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DENSITY QUESTIONS
FOR THE TRUNCATED MATRIX MOMENT PROBLEM

ANTONIO J. DURAN AND PEDRO LOPEZ-RODRIGUEZ

ABSTRACT. For a truncated matrix moment problem, we describe in detail the set of
positive definite matrices of measures ñ in V2n (this is the set of solutions of the problem
of degree 2n) for which the polynomials up to degree n are dense in the corresponding
space L2(ñ). These matrices of measures are exactly the extremal measures of the set
Vn.

1. Introduction. Let ó ≥ (ói,j)1�i,j�N be a positive definite matrix of measures with
finite moments Sk of any order and having a sequence (Pn)1n≥0 of orthonormal matrix
polynomials, Pn of degree n and with non-singular leading coefficient. For the sake of
simplicity we will assume P0(t) ≥ I.

These polynomials satisfy a three-term recurrence relation of the form

(1. 1) tPn(t) ≥ An+1Pn+1(t) + BnPn(t) + AŁnPn�1(t), n ½ 0,

(An and Bn being N ð N matrices such that det(An) Â≥ 0 and BŁn ≥ Bn), with initial
condition P�1(t) ≥ í (here and in the rest of this paper, we write í for the null matrix,
the dimension of which can be determined from the context. For instance, here í is the
N ð N null matrix). It is well-known that this recurrence relation is equivalent to the
orthogonality with respect to a positive definite matrix of measures: this is the matrix
version of Favard’s Theorem (see [AN], [D1] and [DL1]).

We denote by Qn(t) the corresponding sequence of polynomials of the second kind,

Qn(t) ≥
Z
R

Pn(t) � Pn(x)
t � x

dó(x), n ½ 0,

which also satisfy the recurrence relation (1.1), with initial conditions Q0(t) ≥ í and
Q1(t) ≥ A�1

1 .
For n ½ 0 we denote by Vn the set of positive definite matrices of measures whose

moments up to degree n are finite and coincide with those of ó, that is:

Vn ≥

²
ñ ≥ (ñi,j)1�i,j�N :

Z
R

tpdñi,j ≥
Z
R

tp dói,j, for 0 � p � n and 1 � i, j � N
¦

.

For ñ a positive definite matrix of measures, the space L2(ñ) is defined as the set of
N ð N matrix functions f :R ! MNðN(C) such that ú

�
f (t)M(t)f (t)Ł

�
2 L1(úñ), where
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DENSITY QUESTIONS 709

M is the Radon-Nikodym derivative of ñ with respect to its trace (úñ) (for a matrix
A ≥ (ai,j)1�i,j�N , we denote úA for its trace, i.e. úA ≥

PN
i≥1 ai,i):

M ≥ (mi,j)
N
i,j≥1 ≥

�dñi,j

dúñ

�
1�i,j�N

.

The space L2(ñ) is endowed with the norm

kfk2,ñ ≥



ú�f (t)M(t)f (t)Ł

� 1
2





2,úñ
≥

�Z
R
ú
�
f (t)M(t)f (t)Ł

�
dúñ(t)

� 1
2

and is a Hilbert space. The duality works as for the scalar case (see [R] or [DL2] for more
details. For the definition of the Lp spaces associated to ñ see [DL2]).

We stress that since we only impose the matrices of measures in V2n to have finite
moments up to degree 2n, for ñ 2 V2n we can guarantee only that the polynomials
up to degree n belong to the corresponding space L2(ñ). In any case, the polynomials
(Pk)k≥0,...,n are orthonormal with respect to any measure in V2n.

In this paper we characterize the matrices of measures ñ of V2n�2 for which the poly-
nomials up to degree n � 1 are dense in L2(ñ): ñ is an extremal matrix (in the sense
of convexity) in Vn�1. Furthermore, this is the case if and only if ñ is a discrete ma-
trix of measures whose support (the support of a positive definite matrix of measures
ñ ≥ (ñi,j)1�i,j�N is the support of its trace measure úñ ≥

PN
i≥1 ñi,i) is the set of zeros of�

Pn(ï) � APn�1(ï)
�

(the zeros of a matrix polynomial P(t) are the zeros of the determi-
nant of P(t)), where the matrix A makes AnA hermitian:

THEOREM 1. For a matrix of measures ñ in V2n�2 (n ½ 1) the following statements
are equivalent:

(1) ñ is an extremal measure of the set Vn�1.
(2) The matrix polynomials of degree less than or equal to n � 1 are dense in the

space L2(ñ).
(3) There exists an N ð N matrix A such that AnA ≥ AŁAŁn and for which

ñ ≥
Pq

i≥1 Giéxi , where xi, i ≥ 1, . . . , q, are the different zeros of the polynomial
det

�
Pn(ï) � APn�1(ï)

�
and Gi are the matrices which appear in the simple fraction

decomposition

(1. 2)
�
Pn(ï) � APn�1(ï)

��1�
Qn(ï) � AQn�1(ï)

�
≥

qX
i≥1

Gi

ï � xi
.

