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DENSITY QUESTIONS
FOR THE TRUNCATED MATRIX MOMENT PROBLEM

ANTONIO J. DURAN AND PEDRO LOPEZ-RODRIGUEZ

ABSTRACT.  For atruncated matrix moment problem, we describein detail the set of
positive definite matrices of measures . in Vy,, (thisisthe set of solutions of the problem
of degree 2n) for which the polynomials up to degree n are dense in the corresponding
space L2(u). These matrices of measures are exactly the extremal measures of the set
Vi.

1. Introduction. Letr = (vij)1<ij<n beapositive definite matrix of measureswith
finite moments S, of any order and having a sequence (P,)2, of orthonormal matrix
polynomials, P, of degree n and with non-singular leading coefficient. For the sake of
simplicity we will assume Py(t) = I.

These polynomials satisfy athree-term recurrence relation of the form

(R} tPh(t) = Ans1Prra(t) + BoPn(t) + A Pr—1(t), n>0,

(A, and B, being N x N matrices such that det(A,) # 0 and B = By), with initial
condition P_1(t) = 6 (here and in the rest of this paper, we write 6 for the null matrix,
the dimension of which can be determined from the context. For instance, here 6 is the
N x N null matrix). It is well-known that this recurrence relation is equivalent to the
orthogonality with respect to a positive definite matrix of measures: this is the matrix
version of Favard’'s Theorem (see[AN], [D1] and [DL1]).

We denote by Qn(t) the corresponding sequence of polynomials of the second kind,

Pn(t) — Pn(X)

>
X dv(x), n>0,

Q) = |,

which also satisfy the recurrence relation (1.1), with initial conditions Qu(t) = 6 and
Qi) = A

For n > 0 we denote by V,, the set of positive definite matrices of measures whose
moments up to degree n are finite and coincide with those of v, that is:

Vh = {M = (i j)1<ij<N /Rtpd,ui’j = /Rtpdl/i’j, forO<p<nandl1<i,j< N}.

For 1 a positive definite matrix of measures, the space L2(1) is defined as the set of
N x N matrix functions f:R — Mpy,n(C) such that r(f(OMBf(t)*) € L(r), where
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M is the Radon-Nikodym derivative of p with respect to its trace (ru) (for a matrix
A = (& )1<ij<n, We denoteTA for its trace, i.e. TA = ZiN:l a,):

di

M= (M) = (dT—u)lgi,jSN'

The space L?(11) is endowed with the norm

1112, = [r(fOMOTQ") ], = ([ r(fOMOI®") drut)”

andisaHilbert space. The duality worksasfor the scalar case(see[R] or [DL2] for more
details. For the definition of the LP spaces associated to 1, see [DL2]).

We stress that since we only impose the matrices of measures in V5, to have finite
moments up to degree 2n, for ;. € Va, we can guarantee only that the polynomias
up to degree n belong to the corresponding space L2(1). In any case, the polynomials

In this paper we characterize the matrices of measures p of Vo, for which the poly-
nomials up to degree n — 1 are densein L2(w): 1 is an extremal matrix (in the sense
of convexity) in V1. Furthermore, this is the case if and only if u is a discrete ma-
trix of measures whose support (the support of a positive definite matrix of measures
1 = (uij)1<ij<n is the support of its trace measure T = SN | pi;) isthe set of zeros of
(Pn()\) — APn_l()\)) (the zeros of amatrix polynomial P(t) are the zeros of the determi-
nant of P(t)), where the matrix A makes A,A hermitian:

THEOREM 1. For a matrix of measures . in Vo, (n > 1) the following statements
are equivalent:

(1) pisanextremal measure of the set V1.

(2) The matrix polynomials of degree less than or equal to n — 1 are dense in the

space L2(p).
(3) There exists an N x N matrix A such that AJA = A*A’ and for which
p = 31, Gy, where x;, i = 1,...,q, are the different zeros of the polynomial

det(Pn()) — AP,_1())) and G; are the matrices which appear in the simple fraction
decomposition

a. G

=P

The numbersx; arereal and the matrices G; are positive semidefinite, i = 1,...,q.

(1.2) (Pa()) — AP1 (1) (Qu(Y) — AQu-a(N)) =

The comparison between Theorem 1 and its scalar version points out the existence
of important divergences created by the matrix structure. We devote the third section of
this paper to study one of these divergences: in the scalar case, the points of the support
of the extremal measures support the maximum massin V,n_»; indeed, if 1 € Von_2 is
extremal in V1, it iswell-known (seefor example [A, p. 61]) that if x; € supp(u), then

1
n({x}) = ST
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and j({x}) > v({x}), for any v € Vo ».

