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Václav Šimerka: quadratic forms and factorization

F. Lemmermeyer

Abstract

In this article we show that the Czech mathematician Václav Šimerka discovered the factorization
of 1

9
(1017 − 1) using a method based on the class group of binary quadratic forms more than

120 years before Shanks and Schnorr developed similar algorithms. Šimerka also gave the first
examples of what later became known as Carmichael numbers.

Introduction

According to Dickson [6, I. p. 172], the number

N = 11111111111111111 =
1017 − 1

9
(1)

was first factored by Le Lasseur in 1886, and the result was published by Lucas in the same
year. Actually the factorization of N already appeared as a side result in a forgotten memoir
[22] published in 1858 by Václav Šimerka, in which he presented his ideas on composition
of positive definite forms, computation of class numbers, and the prime factorization of large
integers such as N .

In the following we denote the binary quadratic form Q(x, y) =Ax2 +Bxy + Cy2 by
(A, B, C); the discriminant ofQ is disc Q=B2 − 4AC. The form (A, B, C) is positive definite if
and only if A> 0 and ∆< 0, and primitive if gcd(A, B, C) = 1. We say that a form Q represents
an integer m if there exist integers x, y with Q(x, y) =m; it represents m primitively if x and
y can be chosen coprime. Two forms Q, Q′ are called equivalent if there exist integers a, b, c, d
with ad− bc= 1 and Q′(x, y) =Q(ax+ by, cx+ dy); it is easily seen that the discriminant is an
invariant of this action. If Q primitively represents m, then Q is equivalent to a form (m, B, C);
in particular, forms representing 1 are equivalent to the principal form Q0 = (1, h, m), with
h ∈ {0, 1} and m defined by ∆ = 4m+ h. Gauss has shown in his Disquisitiones Arithmeticae
that the equivalence classes of primitive forms with discriminant ∆ form a finite group with
respect to composition; this group with unit element [Q0] is called the class group of forms with
discriminant ∆. The order of the class group is called the class number and is denoted by h∆ or
simply by h. For a modern presentation of Gauss composition see Flath [9] and Bhargava [3].

Now consider the binary quadratic form

Q= (2, 1, 1388888888888889)

with discriminant ∆ =−N , where N is the number in (1). If we knew that the class number
h= 107019310 was (a multiple of) the order of [Q] in Cl(−N), then a simple calculation would
reveal that

Qh/2 ∼ (2071723, 2071723, 1341323520),

from which we could read off the factorization

N = 2071723 · 5363222357.

Received 15 May 2012; revised 9 December 2012.

2010 Mathematics Subject Classification 11Y05 (primary), 01A55 (secondary).

https://doi.org/10.1112/S1461157013000065 Published online by Cambridge University Press

http://www.lms.ac.uk/jcm
http://www.ams.org/mathscinet/msc/msc.html
https://doi.org/10.1112/S1461157013000065
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(The explanation for this fact is Gauss’s genus theory, which predicts that the ambiguous forms
(forms of order dividing 2 in the class group) are closely related to the factorizations of the
discriminant ∆.) This idea for factoring integers was later rediscovered by Daniel Shanks in
the 1970s; subsequent work on this idea led Shanks to introduce the notion of infrastructure,
which was given a ‘modern’ interpretation by Lenstra (see for example Schoof [19]), and has
played a major role in algorithmic number theory since then.

In [22], Šimerka explains Gauss’s theory of composition using the language from Legendre’s
Théorie des Nombres. The rest of his article [22] is dedicated to the calculation of the order of
(the equivalence class of) a quadratic form in the class group, and an application to factoring
integers.

In this article we will review Šimerka’s work and explain some of his calculations so that the
readers may convince themselves that [22] contains profound ideas and important results.

