surface in the constant head tank (horizontal dimensions
486 ± 1 mm by 200 ± 1 mm). Recording the vertical position of the free surface at three
frames per second (f.p.s.) and a resolution of 20 pixels per cm (approximately), Q0 was
determined to within 1 %. Table 5 reports the mean flow rate during an experiment and the
largest deviation from the mean (typically less than 2 %).

We conservatively report the uncertainty in the source buoyancy flux (B0 = Q0g′
0) as the

sum of the uncertainties in Q0 and g′
0. As Ce is calculated by normalising measurements of

ue by B1/3
0 , the uncertainty in B0 typically affects the values of Ce by less than 1 %, and by

2 % in the worst case. This variation resulting from the uncertainty in the source conditions
is significantly smaller than the actual variation in the measurement of ue (§ 5.2).

The entrainment velocity and scalar width were determined from a set of 32
experiments, the details of which are summarised in table 5. The source flow rate Q0
and reduced gravity g′

0 were selected to approximate the dynamical conditions of a pure
turbulent plume. The source Reynolds number Re0 is the ratio of Q0 to the kinematic
viscosity of the source fluid; typically Re0 = 200–300. How ‘pure like’ the release was at
source was characterised using the scaled source Richardson number Γ0, where Γ0 = 1
indicates a pure plume (van den Bremer & Hunt 2014a). Assuming top-hat profiles at the
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L = 220 mm

250 mm

z/b
0  = 40

(a)

(b)

Figure 5. Images of the span of the plume (y–z plane). (a) An instantaneous snapshot showing that the flow
appears uniform and turbulent along the length L of the source. (b) A time-averaged image of the near-source
region showing the horizontally integrated dye concentration, a proxy for the amount of dye introduced from the
source. Averaged vertically between the indicated depths (z/b0 ≈ 1 and z/b0 ≈ 10), the concentration varies
from the mean by 10 % over the central 90 % of the span and by only 5 % over the central 50 %.

source, as is reasonable for the high Reynolds number release conditions,

Γ0 = 23/2 b3
0g′

0

αQ2
0
. (5.1)

The entries for Γ0 in table 5, based on α = 0.11, confirm that the plumes were nominally
pure at source. Moreover, using the van den Bremer & Hunt (2014a) solutions for an area
source plume, the downstream distance zp over which the Richardson number adjusts from
the value at source to within 10 % of Γ = 1 was estimated to be zp/b0 ≈ 0–10, while the
measurement region of 65 � zm/b0 � 130 was considerably further downstream. Given
zm � zp our measurements were recorded within the pure-plume equilibrium region.

The visualisation tank was backlit with a white LED panel and images of the flow
recorded at a frame rate of 12.5 f.p.s. using a 5 mega-pixel monochrome camera (JAI
SP-5000M-USB) with a 75 mm fixed focal length lens (Kowa Optimed) and a 660 nm
bandpass filter (Midwest Optical Systems). The spatial resolution was 42 pixels per
cm (approximately). Figure 6 shows an image taken from one experiment, annotated to
indicate the regions where the plume width and entrainment velocity were measured. The
representative length scale br, defined as the average scalar half-width at the midpoint of
the measurement region (estimated using our measured value Cλb = 0.126), and used as
a reference for interpretation of the measurements of Ce, is also shown. Details specific to
the measurement of Ce and Cλb are discussed in §§ 5.2 and 5.3, respectively.

5.2. Measurement of Ce

The velocity ue was determined by tracking six dyeline segments per experiment in
the induced-flow field. The dyelines emerged at three depths from hypodermic needles
(figure 6) connected to a syringe pump programmed to dispense laminar pulses of
dyed freshwater (density within 0.01 % of the environment). Needles of different length
were used to release dyelines at y = 0 (Exps. 1–22) or at y = 56 mm (Exps. 23–32).
The horizontal position of the leading edge of each segment was tracked from x/br = −16
until the segment was distorted by turbulent fluctuations, which typically occurred 2br–4br
from the plume centreline; 90 % of the segments were tracked for at least 10br, a distance
large relative to the plume width. A typical segment covered this distance (∼ 21 cm, ∼ 900
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Exp. Q0 (cm2 s−1) g′
0 (cm s−2) B0 (cm3 s−3) Γ0 zp/b0 Ce Cλb α λ