The numbers xi are real and the matrices Gi are positive semidefinite, i ≥ 1, . . . , q.

The comparison between Theorem 1 and its scalar version points out the existence
of important divergences created by the matrix structure. We devote the third section of
this paper to study one of these divergences: in the scalar case, the points of the support
of the extremal measures support the maximum mass in V2n�2; indeed, if ñ 2 V2n�2 is
extremal in Vn�1, it is well-known (see for example [A, p. 61]) that if xi 2 supp(ñ), then

ñ(fxig) ≥
1Pn�1

k≥0 p2
k(xi)
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710 A. J. DURAN AND P. LOPEZ-RODRIGUEZ

and ñ(fxig) ½ ó(fxig), for any ó 2 V2n�2.
This property is not true in the matrix case. Indeed, the matrices in V2n�2 extremal

in Vn�1 may not support the maximum mass in V2n�2. This happens exactly when the
mass is a non-singular matrix, in which case the polynomial Pn(ï) � APn�1(ï) has a
zero of maximum multiplicity at the corresponding point xi. In that case A is given by
A ≥ Pn(xi)P�1

n�1(xi) (see Theorem 3.1).

2. The structure Theorem. We prove here Theorem 1. Before beginning on the
proof we need some formulae and preliminary results.

LEMMA 2.1. (1) The Christoffel-Darboux formula

(2. 1) PŁn�1(u)AnPn(v) � PŁn(u)AŁnPn�1(v) ≥ (v � u)
n�1X
k≥0

PŁk(u)Pk(v), u, v 2 C,

(2) with its particular case

(2. 2) PŁn�1(z)AnP0n(z) � PŁn(z)AŁnP0n�1(z) ≥
n�1X
k≥0

PŁk(z)Pk(z), z 2 C.

(3) The Green formula

(2. 3) PŁn�1(u)AnQn(v) � PŁn(u)AŁnQn�1(v) ≥ I + (v � u)
n�1X
k≥0

PŁk(u)Qk(v), u, v 2 C.

(4) If A is a N ð N matrix such that AnA ≥ AŁAŁn, and ï 2 C is not a zero of
det

�
Pn(ï) � APn�1(ï)

�
then

�
QŁ

n(ï) �QŁ

n�1(ï)AŁ
��

PŁn(ï) � PŁn�1(ï)AŁ
��1

≥
�
Pn(ï) � APn�1(ï)

��1�
Qn(ï) � AQn�1(ï)

�
.

In particular, if ï 2 R is not a zero of det
�
Pn(ï) � APn�1(ï)

�
then the matrix�

Pn(ï) � APn�1(ï)
��1�

Qn(ï) � AQn�1(ï)
�

is hermitian.
(5) If ñ0 is an extremal matrix of measures of the set Vn�1, then ñ0 has at most nN2

points in its support.

PROOF. (1), (2) and (3) can be found in Lemma 2.1 of [D2].
(4) can be proved as the Step 1 of [D2, Theorem 3.1].
(5) This result is taken from [K]. Taking into account this article is written in

Ukrainian, we include here the translation of the proof, to make this paper more com-
plete. We seize the opportunity to express Professor Alexander Aptekarev our gratitude
for his assistance to translate this result.

Suppose on the contrary that ñ0 has a number of points in its support bigger than or
equal to nN2 +1. Then it is possible to choose nN2 +1 disjoint intervals ∆0, . . . , ∆nN2 such
that ñ0(∆i) Â≥ í, for 0 � i � nN2. Let’s call

∆nN2+1 ≥ R
/ nN2[

i≥1
∆i.

https://doi.org/10.4153/CJM-1997-034-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-034-5


DENSITY QUESTIONS 711

Since ∆0 � ∆nN2+1 we have that ñ0(∆nN2+1) Â≥ í.
Given a vector (a1, . . . , anN2+1) in RnN2+1 with ai ½ 0 for 1 � i � nN2 +1, it is possible

to define a matrix of measures ó by

ó(A) ≥
nN2+1X

i≥1
aiñ0(A \ ∆i).