This property is not true in the matrix case. Indeed, the matrices in Vo, extremal
in Vh—1 may not support the maximum mass in Vo,_». This happens exactly when the
mass is a non-singular matrix, in which case the polynomial Pn(A\) — AP,_1()\) has a
zero of maximum multiplicity at the corresponding point x;. In that case A is given by
A = Pn(x)P2; (%) (see Theorem 3.1).

2. The structure Theorem. We prove here Theorem 1. Before beginning on the
proof we need some formulae and preliminary results.
LEMMA 2.1. (1) The Christoffel-Darboux formula

@D PLAOAR) ~ POAPY10) = (- 5 PP, uveC
(2) with its particular case

@2 PLOAPID - PIOAPL.() - 5 PR, zEC
(3) The Green formula

n—-1
(2.3)  Phoa(WAnQn(v) — PR(WAQn-1(v) = I + (v —u) iE)F”&(U)Qk(v), uvec.

(4) If Aisa N x N matrix such that AJ/A = A*A%, and A € C is not a zero of
det(Py()) — APy_1())) then

(QhN) — Q1WA (Pa(Y) — Py (WAT)
= (Pa(\) — AP1(N) " (Qn(A) — AQn-1(N).
In particular, if A € R is not a zero of det(Py(\) — APy_1()) then the matrix
(Pa(\) — APh-1(1) " (Qu(Y) — AQu_1(\)) is hermitian.

(5) If o isan extremal matrix of measures of the set V,,_1, then 1o has at most nN?
pointsin its support.

PrROOF. (1), (2) and (3) can befound in Lemma2.1 of [D2].

(4) can be proved asthe Step 1 of [D2, Theorem 3.1].

(5) This result is taken from [K]. Taking into account this article is written in
Ukrainian, we include here the translation of the proof, to make this paper more com-
plete. We seize the opportunity to express Professor Alexander Aptekarev our gratitude
for his assistanceto translate this result.

Suppose on the contrary that 1o has a number of pointsin its support bigger than or
equal tonN?+1. Thenit is possibleto choosenN?+1 digjoint intervals Ay, . . . , Ay Such
that 110(\) # 0, for 0 <i < nN?. Let'scall

nN2

AnN2+1 = R \ U Ai.
i=1
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Since Ap C Anz4q We havethat po(Apnze) 7 6.
Givenavector (ay, . .., apes1) INR™*1with g > 0for 1 < i < nN2+1, itispossible
to defineamatrix of measures» by

nN2+1
v(A) = ; aipo(AN4).

Let'scall W,—1 the set of vectors(ay, . . ., 8ne+1) IN RN*+L with non-negative coordinates
for which the corresponding matrix of measures v belongsto V1.

We then have that the matrix of measures associated to the vector (1, ..., 1) isuo and
since this matrix of measuresis extremal in V3 we havethat (1,...,1) isextremal in
Wh—1.

The set W, is characterized by the equations

a >0, for 1 <i<nN?+1

@4 S g fy o) = S, for0<k<n-—1,

which determine asystem of nN? equationsin the nN?+1 unknownsa;. Thusit ispossible
to choose a solution (hy, ..., hyesq) fOr the homogeneous system (that is, replacing S
by 6) suchthat |hj| < 1for1 <i <nN?+1.

DefiningHs = (1 +hg,...,1+hpee) andHo = (1 —hy, ..., 1 — hes), itisclear
that H. and H_ satisfy (2.4), and so doesH = 3(H. +H_), soH isnot extremal in Wy,
whichis a contradiction. ]

We are now ready to proceed with the proof of Theorem 1.

PROOF OF THEOREM 1. (1) = (2) If i is extremal in V,,_1, from Lemma 2.1(5)
followsthat 1 is discrete and then of the form

q
w=>" Gibx
i=1

where q is certain natural number, x; are real numbers and G; are positive semidefinite
numerical matrices.