1 2.13 (1 %) 49.7 (1 %) 106 (2 %) 0.95 0.0 0.228 (3 %) 0.140 (6 %) 0.104 1.20
2 2.18 (3 %) 49.7 (1 %) 108 (4 %) 0.91 0.0 0.235 (4 %) 0.134 (4 %) 0.112 1.06
3 2.27 (1 %) 49.8 (1 %) 113 (2 %) 0.83 3.8 0.238 (2 %) 0.126 (2 %) 0.117 0.96
4 2.32 (5 %) 49.7 (1 %) 115 (6 %) 0.80 5.9 0.220 (3 %) 0.116 (1 %) 0.103 0.99
5 2.57 (1 %) 77.4 (1 %) 199 (2 %) 1.02 0.0 0.232 (4 %) 0.135 (1 %) 0.109 1.10
6 2.67 (2 %) 77.4 (1 %) 207 (3 %) 0.94 0.0 0.224 (4 %) 0.119 (5 %) 0.106 0.99
7 2.77 (3 %) 77.4 (1 %) 214 (4 %) 0.88 1.3 0.226 (2 %) 0.147 (3 %) 0.100 1.31
8 2.78 (4 %) 77.5 (1 %) 215 (5 %) 0.87 1.7 0.223 (3 %) 0.117 (3 %) 0.106 0.98
9 2.88 (1 %) 77.4 (1 %) 223 (2 %) 0.81 5.2 0.228 (4 %) 0.130 (4 %) 0.107 1.08
10 2.82 (1 %) 84.5 (1 %) 238 (2 %) 0.92 0.0 0.240 (3 %) 0.125 (2 %) 0.119 0.93
11 2.84 (2 %) 84.9 (1 %) 241 (3 %) 0.92 0.0 0.228 (5 %) 0.127 (4 %) 0.108 1.05
12 2.85 (1 %) 84.9 (1 %) 242 (2 %) 0.91 0.0 0.229 (2 %) 0.119 (8 %) 0.111 0.95
13 2.89 (2 %) 85.0 (1 %) 246 (3 %) 0.88 1.1 0.228 (1 %) 0.135 (4 %) 0.106 1.13
14 2.92 (1 %) 85.0 (1 %) 248 (2 %) 0.87 1.9 0.220 (3 %) 0.125 (2 %) 0.101 1.10
15 2.93 (1 %) 85.0 (1 %) 249 (2 %) 0.86 2.5 0.234 (1 %) 0.130 (3 %) 0.112 1.03
16 3.08 (2 %) 99.4 (1 %) 306 (3 %) 0.91 0.0 0.226 (4 %) 0.122 (3 %) 0.107 1.01
17 3.09 (2 %) 99.3 (1 %) 307 (3 %) 0.90 0.0 0.231 (3 %) 0.121 (7 %) 0.112 0.96
18 3.11 (2 %) 99.4 (1 %) 309 (3 %) 0.89 0.5 0.226 (2 %) 0.112 (1 %) 0.110 0.91
19 3.13 (3 %) 99.4 (1 %) 311 (4 %) 0.88 1.1 0.230 (2 %) 0.125 (4 %) 0.110 1.01
20 3.18 (2 %) 99.4 (1 %) 316 (3 %) 0.85 2.7 0.225 (3 %) 0.116 (3 %) 0.108 0.95
21 3.22 (1 %) 99.4 (1 %) 320 (2 %) 0.83 3.8 0.225 (2 %) 0.127 (4 %) 0.104 1.08
22 3.24 (1 %) 99.4 (1 %) 322 (2 %) 0.82 4.6 0.225 (5 %) 0.119 (7 %) 0.108 0.98
23∗ 2.71 (1 %) 77.4 (1 %) 210 (2 %) 0.91 0.0 0.233 (2 %) 0.123 (6 %) 0.113 0.96
24∗ 2.74 (1 %) 77.4 (1 %) 212 (2 %) 0.89 0.3 0.236 (1 %) 0.120 (2 %) 0.117 0.91
25∗ 2.93 (4 %) 99.2 (1 %) 290 (5 %) 1.01 0.0 0.238 (3 %) 0.132 (6 %) 0.116 1.01
26∗ 3.12 (1 %) 99.2 (1 %) 310 (2 %) 0.88 1.0 0.231 (4 %) 0.116 (4 %) 0.114 0.91
27∗ 3.12 (1 %) 99.2 (1 %) 310 (2 %) 0.88 1.0 0.231 (1 %) 0.126 (5 %) 0.111 1.00
28∗ 3.14 (1 %) 99.3 (1 %) 312 (2 %) 0.87 1.6 0.239 (3 %) 0.120 (4 %) 0.120 0.89
29∗ 3.17 (1 %) 99.2 (1 %) 314 (2 %) 0.86 2.4 0.229 (2 %) 0.123 (3 %) 0.110 1.00
30∗ 3.18 (1 %) 99.3 (1 %) 315 (2 %) 0.85 2.7 0.231 (3 %) 0.119 (1 %) 0.113 0.94
31∗ 3.19 (4 %) 99.2 (1 %) 317 (5 %) 0.85 3.2 0.238 (1 %) 0.126 (3 %) 0.118 0.95
32∗ 3.41 (2 %) 99.2 (1 %) 339 (3 %) 0.74 9.3 0.232 (2 %) 0.128 (4 %) 0.111 1.02

Table 5. Experimental parameters and measurements for the 32 entrainment coefficient experiments. The
distance zp is an estimate of the distance required for the plume to adjust from its source condition, as
characterised by the Richardson number Γ0, to ‘pure-like’ behaviour. The values of α and λ for an individual
experiment are calculated via (5.3a,b). The percentage uncertainties are described in the main text: Q0, g′

0
and B0 (§ 5.1); Ce (§ 5.2) and Cλb (§ 5.3). In the starred experiments, measurements of Ce were conducted at
y ≈ 0.25L rather than in the central plane of the visualisation tank.

pixels) in 200 frames (∼ 16 s) and thus the velocity of each segment, determined from the
gradient of a least-squares linear fit to the position-against-time data (figure 7a) was well
resolved. Given the spatial uniformity of the predicted induced-flow field (Taylor 1958),
the variation in the velocity of the segments was expected to be small. This was indeed
the case, with the relative standard deviation being only 3 % of the average velocity for the
six segments shown in figure 7. Similarly small variations were recorded for the segments
tracked during Exp. 1 through to Exp. 32 (table 5).