Let’s call Wn�1 the set of vectors (a1, . . . , anN2+1) inRnN2+1 with non-negative coordinates
for which the corresponding matrix of measures ó belongs to Vn�1.

We then have that the matrix of measures associated to the vector (1, . . . , 1) is ñ0 and
since this matrix of measures is extremal in Vn�1 we have that (1, . . . , 1) is extremal in
Wn�1.

The set Wn�1 is characterized by the equations

(2. 4)
(

ai ½ 0, for 1 � i � nN2 + 1PnN2+1
i≥1 ai

R
∆i

tk dñ0(t) ≥ Sk, for 0 � k � n � 1,

which determine a system of nN2 equations in the nN2+1 unknowns ai. Thus it is possible
to choose a solution (h1, . . . , hnN2+1) for the homogeneous system (that is, replacing Sk

by í) such that jhij Ú 1 for 1 � i � nN2 + 1.
Defining H+ ≥ (1 + h1, . . . , 1 + hnN2+1) and H� ≥ (1 � h1, . . . , 1 � hnN2+1), it is clear

that H+ and H� satisfy (2.4), and so does H ≥ 1
2 (H+ + H�), so H is not extremal in Wn�1,

which is a contradiction.
We are now ready to proceed with the proof of Theorem 1:

PROOF OF THEOREM 1. (1) ) (2) If ñ is extremal in Vn�1, from Lemma 2.1(5)
follows that ñ is discrete and then of the form

ñ ≥
qX

i≥1
Giéxi

where q is certain natural number, xi are real numbers and Gi are positive semidefinite
numerical matrices.

If the polynomials up to degree n � 1 are not dense in the space L2(ñ) then by the
Hahn-Banach Theorem there exists a non zero operator Λ acting on L2(ñ) such that it
vanishes on any polynomial of degree lower than n. By the duality Theorem we can
represent this operator with a unique function g ≥

Pq
i≥1 Aiéxi in L2(ñ). For any function

f in L2(ñ) the operator Λ is defined by

Λ(f ) ≥
Z
R
ú
�
f (t) dñ(t)gŁ(t)

�
≥

qX
i≥1
ú
�
f (xi)GiA

Ł

i

�
.

Since Λ(p) ≥ 0 for any polynomial p up to degree n� 1 we have that the not necessarily
positive definite matrix of measures

ñ0 ≥
qX

i≥1
GiA

Ł

i éxi
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712 A. J. DURAN AND P. LOPEZ-RODRIGUEZ

has null moments up to degree n � 1.
By considering

ñH
0 ≥

qX
i≥1

(GiA
Ł

i + AiGi)éxi ≥
qX

i≥1
Hiéxi

we obtain a hermitian matrix of measures with null moments up to degree n � 1. Let’s
put ai for the smallest non zero eigenvalue of the matrix Gi (we recall that Gi are positive
semidefinite) and choose a positive number C such that

1
C

max
1�i�q

kHik2 Ú min
1�i�q

ai.

We decompose the matrix of measures ñ in the following way

ñ ≥
1
2

�
ñ +

1
C
ñH

0

�
+

1
2

�
ñ �

1
C
ñH

0

�
,

and we next prove that the matrices of measures ñš 1
Cñ

H
0 are positive definite, for which

it is enough to prove that the numerical matrices Gi š
1
C Hi are positive semidefinite. For

it, if v is a vector in CN and belongs to Ker Gi, then

v
�

Gi š
1
C

Hi

�
vŁ ≥ v

�
Gi š

1
C

(GiA
Ł

i + AiGi)
�

vŁ ≥ 0

and if v is orthogonal to Ker Gi then

v
�

Gi š
1
C

Hi

�
vŁ ≥ vGiv

Ł š
1
C

vHiv
Ł

½ kvk2ai �
1
C
kHik kvk2

½

�
min

1�i�q
ai �

1
C

max
1�i�q

kHik

�
kvk2 Ù 0.

Hence we conclude that the matrix of measures ñ can not be extremal in Vn�1, which is
a contradiction.

(2)) (1) Suppose now that the polynomials up to degree n�1 are dense in L2(ñ) and
also that ñ is not extremal in the set Vn�1, that is ñ can be written as ñ ≥ ãñ1 +(1�ã)ñ2,
for certain 0 Ú ã Ú 1 and ñ1 and ñ2 being two different matrices of measures in Vn�1.
We then define the operators T and T1 on L2(ñ) by:

T(f ) ≥
Z
R
ú(f dñI) and T1(f ) ≥

Z
R
ú(f dñ1I).