If the polynomials up to degree n — 1 are not dense in the space L2(1) then by the
Hahn-Banach Theorem there exists a non zero operator A acting on L2(1) such that it
vanishes on any polynomial of degree lower than n. By the duality Theorem we can
represent this operator with aunique functiong = ¥ | Aidy, in L2(1). For any function
f in L2(1) the operator A is defined by

A = [ 7(fO dudg ©) = > 7(FIGA).

i=1

Since A(p) = 0 for any polynomial p up to degree n — 1 we have that the not necessarily
positive definite matrix of measures

q
po =2 GiAdx
i=1
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has null moments up to degreen — 1.
By considering

q q
o = 2 (GA +AG)dx = ) Hibx
i=1 i=1
we obtain a hermitian matrix of measures with null moments up to degreen — 1. Let's
put g; for the smallest non zero eigenvalue of the matrix G; (we recall that G; are positive
semidefinite) and choose a positive number C such that

1 .
= max ||Hi]l2 < min a.
C 1<i<q 1<i<q

We decompose the matrix of measures . in the following way

1 1. 1 14
K 2<N Cﬂo) 2(“ CHO),
and we next prove that the matrices of measures i + éug are positive definite, for which
it isenough to prove that the numerical matrices G; + éHi are positive semidefinite. For
it, if visavector in CN and belongsto Ker G;, then

v(Gi + éHi)v* - v(Gi + é(eipﬁ* +AqGi))v* -0

and if v is orthogonal to Ker G; then
1 1
V(Gi + EHi}W = VGi\f‘< + EVHi\fk
1
> V1% = Z ] v
. 1 2

> P .
> (min & — & max [|H] ) 1v]* > 0.

Hence we conclude that the matrix of measures p can not be extremal in V1, whichis
acontradiction.

(2) = (1) Supposenow that the polynomials up to degreen— 1 aredensein L?(;) and
alsothat 1 isnot extremal inthe set V1, thatisu canbewrittenas . = apg +(1— o) 2,
for certain 0 < o < 1 and p; and u, being two different matrices of measuresin V3.
We then define the operators T and T1 on L2(y) by:

T(f) = _/RT(f dul) and Tu(f) = _/RT(f duual).

Both are clearly linear and T is continuous because | belongsto L2(:). For T; we have:

o] = 2 {1 e
< (@ abe))) (10— o)
< (oo ([ o)’
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so if wetakec = Ti(fR dm)% we have |Ty(f)| < c||f||>,, that is T; is a continuous
operator. We definenow U = T — Ty, U isalinear and continuous operator defined on
L2(11), U is not the zero operator but vanishes on any polynomial up to degreen — 1, so
we conclude that the polynomials up to degree n — 1 are not dense in the space L2(1.). m

REMARK. Observethat the proof givenfor (2) = (1) also works for a non-truncated
matrix moment problem. In that case, if  isasolution of the moment problem and the
polynomials are dense in the space L?(1), then p is extremal in the set of solutions of
that matrix moment problem.

To prove (3) = (2) we need the following lemma:

LEMMA2.2. (1) If p = M(t) dru isa positivedefinite matrix of measuresand (Pi)2
is a sequence of associated orthonormal matrix polynomials, with dgr(Px) = k and with
non-singular leading coefficient, then for any f in L?(1) and for any n natural, the best
approximation of f in L?(u) by a polynomial of degree at most n is the given by the
Fourier series

3o, PP
k=0
where
(f,P) = [, FOMOPL®) dra(.
(2) For a given positive definite matrix of measures of the form

q
p=> Gibx
i=1

whereqisa natural number, x; arereal numbersand G; are positive semidefinite numer-
ical matrices, the following statements are equivalent:

(@) O = L2().

(b) =, rank(Gj) = nN.

PrOOF. (1) Itisenoughto proceed asin the scalar case.
(2) For amatrix of measureslike this (discrete and with finite support), it is clear that
any function f in L?() can be represented as

q
i=1

where Fj are numerical matrices and x; are the pointsin the support of . We identify f
with @ if andonly if F;G; = 0, fori = 1,...,Q. Sincedim(lm(F — GiF)) = Nrank(Gj)
it isnot difficult to find

(2.5) dim(L?(u)) = i Nrank(G;) = N i rank(G;).
i=1 i=1
(@ = (b) If SN*N[x] isdensein L2(u), we can represent any function f in L2(u) in
the form .
f =5 AP
k=0
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A being N x N numerical matrices; if
n—1 n—1
> APK() = 3 APK(),
k=0 k=0

it is enough to use the orthonormality of Py, ..., Pn_1 to obtain that A, = Ay, for k =
0,...,n— 1. Thisway, ranging the matrices Ax in Mnxn(C) we obtain the whole space
L?(1) and hence we deduce

(2.6) dim(L2(u)) = nN2.