Tracking occurred during the quasi-steady period after the starting plume vortex had
passed and before the measurement region filled with buoyant fluid. To assess whether
the measured velocities were influenced by filling-box effects, the leading edge of two
consecutive ‘waves’ of segments were tracked. Figure 7(b) plots the normalised velocity
for each segment against the mean time that that measurement was made. The time
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br

23br

x = −16br

z = 65b0

z = 130b0

Figure 6. Instantaneous image of a saline plume and its induced-flow field. The entrainment coefficient was
determined from combined measurements of: (i) the average velocity of dyeline segments for x ∈ −[16br, 5br]
(approximately) and (ii) the plume scalar width in the region bounded by the dashed white outline. The
representative length scale br is the plume half-width evaluated at the midpoint of the measurement region
(z = 97.5b0). Circles at x = −23br indicate the sources of the dyelines.

0 20 40 60

tsB0
1/3/br tf B0

1/3/W
0.8 1.0 1.2 1.4

−16

−12

−8

−4

0

x
br

0.21

0.23

0.25

ue

B0
1/3

(a) (b)

Figure 7. (a) Dimensionless position x/br of the leading edge of six dyeline segments against time tsB
1/3
0 /br

from Exp. 17. The time origin ts = 0 was taken as the first frame where the leading edge of a segment crossed
the ‘start’ line at x/br = −16. (b) Entrainment velocity ue/B1/3

0 against measurement time tf B1/3
0 /W, where

W (= 2770 mm) is the tank width, for all 192 segments measured to determine Ce (Pearson’s correlation
coefficient of −0.18. The p-value is 0.01 and the null hypothesis of no correlation is rejected at the 5 %
significance level). Ensemble average velocity and measurement time for the first (� ) and second (�) waves of
96 segments.

origin tf = 0 corresponds to the instant the plume source was activated. Averaged over
96 segments released in the first wave, Ce = 0.231 while Ce = 0.229 over the second. The
difference is small relative to the overall scatter in the measurements, and both values fall
within the confidence interval we report for Ce. Thus, we conclude that the entrainment
velocity was not significantly impacted by any transient filling behaviour.

5.3. Measurement of Cλb
Measurements of the light attenuated by methylene blue dye mixed into the source
fluid were used to infer the salt concentration in the plume (Cenedese & Dalziel 1998;
Allgayer & Hunt 2012). The time-averaged concentration field and the corresponding
buoyancy profiles from a typical experiment are shown in figure 8(a,b), respectively.
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Figure 8. (a) Time-averaged image of the plume in the measurement window for Exp. 14 showing the expected
‘cigar-shaped’ contours of constant buoyancy. (b) In grey, time-averaged dimensionless buoyancy profiles
recorded at ten different heights in the plume. In blue, a Gaussian fit calculated using the value Cλb = 0.125
measured in Exp. 14 shows the Gaussian model is appropriate. The virtual origin z0 was determined by
extrapolating the variation of the 1/e scalar width with depth to zero width. (c) The half-width of the buoyancy
profile using the g′/g′

c = 1/e and g′/g′
c = 1/2 thresholds.

The concentration field has a resolution of 407 pixels (vertical) by 600 pixels (horizontal)
and is an average of 200 frames recorded over τa = 16 s. The averaging time τa represents
the available measuring time, which was limited primarily by the physical scale of the
visualisation tank. Importantly, τa was large relative to two physical time scales (τe, τt) that
characterise the flow, namely, the time scale associated with a typical eddy τe (a turnover
time) and the time scale required for a notional eddy to traverse the vertical extent (∼ 65b0)
of the measurement window τt. Using the centreline velocity as the representative velocity
scale, we define

τe = 2Cλbzm

CwB1/3
0

and τt = 65b0

CwB1/3
0

, (5.2a,b)

and take Cw = 2.157 (i.e. the value used to estimate the uncertainty multipliers (§ 3))
and Cλb = 0.126 from our measurements. Based on the source conditions (table 5),
τe ≈ 0.16–0.48 s and so we expect that 30 to 100 ‘eddies’ would form at a particular depth
in the interrogation window during the averaging period. Moreover, τt ≈ 0.65–0.96 s and,
thus, we expect between 16 and 25 ‘cycles’ where plume fluid traversing the measurement
window is entirely refreshed. Given τa/τe � 1 and τa/τt � 1, and the Gaussian-like
concentration profiles in figure 8(b), we conclude that our measurements appropriately
capture a time-averaged line plume.