Both are clearly linear and T is continuous because I belongs to L2(ñ). For T1 we have:
þþþþZ
R
ú(f dñ1I)

þþþþ ≥ 1
ã

þþþþZ
R
ú

�
f d
�
ñ � (1 � ã)ñ2

�
I
�þþþþ

�
1
ã

 Z
R
ú

�
f d
�
ñ � (1 � ã)ñ2

�
f Ł
�! 1

2
 Z

R
ú

�
I d
�
ñ � (1 � ã)ñ2

�
I
�! 1

2

�
1
ã

�Z
R
ú(f dñf Ł)

� 1
2
�Z

R
dúñ

� 1
2
,
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DENSITY QUESTIONS 713

so if we take c ≥ 1
ã

(
R
R dúñ)

1
2 we have jT1(f )j � ckfk2,ñ, that is T1 is a continuous

operator. We define now U ≥ T � T1, U is a linear and continuous operator defined on
L2(ñ), U is not the zero operator but vanishes on any polynomial up to degree n� 1, so
we conclude that the polynomials up to degree n� 1 are not dense in the space L2(ñ).

REMARK. Observe that the proof given for (2) ) (1) also works for a non-truncated
matrix moment problem. In that case, if ñ is a solution of the moment problem and the
polynomials are dense in the space L2(ñ), then ñ is extremal in the set of solutions of
that matrix moment problem.

To prove (3) ) (2) we need the following lemma:

LEMMA 2.2. (1) Ifñ ≥ M(t) dúñ is a positive definite matrix of measuresand (Pk)1k≥0

is a sequence of associated orthonormal matrix polynomials, with dgr(Pk) ≥ k and with
non-singular leading coefficient, then for any f in L2(ñ) and for any n natural, the best
approximation of f in L2(ñ) by a polynomial of degree at most n is the given by the
Fourier series

nX
k≥0

(f , Pk)Pk

where
(f , Pk) ≥

Z
R

f (t)M(t)PŁk (t) dúñ(t).

(2) For a given positive definite matrix of measures of the form

ñ ≥
qX

i≥1
Giéxi

where q is a natural number, xi are real numbers and Gi are positive semidefinite numer-
ical matrices, the following statements are equivalent:

(a) CNðN
n�1 [x] ≥ L2(ñ).

(b)
Pq

i≥1 rank(Gi) ≥ nN.

PROOF. (1) It is enough to proceed as in the scalar case.
(2) For a matrix of measures like this (discrete and with finite support), it is clear that

any function f in L2(ñ) can be represented as

f ≥
qX

i≥1
Fiéxi

where Fi are numerical matrices and xi are the points in the support of ñ. We identify f
with í if and only if FiGi ≥ í, for i ≥ 1, . . . , q. Since dim

�
Im(F ! GiF)

�
≥ N rank(Gi)

it is not difficult to find

(2. 5) dim
�
L2(ñ)

�
≥

qX
i≥1

N rank(Gi) ≥ N
qX

i≥1
rank(Gi).

(a) ) (b) If CNðN
n�1 [x] is dense in L2(ñ), we can represent any function f in L2(ñ) in

the form

f ≥
n�1X
k≥0

AkPk(t)
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Ak being N ð N numerical matrices; if

n�1X
k≥0

AkPk(t) ≥
n�1X
k≥0

A0kPk(t),

it is enough to use the orthonormality of P0, . . . , Pn�1 to obtain that Ak ≥ A0k, for k ≥

0, . . . , n � 1. This way, ranging the matrices Ak in MNðN(C) we obtain the whole space
L2(ñ) and hence we deduce

(2. 6) dim
�
L2(ñ)

�
≥ nN2.

Taking now into account (2.5) we have

qX
i≥1

rank(Gi) ≥ nN.

(b) ) (a) Given P, Q in CNðN
n�1 [x], P Â≥ Q, we can write

P ≥
n�1X
k≥0

AkPk, Q ≥
n�1X
k≥0

BkPk

with Bk Â≥ Ak for some k between 0 and n � 1, hence P Â≥ Q in L2(ñ). Since CNðN
n�1 [x] �

L2(ñ), we have dim
�
L2(ñ)

�
½ nN2.