1. A short biography

Václav Šimerka (in his German publications, Šimerka used the germanized name Wenzel instead
of Václav) was born on 20 December 1819, in Hochwesseln (Vysokém Veseĺı). He studied
philosophy and theology in Königgrätz, was ordained in 1845 and worked as a chaplain in
Žlunice near Jič́ın. He started studying mathematics and physics in 1852 and became a teacher
at the gymnasium of Budweis. He did not get a permanent appointment there, and in 1862
became priest in Jenšovice, near Vusoké Mýto. Today, Šimerka is remembered for his textbook
on algebra (1863); its appendix contained an introduction to calculus and is the first Czech
textbook on calculus. Šimerka died in Praskačka near Königgrätz (Praskačce u Hradce Králové)
on 26 December 1887.

Šimerka’s contributions to the theory of factoring have not been noticed at all, and his
name does not occur in any history of number theory except Dickson’s: see [6, II, p. 196] for
a reference to Šimerka’s article [25], which deals with the diophantine problem of rational
triangles. In [6, III, p. 67], Dickson even refers to [22] in connection with the composition of
binary quadratic forms.

In [23], Šimerka gave a detailed presentation of a large part of Legendre’s work on sums of
three squares. In [26], Šimerka proved that 7 · 214 + 1 | F12 and 5 · 225 + 1 | F23 (these factors
had just been obtained by Pervouchin), where Fn denotes the nth Fermat number. In [27],
Šimerka listed the Carmichael numbers [28]

n= 561, 1105, 1729, 2465, 2821, 6601, 8911

long before Korselt [14] gave criteria hinting at their existence and Carmichael [4] gave what
was believed to be the first example. All of Šimerka’s examples are products of three prime
factors, and there are no others below 10 000.

I do not know where Šimerka acquired his knowledge of number theory. Šimerka was familiar
with Legendre’s ‘Essais de Théorie des Nombres’ and Gauss’s ‘Disquisitiones Arithmeticae’†,
as well as with publications by Scheffler [17] on diophantine analysis‡, by Dirichlet [7] and
Lipschitz [15] on the class number of forms with nonsquare discriminants, and by Arndt [1]
on a simple proof of the principal genus theorem. Since the articles by Lipschitz and Arndt

†Actually it seems to me that Šimerka did not work through the whole Disquisitiones; his articles suggest that
he learned composition from Gauss and then worked through Legendre’s Théorie des Nombres with Gauss’s
notion of composition. In fact Šimerka regularly claimed to have discovered the ‘periodicity’ of forms, which is
essentially a trivial consequence of the group structure provided by composition.
‡This is an interesting book, which contains not only the basic arithmetic of the integers up to quadratic

reciprocity, but also discusses topics such as continued fractions in Gaussian integers, which are explained using
geometric diagrams, and the quadratic reciprocity law in Z[i].
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appeared in 1857 and 1859, Šimerka must have had access to Crelle’s Journal while he was
teaching in Budweis.

Šimerka’s article [22] contains other ideas that we do not discuss here. In particular, in
[22, Article 12] he tries to get to grips with decompositions of noncyclic class groups into
‘periods’ (cyclic subgroups); in this connection he gives the example ∆ =−2184499 with class
group of type (5, 5, 11); as observed by Šimerka, this is a ‘remarkably rare case’. In fact,
the smallest discriminant with a noncyclic 5-class group is ∆ =−11199, and the minimal m
with ∆ =−4m and noncyclic 5-class group is m= 4486. In [22, Article 18], Šimerka solves
diophantine equations of the form pzm = ax2 + bxy + cy2.

For more on Šimerka, see [5, 13, 16].

2. The Šimerka map

Let us now present Šimerka’s ideas from [22] in a modern form. At the end of this section,
we will explain Šimerka’s language. Let Q be a positive definite binary quadratic form with
discriminant ∆. If Q primitively represents a (necessarily positive) integer a, then Q is
equivalent to a unique form (a, B, C) with −a < B 6 a. Let

a= pa1
1 . . . par

r

denote the prime factorization of a. For each prime pj | a, fix an integer −pj < bj 6 pj with
B ≡ bj mod pj and set

sj =

{
+1 if bj > 0,
−1 if bj < 0.