Figure 8(c) shows the variation of λb and the half-maximum half-width λb1/2, i.e. the
horizontal distance from the centreline to the point where g′ = 0.5g′

c. The gradient of the
λb line, determined using a least-squares linear fit, gives Cλb. For a Gaussian profile, the
ratio of the half-widths rG = λb1/2/λb = √

ln 2 ≈ 0.83; for the buoyancy profile shown
in figure 8(c), this measured ratio is rM = 0.81. Averaged across the 32 experiments, we
measured rM = 0.80, which is within 4 % of the expected Gaussian value. The ratio of
these widths is used to give an indication of the uncertainty in the measurements of Cλb,
and the reported uncertainty estimates in table 5 are values of |1 − rM/rG|.

5.4. Overall results
Our measurements of Ce and Cλb from the 32 experiments are plotted in figure 9.
Figures 9(a) and 9(b) indicate the mean values and variation of the measurements.
Figure 9(c) shows that the variation in Cλb is not correlated with the variation in Ce,
and thus we conclude that it is reasonable to apply the analysis from § 3 to determine the
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Cλb
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0.240

Cλb

Ce

(a)

(b)

(c)

Figure 9. (a) Values of Ce. (b) Values of Cλb. In (a), in grey, values for every individual dyeline segment
(6 × 32 dots). In (a,b), • average value for each of the 32 experiments; � average value and standard deviation
across the centred dyeline experiments; � average value and standard deviation across all 32 experiments. (c)
Value of Ce against Cλb for each of the 32 experiments, grey dots denote an off-centred dyeline experiment; the
scatter indicates there is no clear correlation between the two quantities (Pearson’s correlation coefficient of
0.19. The p-value is 0.29 so the null hypothesis of no correlation is not rejected at the 5 % significance level).

Centred dyelines Off-centred dyelines All experiments

Mean SD CI Mean SD CI Mean SD CI

Ce 0.228 2.2 % 1.0 % 0.234 1.6 % 1.2 % 0.230 2.3 % 0.8 %
Cλb 0.126 6.8 % 3.0 % 0.123 3.8 % 2.9 % 0.125 6.1 % 2.2 %
α 0.108 5 % 2 % 0.114 3 % 2 % 0.110 5 % 2 %
λ 1.03 10 % 5 % 0.96 6 % 4 % 1.01 9 % 3 %

Table 6. The entrainment coefficient α and profile coefficient λ determined in the present study from
measurements of Ce and Cλb. The values of the standard deviation (SD) and the 95 % confidence interval (CI)
for α and λwere calculated using the corresponding values in the measurements and the uncertainty multipliers
for the pair (A9a,b). Results are shown as a summary of all experiments and of the subsets categorised by
dyeline position.

uncertainty in α and λ. Following the framework established in § 2, our estimates for α

and λ are

α = C3/2
e

√√
2A2 + 1 − 1

A
, λ =

√
2√

2A2 + 1 − 1
, (5.3a,b)

where A = 8C3
e/(πC2

λb). The associated uncertainty multipliers are given in Appendix A.
Table 6 summarises the experimental data and the calculated values for α and λ for all

the experiments and for the centred and off-centred subsets. There are small differences
between measurements depending on the dyeline location. As Cλb is determined from
measurements of light attenuation through the length of the plume, the mean value of Cλb
should be unaffected by the dyeline position; the 2 % difference between the centred and
off-centred subsets is attributed to random variation. The mean Ce values measured at
each dyeline needle position are within 3 % of each other, and this similarity supports the
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claim that the flow field is approximately two-dimensional. The small difference between
the mean Ce values may result from the effects of the end walls, small variations in the
conditions along the plume source or random variation. The difference in the values of
α and λ determined from all experiments or from only the centred experiments is small
compared with the variation between other reported values (table 4). In the absence of a
detailed study of the variations along the span of a line plume, only the measurements from
the experiments with centred dyelines were used to determine the key result: α = 0.108
with a 95 % confidence interval of 2 %.

6. Discussion

Our experimental campaign successfully demonstrated that the entrainment velocity can
be accurately measured and used to determine the entrainment coefficient. The resulting
value of α = 0.108 is very similar to the average value of the curated datasets following
the literature analysis (α = 0.114), and is bounded by a narrower confidence interval
than past values for α. The narrower interval arises from two factors: the variation in
the measurements (i.e. the standard deviation) is less than or comparable to the variation
reported in other datasets and the number of experiments is greater.

Although we did not set out to determine λ – and would have chosen a different
experimental approach if λ were the target – we calculate that λ = 1.03. While lower
than the other values in table 4, this value is within 20 % of the representative value
λ = 1.2. A difference of this magnitude is typical for calculated values of λ (figure 4)
and is unsurprising on both experimental and theoretical grounds. The considerable
variation in past measurements of Cλb (table 3) suggests that the plume width is sensitive
to small changes in experimental conditions or is difficult to measure. On theoretical
grounds, we discussed how turbulent fluxes have a small but non-negligible impact (§ 4.7)
and showed that the scalar profile is only approximately Gaussian (§ 5.2), both factors
which could influence the accuracy of calculations made using plume theory. In this
context, the agreement between our calculated value and values determined directly from
measurements of the plume widths is reassuring.