Taking now into account (2.5) we have

rank(G;) = nN.
1

(b) = (a) Given P, Qin CN*N[x], P # Q, we can write

q

n-1 n-1
P=> AP, Q=) B
k=0 k=0

with By # Ay for some k between 0 and n — 1, hence P # Qin L2(y). Since CN*N[x] C
L2(), we have dim(L?(1)) > nN2.
Furthermore, from (2.5) we obtain

dim(L2(u)) = N(i rank(Gi)) — N2,
i=1

s0 CN*N[x] = L2(y), and hencethe polynomials up to degreen — 1 are densein L2(u).
We return to the proof of the Theorem, proving (3) = (2)
In[D2, Section 3] it is proved that for a sequence of orthonormal matrix polynomials
(Pn)n satisfying the three-term recurrence relation

tPn(t) = An+1Pn+1(t) + BnPn(t) + A:Pnfl(t)y

if AisaN x N matrix such that A,A = A*A);, then the simple fraction decomposition

B -1 _ 3 Gk
2.7) (Pa(X) = APr-a(N) "R = 32 5=, ~

is always possible, for R any matrix polynomial of degreelower than or equal ton — 1.
This is possible even though the zeros X, of det(Pn(A) — APy_1())) = O can have
multiplicity bigger than 1. G, are certain numerical matrices explicitly given by:

1
(det(Pol) — AP-2(0) ) 00

(AG(Pr) ~ APy1(0) ) (0RO, k=1,...m

Gn,k =
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where |y is the order of X,k as a zero of the polynomial det(Pn(A) — APn,l(A)). For the
particular case R(\) = Qn(A) — AQn-1()), the matrices Gpx (k = 1,...,m) are positive
semidefinite and the rank of G,k coincideswith the multiplicity of the zero x, k.

In consequence, Y, rank(G;) = ¥, multiplicity (x) = nN. Now it is enough to
apply Lemma 2.2(2).

(2) = (3) Supposenow . € Von—2,and CN*N[x] isdensein L 2(u). Sincethiscondition
is equivalent to the extremality of p in Vy_1, from Lemma 2.1(5), we can express =
Y1, Giéy, with G; positive semidefinite numerical matrices and x; real numbers we are
going to determine. We proceed in several steps.

STEPONE. For 1 <i,j < q, thefollowing formula holds
G (Ph-106)AnPa(X) — Pr(§)APn-1(x)) Gi = 6.
From Lemma2.2(2), and since by hypothesis CN*N[x] = L?(1), for any function f in
L2(1) we have

n—-1

f=>"(f, PP«

k=0

inL2(x), where(f, P,) isthe Fourier coefficient of f associated to Py. Taking into account
that weidentify f with 6 if and only if FiG; = 6, fori = 1,...,q, thisisequivalent to

n-1
f(x)Gi = > (f,PP(X)Gi, forl<i<aq.
k=0

For A € C\ R, wecdll f(t) = ﬁ Sincef, isbounded, f, € L?(x). We compute its
Fourier coefficients:

(1.P) = || = duOPL)
>k _ p* d
- [0 R0
= QL) +LOIPLO),

where w()) is the Hilbert transform of fy, that is

du) & G
“’(A):‘/Rt—x =l

Then,for 1 <i < qgand X € C\ R, we have

. n—1
G S Qi) + P PG

X—A (o

n—1 n—1
= I;)Qﬁ(A)Pk(Xi)Gi +w(\) k;) P(M)Pk(x)Gi,
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which gives

n—1 n-1
0= [+ 062 3 QUG + )] 6 = 1) 3 POPU)| G

forl<i<qgand) €C\R.
By using the formulae (2.1) and (2.3) we obtain

0 = [Qr-1(M)APR(%) — Qu(A)AP-1(X)]Gi
+ WA)[P_1(A)AaPn(x)) — PR(A)APh-1(x)]Gi

for1<i<qgandX € C\R.
Multiplying (2.8) by (x; — A\) and taking limit for A tending to x;, for j # i, and taking
into account that w()) = 1, &5 we obtain

(2.8)

(2.9) G (Pr-1(4)AnPn(x) — Pr(4)APn-1(%)) Gi = 6

forl <i,j<aq,i#].
Since P;_; (%)AnPn(X%i) — Pi(X)AiPn-1(x) = 6 (formula (2.1)), formula (2.9) holds
forevery 1 <i,j <q.

Step Two. Déefinition of the matrix A.