Furthermore, from (2.5) we obtain

dim(L2(ñ)) ≥ N
� qX

i≥1
rank(Gi)

�
≥ nN2,

so CNðN
n�1 [x] ≥ L2(ñ), and hence the polynomials up to degree n�1 are dense in L2(ñ).

We return to the proof of the Theorem, proving (3) ) (2)
In [D2, Section 3] it is proved that for a sequence of orthonormal matrix polynomials

(Pn)n satisfying the three-term recurrence relation

tPn(t) ≥ An+1Pn+1(t) + BnPn(t) + AŁnPn�1(t),

if A is a N ð N matrix such that AnA ≥ AŁAŁn, then the simple fraction decomposition

(2. 7)
�
Pn(ï) � APn�1(ï)

��1
R(ï) ≥

mX
k≥1

Gn,k

ï � xn,k

is always possible, for R any matrix polynomial of degree lower than or equal to n � 1.
This is possible even though the zeros xn,k of det

�
Pn(ï) � APn�1(ï)

�
≥ 0 can have

multiplicity bigger than 1. Gn,k are certain numerical matrices explicitly given by:

Gn,k ≥
1�

det
�
Pn(t) � APn�1(t)

��(lk)
(xn,k)

Ð

�
Adj

�
Pn(t) � APn�1(t)

��(lk�1)
(xn,k)R(xn,k), k ≥ 1, . . . , m,
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where lk is the order of xn,k as a zero of the polynomial det
�
Pn(ï) � APn�1(ï)

�
. For the

particular case R(ï) ≥ Qn(ï) � AQn�1(ï), the matrices Gn,k (k ≥ 1, . . . , m) are positive
semidefinite and the rank of Gn,k coincides with the multiplicity of the zero xn,k.

In consequence,
Pq

i≥1 rank(Gi) ≥
Pq

i≥1 multiplicity (xi) ≥ nN. Now it is enough to
apply Lemma 2.2(2).

(2)) (3) Suppose nowñ 2 V2n�2, andCNðN
n�1 [x] is dense in L2(ñ). Since this condition

is equivalent to the extremality of ñ in Vn�1, from Lemma 2.1(5), we can express ñ ≥Pq
i≥1 Giéxi , with Gi positive semidefinite numerical matrices and xi real numbers we are

going to determine. We proceed in several steps.

STEP ONE. For 1 � i, j � q, the following formula holds

Gj

�
PŁn�1(xj)AnPn(xi) � PŁn(xj)A

Ł

nPn�1(xi)
�
Gi ≥ í.

From Lemma 2.2(2), and since by hypothesis CNðN
n [x] ≥ L2(ñ), for any function f in

L2(ñ) we have

f ≥
n�1X
k≥0

(f , Pk)Pk

in L2(ñ), where (f , Pk) is the Fourier coefficient of f associated to Pk. Taking into account
that we identify f with í if and only if FiGi ≥ í, for i ≥ 1, . . . , q, this is equivalent to

f (xi)Gi ≥
n�1X
k≥0

(f , Pk)Pk(xi)Gi, for 1 � i � q.

For ï 2 C n R, we call fï(t) ≥ I
t�ï . Since fï is bounded, fï 2 L2(ñ). We compute its

Fourier coefficients:

(fï , Pk) ≥
Z
R

I
t � ï

dñ(t)PŁk (t)

≥
Z
R

dñ(t)
PŁk(t) � PŁk(ï)

(t � ï)
+
Z
R

dñ(t)
t � ï

PŁk(ï)

≥ QŁ

k(ï) + °(ï)PŁk (ï),

where °(ï) is the Hilbert transform of fï, that is

°(ï) ≥
Z
R

dñ(t)
t � ï

≥
qX

i≥1

Gi

xi � ï
.

Then, for 1 � i � q and ï 2 C n R, we have

Gi

xi � ï
≥

n�1X
k≥0

�
QŁ

k (ï) + °(ï)PŁk (ï)
�
Pk(xi)Gi

≥
n�1X
k≥0

QŁ

k(ï)Pk(xi)Gi + °(ï)
n�1X
k≥0

PŁk(ï)Pk(xi)Gi,
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which gives

í ≥

�
�I + (xi � ï)

n�1X
k≥0

QŁ

k(ï)Pk(xi)
½
Gi + °(ï)