It is intriguing that there is considerable variation in the measurements across the
experiments, with the most extreme values for Cλb approximately 17 % different to the
mean and 5 % different for Ce. This variation is broadly comparable to variations observed
in past experiments, and although we were unable to link it to any particular aspect
of the experimental set-up or measurement process, it seems possible that some of the
variation between experiments would reduce if the time-averages were far longer. In their
study of line jets, Paillat & Kaminski (2014b) attribute variations in their entrainment
measurements to turbulence effects which occur at lower Reynolds numbers. Comparisons
between jet and plume behaviour are not necessarily straightforward, but in light of their
measurements (and, as far as we are aware, the absence of a similar study specific to line
plumes), it seems reasonable to consider whether line plume experiments would be more
consistent if the Reynolds number were higher. A considerably larger visualisation tank
would be needed to meaningfully increase either the duration of the time average or the
Reynolds numbers that could be investigated.

Further investigation in a larger environment could also potentially address whether
the variation between different measurements is attributable to plume confinement. The
difference between the representative values from the Paillat & Kaminski (2014a) and
Parker et al. (2020) datasets is particularly interesting as they essentially used the same
experimental approach, although with experimental tanks of very different size and
shape. Paillat & Kaminski (2014a) made their measurements in a relatively small tank
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(45 cm × 30 cm × 30 cm, where their schematic suggests the vertical dimension is 45 cm),
and Parker et al. (2020) made their measurements in a larger tank (120 cm cross-stream
×40 cm spanwise ×75 cm vertical).

It seems plausible that an order of magnitude difference in the volume of the tank
could result in significant differences in the environmental flow and, consequently, affect
plume entrainment. In our experiments, we observed that the measurement region was
affected by confinement and filling box effects even during the quasi-steady period: the
slight vertical inclination in the induced-flow field (figure 6) is due to ‘overturning’
motions at the sidewalls of the visualisation tank. Similar to a plume in an axisymmetric
filling box (Kaye & Hunt 2007), the gravity current formed by plume impingement in a
two-dimensional filling box will reach the sidewalls and be turned upwards. Continuity
requires that any imbalance in the volume flux in the rising current and the falling plume
is balanced by a net vertical volume flux in the rest of the box, as is shown by the inclined
dyelines. It is plausible that the mere presence of confinement affects both the plume and
the entrainment velocity in some subtle manner, but it was not observed in this campaign
(where the same tank geometry was used throughout).

7. Conclusions

The entrainment coefficient α is central to the classic theory of turbulent line plumes
and, thus, to the prediction of plume behaviour. Despite its crucial role, there was no
explanation prior to this work why reported values ranged from α = 0.10 to α = 0.20
(table 1) nor was there a consensus on which value should be deemed most representative.

This perplexing situation motivated our title question: what is the entrainment
coefficient of a pure turbulent line plume? Using a combination of theoretical
developments, a new experimental approach, and a detailed assessment of all the previous
measurements, we answered this question and reasoned for the proposed consensus value
and narrow range:

α = 0.11 ± 15 %. (7.1)

The successful identification of this value, corresponding to αT = 0.16 for ‘top-hat’
profiles, mitigates longstanding concerns over which value for α is suitable for use in
plume theory. Moreover, it represents a robust reference value which will now enable
improved quantitative comparisons of entrainment to be made with line plumes that
develop from the base of a vertical wall and with area source plumes, including those
with forced and lazy release conditions.

On investigating the reasons that underlie the wide range of reported values, it became
clear that the implications of determining α based on a particular measurement approach
were not well understood. To address this, a theoretical framework was developed that
established (a) how different pairs of measurements of plume properties could be used
to calculate α, and (b) the relationships between uncertainties in these measurements
and the uncertainty in the calculated value of α. This framework proved instrumental in
enabling us (i) to identify previous misinterpretations of data which underpinned some
of the reported values of α, (ii) to conclude that 0.095 � α � 0.13 is an appropriate
representation of the published data and (iii) to identify a new measurement approach.
Similarly, we assessed the variation in the values reported for the ratio of the widths of the
cross-stream buoyancy and velocity profiles, λ, and concluded 1.0 � λ � 1.3, a narrower
range than 0.88 � λ � 1.4 implied by reported measurements. At present, λ = 1.2 appears
to be an appropriate representative value, but future efforts to determine λ, building on the
approaches developed herein to determine α, would not be unwarranted.
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Uniquely in this context, our experimental campaign focused on the entrainment velocity
ue, which was measured by tracking dyelines advected by the induced flow. This is a
smooth flow, not subject to the rapid time-dependent fluctuations that characterise the
flow inside the turbulent plume and, consequently, we made robust measurements of ue.
Our theoretical framework showed that pairing these measurements with measurements
of the plume scalar width λb minimises the uncertainty in α (§ 3). Our campaign showed
α = 0.108 ± 2 %, a value in good agreement with the average of the curated list of values
for α (table 4) resulting from our analysis of past measurements (§ 4). Having successfully
determined α to greater precision than before and explained the reasons underlying the
large range of previously reported values, we reason that we have answered the title
question.