Thus if a=Q(x, y), then we can define

š(Q, a) =
∏

p
sjaj

j .

Example. The principal form Q0 = (1, 0, 5) with discriminant −20 represents the following
values.

a 1 5 6 9 14 21 21

Q (1, 0, 5) (5, 0, 1) (6, 2, 1) (9, 4, 1) (14, 6, 1) (21, 8, 1) (21, 20, 5)

š(a, Q0) 1 5 2 · 3 32 2 · 7 3 · 7 3−1 · 7

Forms equivalent to Q= (2, 2, 3) give us the following values.

a 2 3 7 87 87

Q (2, 2, 3) (3,−2, 2) (7, 6, 2) (87, 26, 2) (87, 32, 3)

š(a, Q0) 2 3−1 7 3 · 29 3 · 29−1

The ideal theoretic interpretation of the Šimerka map is the following: there is a
correspondence between binary quadratic forms Q with discriminant ∆< 0 and ideals a(Q) in a
suitable order of the quadratic number field Q(

√
∆). Equivalent forms correspond to equivalent

ideals, and integers a represented by Q, say Q(x, y) = a, correspond to norms of elements αa(Q)
via a=Nα/Na(Q). Integers represented primitively by Q are characterized by the fact that
α ∈ a(Q) is not divisible by a rational prime number. If we fix prime ideals pj = a(Qj) by a(Qj)
for Qj = (pj , Bj , C), with 0 6Bj 6 pj , and formally set p−1

j = a(Q′j), with Q′j = (pj ,−Bj , C),
then š(a, Q) = pa1

1 . . . par
r is equivalent to (α) = pa1

1 . . . par
r a(Q).

Assume that a= p1 . . . pr, and that Q= (a, B, C). Then Dirichlet composition shows that

(a, B, C) = (p1, B, p2 . . . prC) · (p2, B, p1p3 . . . prC) . . . (pr, B, p1 . . . pr−1C).
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If we write bj ≡B mod 2pj with −pj < bj 6 pj , then

š(a, Q) = š(p1, Q1) . . . š(pr, Qr)

by definition of š.
We start by showing that the value set of š is closed with respect to inversion. To this end

we use the notation (A, B, C)−1 = (A,−B, C). Then it follows right from the definition of š
that if š(a, Q) = r, then š(a, Q−1) = r−1.

Now we make the following claim.

Lemma 2.1. Let ∆ be a fundamental discriminant. Assume that Q1(x1, y1) = a1 and
Q2(x2, y2) = a2, and that Q3 ∼Q1Q2. Then there exist integers a3, x3, y3 such that
Q3(x3, y3) = a3 and š(a3, Q3) = š(a1, Q1) · š(a2, Q2).

Proof. Writing Q1 = (a1, B1, C1) = (p1, B1, a1C1/p1) . . . (pr, B1, a1C1/pr) and Q2 = (a2,
B2, C2) = (q1, B2, a2C2/q1) . . . (qs, B2, a2C2/qs), where a1 = p1 . . . pr and a2 = q1 . . . qs are
the prime factorizations of a1 and a2, we see that it is sufficient to prove the result for prime
values of a1 and a2. There are several cases.

(1) The case where Q1 = (p, b1, c1), Q2 = (q, b2, c2) with p 6= q: for composing these forms
using Dirichlet’s method, we choose an integer b satisfying the congruences

b≡ b1 mod 2p and b≡ b2 mod 2q.

Then Q1 ∼ (p, b, qc′) and Q2 ∼ (q, b, pc′), and we find Q1Q2 = (pq, b, c′) as well as
š(pq, Q1Q2) = š(p, Q1) š(q, Q2) by the definition of š.