�
(xi � ï)

n�1X
k≥0

PŁk(ï)Pk(xi)
½
Gi

for 1 � i � q and ï 2 C n R.
By using the formulae (2.1) and (2.3) we obtain

(2. 8)
í ≥ [QŁ

n�1(ï)AnPn(xi) �QŁ

n(ï)AŁnPn�1(xi)]Gi

+ °(ï)[PŁn�1(ï)AnPn(xi) � PŁn(ï)AŁnPn�1(xi)]Gi

for 1 � i � q and ï 2 C n R.
Multiplying (2.8) by (xj �ï) and taking limit for ï tending to xj, for j Â≥ i, and taking

into account that °(ï) ≥
Pq

i≥1
Gi

xi�ï
we obtain

(2. 9) Gj

�
PŁn�1(xj)AnPn(xi) � PŁn(xj)AŁnPn�1(xi)

�
Gi ≥ í

for 1 � i, j � q, i Â≥ j.
Since PŁn�1(xi)AnPn(xi) � PŁn(xi)AŁnPn�1(xi) ≥ í (formula (2.1)), formula (2.9) holds

for every 1 � i, j � q.

STEP TWO. Definition of the matrix A.
To define the matrix A we need to prove that the sum of the images of the mappings

represented by the matrices Pn�1(xi)Gi, i ≥ 1, . . . , q, is all CN. To prove this it will
be enough to establish that the sum of the images of the mappings represented by the
matrices Pn�1(xi)GiPŁn�1(xi), i ≥ 1, . . . , q, is all CN.

Let Ai ≥ (vi,j)j≥1,...,ki be a basis of Im
�
Pn�1(xi)GiPŁn�1(xi)

�
. If the space spanned by

the elements of Ai (1 � i � q), that is, hA1, . . . , Aqi has dimension lower than N, then
there exists a non zero vector v orthogonal to hA1, . . . , Aqi. For this vector v and for any
i we can write

Pn�1(xi)GiP
Ł

n�1(xi)v ≥
kiX

j≥1
ãi,jvi,j,

where ãi,j are complex numbers. Taking now into account that v is orthogonal to Ai we
have

vŁPn�1(xi)GiP
Ł

n�1(xi)v ≥
kiX

j≥1
ãi,jv

Łvi,j ≥ 0.

Since

(2. 10)
qX

i≥1
Pn�1(xi)GiP

Ł

n�1(xi) ≥
Z
R

Pn�1(t) dñ(t)PŁn�1(t) ≥ I,

summing in the former equality for i we get vŁv ≥ 0, which implies v ≥ 0, which is a
contradiction.

We are now ready to define the matrix A.
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A is the matrix representing a linear mapping A:CN ! CN we define as follows: for
a vector v in CN, we can write v ≥

Pq
i≥1 Pn�1(xi)Givi, where vi are certain vectors in CN.

Then we put Av ≥
Pq

i≥1 Pn(xi)Givi.
Let’s see now that A is well defined. Suppose that v admits the two representations

v ≥
qX

i≥1
Pn�1(xi)Giwi ≥

qX
i≥1

Pn�1(xi)Gizi,

where wi and zi are vectors in CN. We have to prove that

qX
i≥1

Pn(xi)Giwi ≥
qX

i≥1
Pn(xi)Gizi.

By multiplying in (2.9) to the right by wi and summing for i we get

(2. 11) GjP
Ł

n�1(xj)An

qX
i≥1

Pn(xi)Giwi �GjP
Ł

n(xj)A
Ł

nv ≥ í, for 1 � j � q.

By multiplying to the right by zi and summing for i we get

(2. 12) GjP
Ł

n�1(xj)An

qX
i≥1

Pn(xi)Gizi �GjP
Ł

n(xj)A
Ł

nv ≥ í, for 1 � j � q.

Subtracting (2.11) and (2.12) yields

(2. 13) GjP
Ł

n�1(xj)An

� qX
i≥1

Pn(xi)Giwi �
qX

i≥1
Pn(xi)Gizi

�
≥ í, for 1 � j � q.

Multiplying in (2.13) by Pn�1(xj) to the left and summing we get

� qX
j≥1

Pn�1(xj)GjP
Ł

n�1(xj)
�

An

� qX
i≥1

Pn(xi)Giwi �
qX

i≥1
Pn(xi)Gizi

�
≥ í.

Again taking into account (2.10) and that An is non-singular we deduce
Pq

i≥1 Pn(xi)Giwi

≥
Pq

i≥1 Pn(xi)Gizi and thus A is well defined.