It is perhaps natural to end by considering how the value for α could be determined even
more precisely. Such a pursuit would likely require an ambitious campaign which sought
to understand the fundamental effect of confinement on entrainment. A reassessment of
the ‘two-dimensionality’ of the geometry used to study line plumes could also prove
insightful. While further tightening of our proposed range for α may not have the same
transformative effects on the use of plume theory models, a continued investigation of the
entrainment coefficient of a line plume should lead to progress in our understanding of
turbulent line plumes and their interaction with their environments.
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Appendix A. Relationships for coefficient pairs

(i) The relationships for the pair (Cb, Cλb) are

α =
√

πCb

2
, λ = Cλb

Cb
, (A1a,b)

δα

α
=

√(
δCb

Cb

)2

,
δλ

λ
=

√(
δCb

Cb

)2

+
(

δCλb
Cλb

)2

. (A2a,b)

Thus k1 = 1, k2 = 0, k3 = 1 and k4 = 1.
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(ii) The relationships for the pair (Cb, Cw) are

α =
√

πCb

2
, λ = √

A − 1, (A3a,b)

δα

α
=

√(
δCb

Cb

)2

,
δλ

λ
=

√(
A

A − 1

)2 (
δCb

Cb

)2

+
(

3A
A − 1

)2 (
δCw

Cw

)2

, (A4a,b)

where A = πC6
wC2

b/2. Thus k1 = 1, k2 = 0, k3 = A/(A − 1) and k4 = 3A/(A − 1). For
the purposes of brevity, only the relationships for α and λ and the uncertainty multipliers
are shown for future pairs.

(iii) The relationships for the pair (Cb, Cg) are

α =
√

πCb

2
, Aλ3 − λ2 − 1 = 0, (A5a,b)

where A = √
2πC3

gC2
b and λ could be found graphically or using the cubic formula. For

this pair, k1 = 1, k2 = 0, k3 = 2Aλ/(3Aλ− 2) and k4 = 3Aλ/(3Aλ− 2).
(iv) The relationships for the pair (Cb, CQ) are

α =
√

πCb

2
, λ = √

A − 1, (A6a,b)

where A = C6
Q/(2π2C4

b), k1 = 1, k2 = 0, k3 = 2A/(A − 1) and k4 = 3A/(A − 1).
(v) The relationships for the pair (Cλb, Cw) are

α = 1
2C3

w

√
A + 1, λ =

√
A − 1

2
, (A7a,b)

where A =
√

2πC6
wC2
λb + 1, k1 = (A − 1)/(2A), k2 = 3(A + 1)/(2A), k3 = (A − 1)/(2A)

and k4 = 3(A − 1)/(2A).
(vi) The relationships for the pair (Cλb, Cg) are

α =
√

πCλb
2

(
A ∓

√
A2 − 1

)
, λ = A ±

√
A2 − 1, (A8a,b)

where A = πC3
gC2
λb/

√
2, k1 = 2A/

√
A2 − 1 ∓ 1, k2 = 3A/

√
A2 − 1, k3 = 2A/

√
A2 − 1

and k4 = 3A/
√

A2 − 1. Algebraically, this coefficient pair has two solutions, the
implications of which are discussed in § 4.4, where we conclude that λ > 1. Accordingly,
the appropriate solutions are given by the upper part in the plus–minus symbols in the
above equations.

(vii) The relationships for the pair (Cλb, CQ) are

α = C3/2
Q

√√
2A2 + 1 − 1

8A
, λ =

√
2√

2A2 + 1 − 1
, (A9a,b)

where A = C3
Q/(πC2

λb), k1 = 1/
√

2A2 + 1, k2 = 3A2/(2A2 + 1 − √
2A2 + 1),

k3 = 2A2/(2A2 + 1 − √
2A2 + 1) and k4 = 3A2/(2A2 + 1 − √

2A2 + 1).
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(viii) The relationships for the pair (Cw, Cg) are

α =
√

2C2
g + C4

w

2C3
wCg

, λ = C2
w√

2Cg
. (A10a,b)

For this pair, k1 = (6C2
g + C4

w)/(2C2
g + C4

w), k2 = C4
w/(2C2

g + C4
w), k3 = 2 and k4 = 1.

(ix) The relationships for the pair (Cw, CQ) are

α = CQ

2Cw
, λ = √

A − 1, (A11a,b)

where A = C4
wC2

Q/2, k1 = 1, k2 = 1, k3 = 2A/(A − 1) and k4 = A/(A − 1).
(x) The relationships for the pair (Cg, CQ) are

α = C3/2
Q

25/4

(
A

A + 1

)1/4

, λ = 1√
A

, (A12a,b)

where A = C2
QC2

g − 1, k1 = 1/(2A), k2 = (3A + 1)/(2A), k3 = (A + 1)/A and
k4 = (A + 1)/A.