(2) The case where Q1 = (p, b1, c1), Q2 = (p,−b1, c1) =Q−1: here Dirichlet composition
shows Q1Q2 = (1, b1, pc1)∼Q0, and since š(Q2) = š(Q1)−1 we also have 1 = š(1,
Q1Q2) = š(p, Q1) š(p, Q2).

(3) The case where Q1 = (p, b1, c1) =Q2: if p - ∆, then p - b1, and we can easily find an
integer b≡ b1 mod 2p with b2 ≡∆ mod 2p2

1. But then Q1 ∼ (p, b, pc′) and, by Dirichlet
composition, Q2

1 = (p2, b, c′). As before, the definition of š immediately shows that
š(p2, Q2

1) = š(p, Q1)2.
If p |∆ and p is odd, on the other hand, then p | b1. Since ∆ is fundamental, the form
Q1 is ambiguous, hence Q2

1 ∼Q0. Since š(Q1) = 1, the multiplicativity is clear.
This completes the proof. 2

Proposition 2.2. Let Q0 denote the principal form with discriminant ∆< 0. Then the
elements š(a, Q0) form a subgroup R of Q×.

Proof. It remains to show that if Q represents a and b, then it represents ab in such a way
that š(ab, Q0) = š(a, Q0) š(b, Q0). Again we can reduce this to the case of prime values of a
and b, and in this case the claim follows from the proof of Lemma 2.1. 2

Proposition 2.3. Assume that a is represented properly by Q, and that a′ is represented
properly by Q′. If Q∼Q′, then

š(a, Q)≡ š(a′, Q′) mod R.

Proof. Since equivalent forms represent the same integers it is sufficient to show that if a
form Q properly represents numbers a and b, then š(a, Q)≡ š(b, Q) mod R.

Assume that Q= (A, B, C), and set š(a, Q) = r and š(b, Q) = s. If a and b are coprime, then
š(ab, Q0) = r · s−1 ∈R, where Q0 is the composition of Q and Q−1. This implies the claim.

If a and b have a factor in common, then there is an integer c such that n= ab/c2 is
represented by Q0 in such a way that š(n, Q0) = r · s−1 ∈R, and the claim follows as above. 2
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These propositions show that š induces a homomorphism

š : Cl(∆)−→Q×/R

from the class group Cl(∆) to Q×/R, which we will also denote by š, and which will be called
the Šimerka map.

Theorem 2.4. Let ∆< 0 be a fundamental discriminant. Then the Šimerka map is an
injective homomorphism of abelian groups.

Proof. We have to show that š is injective. To this end, let [Q] denote a class with a= š(Q) ∈
R. Then there is a form Q′0 = (A, B, C)∼Q0 with š(A, Q0) = a. But then Q1 =Q · (A,−B, C)
is a form equivalent to Q with š(Q1) = 1. This in turn implies that Q1 represents 1, hence is
equivalent to the principal form by the classical theory of binary quadratic forms. 2

Šimerka’s idea is to use a set of small prime numbers S = {p1, . . . , pr} which are smaller
than

√
−∆/3 (and a subset of these if |∆| is large), find integers aj primitively represented by

Q whose prime factors are all in S, and use linear combinations to find a relation in R, which
gives him an integer h such that Qh ∼ 1. It is then easy to determine the exact order of Q.

Šimerka’s language. Šimerka denotes binary quadratic forms Ax2 +Bxy + Cy2 by (A, B, C)
and considers forms with even as well as odd middle coefficients. The principal form with
discriminant ∆ is called an end form† (Endform, Schlussform), and ambiguous‡ forms are
called middle forms (Mittelformen).

The subgroup generated by a form Q is called its period, the exponent of a form Q in the
class group is called the length of its period. Šimerka represents a form f = (A, B, C) by a
small prime number p represented by f ; the powers f1 = f , f2, f3 of f then represent p, p2,
p3 and so on, and the exponent m of the mth power fm is called the pointer (Zeiger§) of f .
What we denote by š(Qm)≡ a mod R, Šimerka wrote as fm= a.