To define the matrix A we need to prove that the sum of the images of the mappings
represented by the matrices Pn_1(X)Gi, i = 1,...,q, is al CN. To prove this it will
be enough to establish that the sum of the images of the mappings represented by the
matrices Pn_1(%)GiP;_;(),i = 1,...,q, isal CN.
the elementsof A (1 <i < q), thatis, (A4, ..., Aq) has dimension lower than N, then
there exists anon zero vector v orthogonal to (A, ..., Aq). For this vector v and for any
i we can write

ki
Pno1(X)GiPh_1(X)V = > aijvij,
i=

where «; j are complex numbers. Taking now into account that v is orthogonal to A; we

have y
\fKPn_l(Xi)Gi P;_l(Xi)V = Z Ofi,j\fkvi,j =0.
=1
Since
q
(2.10) > Prs )G (X) = [, Po-s) di(OP52() =
1=

summing in the former equality for i we get v*v = 0, which impliesv = 0, whichisa
contradiction.
We are now ready to define the matrix A.
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A is the matrix representing a linear mapping A: CN — CN we define as follows: for
avector vin CN, we canwritev = > | P,_1(X)Givi, where v; are certain vectorsin CN.
Thenwe put Av = 31, Pr(X)GiVi.

Let's see now that A is well defined. Suppose that v admits the two representations

V= Zq;Pn1(Xi)GiWi = Zq;Pn1(Xi)GiZi,

wherew; and z are vectorsin CN. We have to prove that
3" Pu(x)Gitt = 3 Po(x)Gr.
By multiplying in (2.9) to the right by w; and summing for i we get
1)  GP9A, _il Pa(x)GW — GPA§)AV = 6, forl<j<g,
By multiplying to theright by z and summing for i we get
212 GPL A ipn(xi)eiz _GPi AV =0, for1<j<q
Subtracting (2.11) and (2.12) yields
@13 G2 PiIGH — > Pi(x)Ga) =6, for1<j<a
Multiplying in (2.13) by Pn—1(x;) to the left and summing we get
(35 Pr209GIP5-109) 3 Pr)Guw — 3 Pa)Giz ) =
Again taking into account (2.10) and that A, is non-singular we deduce =7, Pn(%)Giw;

— 39 Py(%)Giz and thus A is well defined.

STEP THREE. A A = A'A;,.
Given an arbitrary vector vin €N, we writeit asv = ¥ | Pn_1(%)Givi, wherev; are
vectorsin CN. Multiplying in (2.9) to the right by v; and summing for i yields

Gy (Pi_1(4)AvA — P(4)AR)V = 0,
hence we deduce
GiP;_1(5)AnA — GPL(X)A; = 6.
Multiplying now in this formulato the left by v and summing yields
VAA — VAA: =0

for any vector vin CN, so we have A,A = AA
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StepFouR. For A € C\ R,

w(0) = —(Pa(}) — APy 1(N)) " (Qn(A) — AQn-1(V)).
We retake now formula (2.8):
0 = [Qh-1(MNAPR(X) — QuA)APr-1(X)]1Gi
+w(A)[Pr_1(A)AnPh(X) — Pr(A)APr-1(x)]Gi,
for1 <i <q.Letve CNandwriteit as
q
V="> Pri1(X)Gwi.
i=1
Then Av = 31, Py(%)Giwi. Multiplication by w; in the above formula (2.8) for each i
followed by summation over i yields
0 = [Qh-1(MNAA — QUAAIV + w(A)[Ph_1 (A)AA — PR(A)AIV
for every vin CN and every A € C \ R. Since A, is non-singular we deduce

6= [Qr 1 (NAAAT — QNIAWY + w(VIP; 1 (NAAAT™ — PLVIAY
for every vector vin CN and A € €\ R. By using now A,A = A*A% we obtain
0 = [Qr 1 (WA — Qi + wW[P (WA —P(A)], A €C\R

which gives

W) = —(QaN) — QraIA) (Pa) — Pra(WA) T, A €C\R
which by virtue of Lemma2.1is

wN) = —(Pah) — APp1(0) (Qa(d) — AQr1(N), A €C\R.

Taking into account w(}) = Y1, % and the simple fraction decomposition of

(Pa(\) — APy-1(1) " (Qu(%) — AQu-1(1)), the theorem s proved. .

REMARK. Observethat in casethe polynomials of degreelessthan or equal ton— 1
aredensein L2(1), no closure operation is necessary, becausein this casethe space L 2(1)
is of finite dimension.