(xi) The relationships for the pair (CQ, CM) are

α = C2
Q

23/2CM
, λ = √

A − 1, (A13a,b)

where A = 2C4
M/C2

Q, k1 = 2, k2 = 1, k3 = A/(A − 1) and k4 = 2A/(A − 1).
(xii) The relationships for the pair (Cg, CB) are

α =
√

C6
g

2C6
B

+ 1
4C2

B
, λ = C2

B√
2C3

g
. (A14a,b)

For this pair, k1 = 6C6
g/(2C6

g + C4
B), k2 = (6C6

g + C4
B)/(2C6

g + C4
B), k3 = 3 and k4 = 2.

Appendix B. Non-Boussinesq effects

Yuan & Cox (1996) measured temperature differences of 1000 K (approximately) near
the plume source and we estimate ρ/ρe ≈ 300/(1000 + 300) ≈ 0.23, i.e. a density ratio
indicative of non-Boussinesq behaviour. However, as the plume rises and entrains cooler
ambient air ρ/ρe → 1, and the plume will approach its Boussinesq equilibrium state.
Their measurements of centreline velocity and temperature show that the scalings expected
for a Boussinesq pure plume begin at the visible flame height (approximately). This is
despite the temperature difference here (of circa 200 K) corresponding to a density ratio of
ρ/ρe ≈ 300/(200 + 300) ≈ 0.6.

Rouse et al. (1952) and Lee & Emmons (1961) do not provide raw temperature
measurements or flame heights that can be directly compared with those of Yuan &
Cox (1996). However, the Rouse et al. (1952) description of a ‘low’ flame suggests that
their measurements were above the visible flame height, and Lee & Emmons (1961)
report source width and fuel consumption rates that correspond to heat inputs per unit
length similar to those of Yuan & Cox (1996). The largest temperature difference that
Yokoi (1960) reports for his centreline measurements is only 44 K. Comparisons of
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these observations with the data of Yuan & Cox (1996) lends support to the view that
non-Boussinesq effects did not unduly impact any of these three sets of measurements.

Additional support for this statement is provided by the non-Boussinesq plume model
of van den Bremer & Hunt (2014b), which can be applied to assess the impact of the
source density ratio on the evolution of the plume velocity and buoyancy. Their model
shows that non-Boussinesq effects reduce the distance for a plume to approach the
pure-plume equilibrium state relative to a Boussinesq plume with otherwise identical
source conditions. As such, there is no clear justification to subject the far-field data
gathered from plumes above fires to additional scrutiny. As is the case for Boussinesq
plumes, the only requirement is that this equilibrium state has been (approximately)
reached, which is the case for all of the experiments listed in table 3.

Appendix C. Analysis of the Kotsovinos (1975) data

The interpretation of the coefficient values based on the Kotsovinos (1975) dataset is
not straightforward as there are inconsistencies between values reported in the thesis
(Kotsovinos 1975) and the related paper (Kotsovinos & List 1977). For the profile
widths, there are two choices: Cb = 0.097/

√
ln 2 = 0.117 and Cλb = 0.13/

√
ln 2 = 0.156

(paper, figure 7) or Cb = 0.10/
√

ln 2 = 0.120 and Cλb = 0.14/
√

ln 2 = 0.168 (thesis,
Conclusions). Furthermore, these values are, in part, based on measurements of forced
plumes (0 < Γ < 1) which had not transitioned to the pure-plume-like region (Γ ≈ 1).
While Kotsovinos (1975) and Kotsovinos & List (1977) both argue that the spreading
rate of jets, forced plumes and pure plumes are equivalent, it is not clear that their
measurements fully support their claim. Indeed, their measurements suggest that the
buoyancy profile is consistently narrower for plume-like flows than jet-like flows (figure 7,
Kotsovinos & List 1977).

To ensure consistency with the other reported measurements (table 3), and to sidestep
the question of which reported values to use, we reanalysed the Kotsovinos (1975) dataset
in order to determine Cb and Cλb only from measurements in the pure-plume-like region.
Using the same approach as in § 5, we calculated Γ0 for each experiment and used the
van den Bremer & Hunt (2014a) solutions to calculate zp. For each experiment with at
least two measurements where zm > zp, Cb and Cλb were determined from a least-squares
linear fit to the width-against-distance data. The average values are: Cb = 0.111, from six
experiments with a standard deviation of 10 %, and Cλb = 0.142, from eight experiments
with a standard deviation of 5 %.

The new value Cb = 0.111 is very similar to the two previously reported values
(Kotsovinos 1975; Kotsovinos & List 1977), but we note that this lower value of Cb results
in α = 0.10 (to 2 s.f.) rather than α = 0.11 as reported by Kotsovinos (1975) (Kotsovinos
& List (1977) do not report an experimentally determined value for α). Our proposed
value of Cλb is significantly lower than both reported values, and, as a result, we conclude
that the Kotsovinos (1975) dataset shows λ = 1.28, rather than λ = 1.35 as reported by
Kotsovinos & List (1977) or λ = 1.4 as implied by the values in Kotsovinos (1975).