Šimerka introduced this notation in [22, Article 10]; instead of š(Q) = 2 for Q= (2, 0, C) he
simply wrote (2, 0, C) = 2. He explained the general case as follows:

So ist z.B. (180, −17, 193) = 32×5
22 weil 180 = 22 × 32 × 5 und −17 ≡ −1 (mod 4), −17 ≡

1 (mod 6), −17 ≡ 3 (mod 10)¶.

One of the tricks he used over and over again is the following:

(A, B, C)∼ (A, B ± 2A, A±B + C)∼ (A±B + C,−B ∓ 2A, A) (2)

shows that if Q= (A, B, C) represents an integer m=Q(1,−1) =A±B + C, then š(Q) can
be computed from Q∼ (m,∓2A−B, A). Similarly, we have

(A, B, C)∼ (A±B + C, B ± 2C, C).

†Computing the powers of a form Q, one finds Q, Q2, . . . , Qh ∼ Q0 before everything repeats. The last form

in such a ‘period’ of reduced forms is thus always the principal form.
‡The word ambiguous was coined by Poullet-Deslisle in the French translation of Gauss’s Disquisitiones

Arithmeticae; it became popular after Kummer had used it in his work on higher reciprocity laws. Šimerka

knew Legendre’s ‘diviseurs quadratiques bifides’ as well as Gauss’s ‘forma anceps’.
§This word is apparently borrowed from the book [8] on combinatorial analysis by Andreas von Ettinghausen,

professor of mathematics at the University of Vienna. Ettinghausen used the word ‘Zeiger’ (see [8, p. 2]) as the
German translation of the Latin word ‘index’. Šimerka refers to [8] in [22, p. 55].
¶Thus we have, for example, (180, −17, 193) = 32×5

22 because 180 = 22 × 32 × 5 and −17 ≡ −1 (mod 4),
−17 ≡ 1 (mod 6), −17 ≡ 3 (mod 10).
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3. Šimerka’s calculations

In this section we will reconstruct a few of Šimerka’s calculations of (factors of) class numbers
and factorizations.

When ∆ =−10079. Šimerka first considers a simple example (see [22, p. 58]): he picks a
discriminant ∆ for which ∆− 1 is divisible by 2, 3, 5 and 7 (which allows him to use a small
‘factor base’), namely ∆ =−10079. Consider the form Q= (5, 1, 504) with discriminant ∆. The
small powers of Q provide us with the following factorizations.

n Qn š(Qn)

1 ∼(504,−1, 5) 2−3 · 3−2 · 7−1

3 (36, 17, 72) 22 · 3−2

∼(72,−17, 36) 2−3 · 32

This implies

š(Q6)≡ š(Q3) š(Q3)≡ 22 · 3−2 · 2−3 · 32 ≡ 2−1,

š(Q15)≡ š(Q3)3 š(Q3)2 ≡ 26 · 3−6 · 2−6 · 34 ≡ 3−2,

š(Q32)≡ š(Q−1) š(Q−3) š(Q6)6 ≡ 7.

Now 7 = š(R) for R= (7, 1, 360): this is easily deduced from ∆≡ 1≡ 12 mod 7. From R2 ∼
(49,−41, 60) Šimerka reads off š(Q64)≡ 22 · 3−1 · 5. But then š(Q63)≡ 22 · 3−1 and therefore

š(Q75)≡ š(Q63) · š(Q6)2 ≡ 22 · 3−1 · 2−2 ≡ 3 mod R.

This implies š(Q150)≡ š(Q15) and therefore š(Q135)≡ 1 mod R. Since neither Q45 nor Q27 are
principal, the class of Q has order 135.

For showing that h(∆) = 135, Šimerka would have to determine the pointers of all primes
p <

√
−∆/3≈ 100.3. The fact that h is odd would then also show that ∆ is a prime number.