STEP THREE. AnA ≥ AŁAŁn.
Given an arbitrary vector v in CN, we write it as v ≥

Pq
i≥1 Pn�1(xi)Givi, where vi are

vectors in CN. Multiplying in (2.9) to the right by vi and summing for i yields

Gj

�
PŁn�1(xj)AnA� PŁn(xj)AŁn

�
v ≥ í,

hence we deduce
GjP

Ł

n�1(xj)AnA� GjP
Ł

n(xj)AŁn ≥ í.

Multiplying now in this formula to the left by vŁj and summing yields

vŁAnA� vŁAŁAŁn ≥ í

for any vector v in CN, so we have AnA ≥ AŁAŁn.
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STEP FOUR. For ï 2 C n R,

°(ï) ≥ �
�
Pn(ï) � APn�1(ï)

��1�
Qn(ï) � AQn�1(ï)

�
.

We retake now formula (2.8):

í ≥ [QŁ

n�1(ï)AnPn(xi) �QŁ

n(ï)AŁnPn�1(xi)]Gi

+ °(ï)[PŁn�1(ï)AnPn(xi) � PŁn(ï)AŁnPn�1(xi)]Gi ,

for 1 � i � q. Let v 2 CN and write it as

v ≥
qX

i≥1
Pn�1(xi)Gi°i.

Then Av ≥
Pq

i≥1 Pn(xi)Gi°i. Multiplication by °i in the above formula (2.8) for each i
followed by summation over i yields

í ≥ [QŁ

n�1(ï)AnA�QŁ

n(ï)AŁn]v + °(ï)[PŁn�1(ï)AnA� PŁn(ï)AŁn]v

for every v in CN and every ï 2 C n R. Since An is non-singular we deduce

í ≥ [QŁ

n�1(ï)AnAAŁn
�1
�QŁ

n(ï)]AŁnv + °(ï)[PŁn�1(ï)AnAAŁn
�1
� PŁn(ï)]AŁnv

for every vector v in CN and ï 2 C n R. By using now AnA ≥ AŁAŁn we obtain

í ≥ [QŁ

n�1(ï)AŁ �QŁ

n(ï)] + °(ï)[PŁn�1(ï)AŁ � PŁn(ï)], ï 2 C n R

which gives

°(ï) ≥ �
�
QŁ

n(ï) � QŁ

n�1(ï)AŁ
��

PŁn(ï) � PŁn�1(ï)AŁ
��1

, ï 2 C n R

which by virtue of Lemma 2.1 is

°(ï) ≥ �
�
Pn(ï) � APn�1(ï)

��1�
Qn(ï) � AQn�1(ï)

�
, ï 2 C n R.

Taking into account °(ï) ≥
Pq

i≥1
Gi

xi�ï
and the simple fraction decomposition of�

Pn(ï) � APn�1(ï)
��1�

Qn(ï) � AQn�1(ï)
�
, the theorem is proved.

REMARK. Observe that in case the polynomials of degree less than or equal to n�1
are dense in L2(ñ), no closure operation is necessary, because in this case the space L2(ñ)
is of finite dimension.

3. The maximum mass Theorem. It is convenient to compare Theorem 1 with its
scalar version. The representation of the measures in V2n�2 extremal in Vn�1 in terms of
the polynomials pn�apn�1 is almost trivial in the scalar case, because it is possible to find
directly a ≥ pn(xi)

pn�1(xi)
. As we have seen, the matrix structure introduces some complications

which make the result harder to obtain, requiring new ideas.
These differences of structure between the matrix and scalar case create important

divergences as we are going to see next. Indeed, as we pointed out in the introduction, in
the scalar case, the points of the support of the extremal measures support the maximum
mass in V2n�2. This property is not true in the matrix case. The matrices in V2n�2 extremal
in Vn�1 may not support the maximum mass in V2n�2.
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THEOREM 3.1. If ñ 2 V2n�2 is a matrix of measures extremal in Vn�1, put

ñ ≥
qX

i≥1
Giéxi

where xi are the zeros of Pn(ï) � APn�1(ï), for certain A such that AnA ≥ AŁAŁn, then
the following conditions are equivalent:

(1) ñ reaches in xi0 the maximum mass which can be concentrated in V2n�2, more
concretely,

Gi0 ≥

�n�1X
k≥0

PŁk(xi0 )Pk(xi0 )
��1

.

(2) Gi0 is non-singular.
(3) Pn(ï) � APn�1(ï) has a zero of maximum multiplicity (N) in xi0 .
(4) Pn�1(xi0 ) is non-singular and A ≥ Pn(xi0 )P

�1
n�1(xi0 ).