3. Themaximum mass Theorem. It isconvenient to compare Theorem 1 with its
scalar version. The representation of the measuresin Van_, extremal in V,,_1 in terms of
the polynomialsp,—apn—1 isalmost trivial in the scalar case, becauseit is possibleto find
directlya = pp"fgz Aswe have seen, the matrix structure introducessome complications
which make the r&ult harder to obtain, requiring new ideas.

These differences of structure between the matrix and scalar case create important
divergences aswe are going to see next. Indeed, aswe pointed out in the introduction, in
the scalar case, the points of the support of the extremal measures support the maximum
massin Vo,_». Thisproperty isnot trueinthe matrix case. Thematricesin Van_, extremal
in V,—1 may not support the maximum massin Vo,_».
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THEOREM 3.1. If u € Von_p isa matrix of measuresextremal in V,_1, put
q
p=2 Gibx
i=1

where x; are the zeros of Pn(\) — AP,_1()), for certain A such that A,A = A*A};, then
the following conditions are equivalent:
(1) p reachesin x;, the maximum mass which can be concentrated in Van_2, more
concretely,

G = (3 Pitc)Px)

(2) G, isnon-singular.
(3) Pn(A) — APn_1()) hasa zero of maximum multiplicity (N) in X, .
(4) Pn_1(X;,) isnon-singular and A = P (Xi, )Py (Xio)-

PrROOF. (1) = (2) The maximum mass which can be concentrated for 1 € Von_2 in

Xio is
n—1 —1
(3 Pitxo)P(xa))
k=0
because
n—1 y n—1 y n—1 y *
2 PilPxa) = [ (35 Pilk)PU0) du() (3 PitxPd)
and hence

n—1 n—1 n—1 *
> PP = (3 Pibxo)Pul(c) | B( 3 Pilo)Pulxio))
k=0 k=0 k=0
where we denote by B the mass of the matrix of measuresin x;,. We then have
n—1 n—1 -1 n—1
> Pilxo)Po) [ ( X Pbio)Petx)) = B| Y- Pixo)Pilx) = 0
k=0 k=0 k=0
from which we deduce that
n—1 —1
(> PikPUxy))  —B>0.
k=0

Thisresult isaso contained in [Z].
So, if 1 supports the maximum mass which can be concentrated in x;,, this is given

by n-1 -1
Gy = (X Pil6PLO%))
k=0

which isanon-singular matrix sinceit is the inverse of an invertible matrix:

:Z:Pﬁ(xif’)Pk(XiO) > P5(Xio)Po(Xi,) = I.
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(2) & (3) Sincerank G;,, as mentioned earlier, is equal to the multiplicity of the zero
Xi, Of Pn(A) —AP,_1()), weseethat G;, isnon-singular if and only if x;, isof multiplicity
N.

(3) & (4) If Pa(X) — APn_1(X\) hasazero of multiplicity N in x;, , we deduce from the
Remark 2.3 of [DL1] that Pn(Xi,) — APn—1(X,) = 6, and hencethat P,(X;,) = APn_1(X,).
If Ph—1(X,) was singular we would have that x;, would be azero of P,_1(A) and Pn(}),
and moreover Pn(Xi,) and Pn_1(X;,) would have a common eigenvector associated to 0,
which is in contradiction with Theorem 1.1(2) of [DL1]. In consequence, P,_1(X;,) is
non-singular and thus A = P (X;,)Pr2;(X,)- On the other hand, if A = Pn(Xi,)Pry (%),
itisclear that Pn(\) — AP,_1()\) hasazero of multiplicity N in x;,.

(2) = (1) Taking limit as A — x; in (2.8) we get

6 = (Qi_106)APn(x) — Qu()AP-1(x)) Gi

+ 3G (Pi 4 ()APA(X) — Py ()ATPr1(6)) G
2R B

#1im G (Ph L OVAWP(X) — PR VATPr-1(0))G:

A—Xi

From (2.3) in Lemma 2.1,

Qi 1(6)APA() — Q30)AP-106) = (Pr0)AIQ-1(%) — P 1(6)AnQu(X))’

=—1"=—l
and from (2.1) in Lemma 2.1,
Ph-106)AnPa(%) — PRO6)APr-1(x) = 0

so that

6 - i PEOUAPr06) - P ORI
A= Xi— A

Therefore
jim PAOYATPn-106) = Pr 3 (VAP (%)

G.ﬁl = —
>\—>Xi Xi - )\

since G was invertible by assumption.
Finally this gives
A=

. n—1 n—1
Gt=—lim =—2 3" Pr(A)Pe(x) = Y Pr(x)Px(x). .
A=x X — X k2o k=0
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