When ∆ =−121271. For larger discriminants, Šimerka suggests the following method.
Bei grossen Determinanten, oder wo die vorige Methode nicht zum Ziele führt, nimmt
man die Zeiger einiger kleiner Primzahlen als unbekannt an, scheidet dann jene Grössen
aus den Producten der Bestimmungsgleichungen aus, und sucht die anderen Primzahlen
in Bestimmungsgleichungen durch jene unbekannten Zeiger darzustellen†.

Šimerka chooses the discriminant ∆ =−121271; in the course of the calculation it becomes
clear that ∆ = 992 − 217, and quite likely the discriminant was constructed in this way. This is
supported by Šimerka’s remark on [22, p. 64] that if D = am − b2 is a (positive) determinant
and if a is odd, then the exponent of the form (a, 2b, am−1) is divisible by m, as can be seen
from the ‘period’

(a, 2b, am−1), (a2, 2b, am−2), . . . , (am, 2b, 1).

Observe that this statement only holds under the additional assumption that these forms
be reduced, that is, that 0< 2b6 a. Examples are D = 33 − 1 = 26 and h(−4 · 26) = 6, or
D = 35 − 4 = 239 and h(−4 · 239) = 15. A similar observation was made by Joubert [12] just
a few years after Šimerka. The connection between classes of order n and solutions of the
diophantine equation am −Dc2 = b2 was investigated recently in [10].

Let us write Q2 = (2, 1, 15159) and Q3 = (3, 1, 10106). Then Q2
2 ∼ (4, 5, 7581) and š(Q2

2)≡
3 · 7−1 · 19−2. Since š(Q3)≡ 3, we find š(Q−2

2 Q3)≡ 7 · 19.
Also, Q3

2 ∼ (8, 13, 3795) gives š(Q3
2)≡ 3−1 · 5 · 11−1 · 23 and š(Q3

2Q3)≡ 5 · 11−1 · 23.

†For large determinants, or in cases where the preceding method is not successful, we take the pointers of
some small primes as unknowns, eliminate those numbers from the products of the determination equations,
and seek to represent these unknown pointers by the other primes in these determination equations.
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We can summarize Šimerka’s calculations as follows.

n Qn
2 ∼ š(Qn

2 ) mod R
2 (4, 5, 7581)

(7581,−5, 4) 3 · 7−1 · 19−2

3 (8, 13, 3795)

(3795,−13, 8) 3−1 · 5 · 11−1 · 23

4 (16, 29, 1908)

(1953,−61, 16) 3−2 · 7−1 · 31

5 (32, 29, 954)

(957, 35, 32) 3−1 · 11 · 29

(1015,−93, 32) 5−1 · 7 · 29

n Qn
2 ∼ š(Qn

2 ) mod R
6 (64, 29, 477)

(477,−29, 64) 32 · 53

(675, 227, 64) 3−3 · 5−2

7 (128, 157, 285)

(285,−157, 128) 3−1 · 5 · 19−1

(483, 355, 128) 3−1 · 7 · 23−1

Note that if š(Qn
2 )≡ 2−1u for some odd number u, then š(Qn+1

2 )≡ u. Thus š(Q4
2)≡

2−2 · 32 · 53 implies š(Q6
2)≡ 32 · 53, and in such cases we have listed only the relation that

does not involve a power of 2.
The computation of Q7

2 reveals ∆ = 992 − 217, and shows that š(Q7
2)≡ 2−8, which gives

š(Q15
2 )≡ 1.

Now Šimerka continues as follows: the relations

š(Q2
2)≡ 3 · 7−1 · 19−2 and š(Q7

2)≡ 3−1 · 5 · 19−1

give
š(Q12

2 )≡ š((Q7
2)2Q−2

2 )≡ 3−2 · 52 · 19−2 · 3−1 · 7 · 192 = 3−3 · 52 · 7.