PROOF. (1) ) (2) The maximum mass which can be concentrated for ñ 2 V2n�2 in
xi0 is �n�1X

k≥0
PŁk(xi0 )Pk(xi0 )

��1
,

because

n�1X
k≥0

PŁk(xi0 )Pk(xi0 ) ≥
Z
R

�n�1X
k≥0

PŁk(xi0 )Pk(t)
�

dñ(t)
�n�1X

k≥0
PŁk(xi0 )Pk(t)

�Ł

and hence

n�1X
k≥0

PŁk(xi0 )Pk(xi0 ) ½
�n�1X

k≥0
PŁk(xi0 )Pk(xi0 )

�
B
� n�1X

k≥0
PŁk(xi0 )Pk(xi0 )

�Ł

where we denote by B the mass of the matrix of measures in xi0 . We then have

n�1X
k≥0

PŁk(xi0 )Pk(xi0 )
��n�1X

k≥0
PŁk(xi0 )Pk(xi0 )

��1
� B

½ n�1X
k≥0

PŁk(xi0 )Pk(xi0 ) ½ 0

from which we deduce that
�n�1X

k≥0
PŁk(xi0 )Pk(xi0 )

��1
� B ½ 0.

This result is also contained in [Z].
So, if ñ supports the maximum mass which can be concentrated in xi0 , this is given

by

Gi0 ≥
�n�1X

k≥0
PŁk(xi0 )Pk(xi0 )

��1
,

which is a non-singular matrix since it is the inverse of an invertible matrix:

n�1X
k≥0

PŁk(xi0 )Pk(xi0 ) ½ PŁ0(xi0 )P0(xi0 ) ≥ I.
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(2) , (3) Since rank Gi0 , as mentioned earlier, is equal to the multiplicity of the zero
xi0 of Pn(ï)�APn�1(ï), we see that Gi0 is non-singular if and only if xi0 is of multiplicity
N.

(3) , (4) If Pn(ï)�APn�1(ï) has a zero of multiplicity N in xi0 , we deduce from the
Remark 2.3 of [DL1] that Pn(xi0 )�APn�1(xi0 ) ≥ í, and hence that Pn(xi0 ) ≥ APn�1(xi0 ).
If Pn�1(xi0 ) was singular we would have that xi0 would be a zero of Pn�1(ï) and Pn(ï),
and moreover Pn(xi0 ) and Pn�1(xi0 ) would have a common eigenvector associated to 0,
which is in contradiction with Theorem 1.1(2) of [DL1]. In consequence, Pn�1(xi0 ) is
non-singular and thus A ≥ Pn(xi0 )P

�1
n�1(xi0 ). On the other hand, if A ≥ Pn(xi0 )P

�1
n�1(xi0 ),

it is clear that Pn(ï) � APn�1(ï) has a zero of multiplicity N in xi0 .

(2) ) (1) Taking limit as ï ! xi in (2.8) we get

í ≥
�
QŁ

n�1(xi)AnPn(xi) �QŁ

n(xi)A
Ł

nPn�1(xi)
�
Gi

+
X
j Â≥i

Gj
1

xj � xi

�
PŁn�1(xi)AnPn(xi) � PŁn(xi)AŁnPn�1(xi)

�
Gi

+ lim
ï!xi

Gi
1

xi � ï

�
PŁn�1(ï)AnPn(xi) � PŁn(ï)AŁnPn�1(xi)

�
Gi.

From (2.3) in Lemma 2.1,

QŁ

n�1(xi)AnPn(xi) �QŁ

n(xi)AŁnPn�1(xi) ≥
�
PŁn(xi)AŁnQn�1(xi) � PŁn�1(xi)AnQn(xi)

�Ł
≥ �IŁ ≥ �I

and from (2.1) in Lemma 2.1,

PŁn�1(xi)AnPn(xi) � PŁn(xi)AŁnPn�1(xi) ≥ í

so that

�Gi ≥ Gi

 
lim
ï!xi

PŁn(ï)AŁnPn�1(xi)� PŁn�1(ï)AnPn(xi)
xi � ï

!
Gi.

Therefore

G�1
i ≥ � lim

ï!xi

PŁn(ï)AŁnPn�1(xi)� PŁn�1(ï)AnPn(xi)
xi � ï

,

since Gi was invertible by assumption.

Finally this gives

G�1
i ≥ � lim

ï!xi

ï � xi

xi � ï

n�1X
k≥0

PŁk(ï)Pk(xi) ≥
n�1X
k≥0

PŁk(xi)Pk(xi).
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