As Kotsovinos (1975) and Kotsovinos & List (1977) both reported Cw = 1.66 and
σT = 1/Cg = 0.42, as determined from measurements in the pure-plume-like region, we
did not reanalyse their centreline data.

Appendix D. Analysis of the Parker et al. (2020) data

Parker et al. (2020) provide velocity and buoyancy data in the x − z plane
for five experiments, which we used to calculate coefficients and create the
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Figure 10. Variation of the plume buoyancy flux normalised by the source buoyancy flux with distance from
the source. The solid lines show the mean buoyancy flux and dashed lines show the sum of the mean buoyancy
flux and the turbulent vertical buoyancy flux. Plot based on data taken from Parker et al. (2020).
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Figure 11. Scaled profiles of (a–c) plume vertical velocity and (d–f ) buoyancy using data from Parker et al.
(2020). The profiles are scaled by (a,d) B0,S, (b,e) B0,M and (c, f ) B0,T . The black lines show Gaussian fits to
the data, with the coefficients listed in table 7.

plots herein. Parker et al. (2020) only reported values for αT and CQ when scaled with
B0,S.

Figure 10 shows that the buoyancy flux measured in each of these experiments is
approximately conserved, that the turbulent buoyancy flux is a small proportion of the
mean, and that there is generally a significant discrepancy between the source buoyancy
flux and the measured buoyancy flux. Averaged across the five experiments, the turbulent
buoyancy flux is approximately 10 % of the mean. For each experiment, B0,M and B0,T
were determined as the average of the mean and total buoyancy fluxes over the height of
the measured region.

Figure 11 shows the profiles of mean vertical velocity and buoyancy scaled using
B0,S, B0,M or B0,T and the distance from the virtual origin z0. Following Parker et al.
(2020), z0 is calculated by extrapolating the top-hat plume width (2bT = Q2/M) to zero.
There are marginally improved collapses with B0,M or B0,T , although the differences are
small away from the centreline.
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Cb Cλb Cw Cg CQ CM αT

B0,S 0.110 ± 8 % 0.128 ± 10 % 2.17 ± 5 % 2.64 ± 14 % 0.405 ± 6 % 0.608 ± 7 % 0.135 ± 8 %
B0,M 0.110 ± 8 % 0.128 ± 10 % 2.30 ± 2 % 2.95 ± 9 % 0.430 ± 9 % 0.684 ± 12 % 0.135 ± 8 %
B0,T 0.110 ± 8 % 0.128 ± 10 % 2.22 ± 3 % 2.75 ± 9 % 0.415 ± 9 % 0.638 ± 12 % 0.135 ± 8 %

Table 7. Average of the coefficients determined from the experimental data recorded by Parker et al. (2020)
in their five experiments. The percentage uncertainty is the 95 % confidence interval.

The values of the coefficients were determined for each of the five experiments from
least-squares fits to the data, and the averages, together with the 95 % confidence intervals,
are shown in table 7. The choice of scaling (by B0,S, B0,M or B0,T ) affects the values of
some of the coefficients, and consequently the calculated values of α (§ 4.7).

Appendix E. Analysis of the Ramaprian & Chandrasekhara (1989) data

Ramaprian & Chandrasekhara (1989) normalised their coefficients using the total
buoyancy flux. For comparison purposes, we calculated the coefficients if the mean
buoyancy flux is used instead. We estimate (below) that their measurements show
B0,M/B0,T = 0.88, and thus calculate the set: Cw = 2.22, Cg = 2.79, CQ = 0.501 and
CM = 0.806 (all to 3 s.f.).

Ramaprian & Chandrasekhara (1989) reported that the magnitude of the kinematic
turbulent heat-flux integral is 0.18. While not explicitly stated, their text and plot
(figure 7(c) in their paper, where we have assumed that the y-axis label has a typographical
error and ut/U2

m should read ut/UmΔTm in their notation) suggests that this value was
normalised by the product of the centreline vertical velocity, centreline temperature and
the width of the temperature profile. After accounting for the difference in convention
regarding the plume width (by multiplying 0.18 by

√
ln 2), their measurements of the

turbulent component of the buoyancy flux BT show

BT

wcg′
cλb

= 0.15. (E1)

Assuming Gaussian profiles of velocity and buoyancy, the mean buoyancy flux B0,M is

B0,M =
√

π

λ2 + 1
wcg′

cλb = 1.13wcg′
cλb, (E2)

where λ = 1.21, as calculated using the Ramaprian & Chandrasekhara (1989)
measurements for (Cb, Cλb), was used to evaluate the prefactor. Combining (E1) and
(E2), their turbulent flux measurements show that BT = 0.13B0,M . This measurement can
additionally be used to relate BT and B0,M to the total buoyancy flux: BT = 0.12B0,T and
B0,M = 0.88B0,T .
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