Using the relations
š(Q12

2 Q
3
3)≡ 52 · 7 and š(Q6

2Q
3
3)≡ 5−2,

Šimerka deduces
š(Q3

2Q
6
3)≡ š(Q18

2 Q
6
3)≡ 7. (3)

This allows him to eliminate the sevens from his relations, which gives

š(Q−4
2 Q7

3)≡ š(Q−7
2 ) š(Q3) š(Q3

2Q
6
3)≡ 23,

š(Q7
2Q

8
3)≡ š(Q4

2) š(Q2
3) š(Q3

2Q
6
3)≡ 31.

For the actual computation of the order of Q3, only the relation (3) will be needed.
Šimerka also investigates the powers of Q3 and finds the following.

n Qn
3 ∼ š(Qn

3 ) mod R
1 (3, 1, 10106)

(10108, 2, 3) 22 · 7 · 192

3 (27, 43, 1140)
(1210,−97, 27) 2−1 · 5 · 11−2

(1162, 65, 27) 2 · 7−1 · 83

4 (81, 43, 380)

(380,−43, 81) 22 · 5−1 · 19−1

(418, 119, 81) 2−1 · 11 · 19

n Qn
3 ∼ š(Qn

3 ) mod R
5 (243, 205, 168)

(616, 541, 168) 23 · 7−1 · 11−1

6 (729, 205, 56)

(56,−205, 729) 2−3 · 7
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Šimerka observes
š(Q2

2Q
9
3)≡ š(Q3

3) š(Q−1
2 ) š(Q3

2Q
6
3)≡ 83,

but does not use this relation in the following. He continues with

š(Q2Q
4
3)≡ 11 · 19, š(Q3

2Q
−5
3 )≡ 7 · 11,

from which he derives the following relations:

š(Q−11
3 ) ≡ š(Q3

2Q
−5
3 ) š(Q−3

2 Q−6
3 )≡ 11, š(Q2Q

15
3 ) ≡ š(Q2Q

4
3) š(Q11

3 )≡ 19,
š(Q8

2Q
16
3 ) ≡ š(Q7

2) š(Q3) š(Q2Q
15
3 )≡ 5, š(Q22

2 Q
35
3 ) ≡ š(Q16

2 Q
32
3 ) š(Q6

2Q
3
3)≡ 1.

Raising the last relation to the 15th power yields š(Q525
3 )≡ 1. Checking that Q75

3 , Q105
3 and

Q175
3 are not principal then shows that Q3 has order h= 525 = 3 · 52 · 7. In fact, pari tells us

that this is the class number of ∆ =−121271.

4. Class number calculations

Let us remark first that Šimerka does not compute class numbers but rather the order of
a given form in the class group. Note that this is sufficient for factoring the discriminant.
Šimerka is well aware of the fact that his method only produces divisors of the class number: in
[22, Article 13], he writes the following.

Was die Länge θ anbelangt, sucht man fm= 1 zu erhalten, wo dann entweder θ =m
oder ein Theiler von m ist. Die wichtigsten Glieder der Perioden sind die zu kleinen
Primzahlen gehörigen Formen. Welches die grösste Primzahl wäre, deren Zeiger man
kennen müsse, um vor Irrthum sicher zu sein, konnte ich bis jetzt nicht ermitteln,
jedenfalls ist sie kleiner als

√
D/3 bei den unpaaren, und als 2

√
D/3 bei den paaren

Formen, wahrscheinlich aber reichen dazu nur wenige Primzahlen hin†.

In the example ∆ =−121271 above we have seen that the powers of Q2 only give a subgroup
of order 15 in the class group, whereas the powers of 3 include all forms representing the primes

p= 2, 3, 5, 7, 11, 19, 23, 29, 31, 53, 83.

For verifying that h(−121271) = 525, one would have to find the pointers for the other primes
p with (∆/p) = +1 and ∆< 202 as well, namely those of

p= 47, 61, 73, 79, 89, . . . , 197.

Since the pointers of all small primes are known, this is only a little additional work. The fact
that the class number is odd then implies that −∆ = 121271 is a prime.

When ∆ =−4 · 265371653. Consider the forms

Q3 = (3, 2, 88457218), Q11 = (11, 10, 24124698) and Q13 = (13, 10, 20413206).

Using a computer it is easily checked that Q3 ∼Q5
11Q

−3
13 , but this relation was apparently not

noticed by Šimerka. It would follow easily from

Q=Q5
11 = (6591,−6568, 41899), Q(0, 1) = 11 · 13 · 293,

Q=Q3
13 = (2197,−2174, 121326), Q(1,−1) = 3 · 11 · 13 · 293,

but perhaps the prime 293 was not an element of Šimerka’s factor base.

†As for the length θ of the period, one tries to find fm= 1, and then either θ =m, or θ is a divisor of m.
The most important members of the period are those belonging to small prime numbers. I have not yet found
what the smallest prime number is whose pointer must be known in order not to commit an error; in any case
it is smaller than

√
D/3 for odd forms, and than 2

√
D/3 for the even forms, but most likely just a few prime

numbers are sufficient.
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A computer also finds the following relations among the small powers of these three forms:

Q13
11Q

11
13 = (1058, 918, 251023); š(Q13

11Q
11
13) ≡ 2 · 23−2,

Q14
3 Q

12
11Q13 = (529,−140, 501657); š(Q14

3 Q
12
11Q13) ≡ 23−2.

Composition shows that

Q−14
3 Q11Q

10
13 ≡Q13

11Q
11
13Q

−14
3 Q−12

11 Q−1
13

= (1058, 918, 251023)(529, 140, 501657) = (2, 918, 132791167),

and squaring yields
Q−28

3 Q2
11Q

20
13 ∼Q0.

Similarly,

Q3
3Q

15
11Q

11
13 = (16389,−16010, 20102), š(Q3

3Q
15
11Q

11
13) ≡ 2 · 19 · 232,

Q12
3 Q

15
11Q

8
13 = (6859, 5028, 39611), š(Q12

3 Q
15
11Q

8
13) ≡ 193,

which implies

Q3
3Q

15
11Q

11
13 ·Q13

11Q
11
13 ∼ (19, 12, 13966931), š(Q3

3Q
28
11Q

22
13)≡ 19,

and so
1≡ š(Q3

3Q
28
11Q

22
13)3/ š(Q12

3 Q
15
11Q

8
13)≡ š(Q−3

3 Q69
11Q

58
13).

Eliminating Q3 ∼Q5
11Q

−3
13 from the relations

Q−28
3 Q2

11Q
20
13 ∼Q−3

3 Q69
11Q

58
13 ∼Q0

then implies
Q−138

11 Q104
13 ∼Q0 and Q54

11Q
67
13 ∼Q0,

hence
Q14862

11 ∼Q0.

It is then easily checked that Q3 and Q11 have exponent 14862 in the class group, whereas Q13

is a sixth power and has order 2477. A quick calculation with pari reveals that h(∆) = 14862.
Šimerka must have proceeded differently, as he records the relations

Q119
3 Q11

11Q
8
13 ∼Q0, Q1276

3 Q94
11Q

26
13 ∼Q0, Q385

3 Q31
11Q

4
13 ∼Q0.

It is not impossible that by playing around with small powers of Q3, Q11 and Q13, Šimerka’s
calculations can be reconstructed. It is more difficult to reconstruct Šimerka’s factorization
of N = 1

9 (1017 − 1), since he left no intermediate results at all (apparently he was forced to
shorten his manuscript drastically before publication).

Šimerka knew that it is often not necessary to determine the class number for factoring
integers; in [22, Article 17] he observed the following.

Bei Zahlenzerlegungen nach dieser Methode findet man oft f2a=m2, oder es lässt sich
aus den Bestimmungsgleichungen eine solche Form ableiten; dann hat man (f2a/m2) =
(fa/m)2 = 1, und es kann fa :m blos eine Schluss- oder Mittelform sein. Gewöhnlich
ist das letztere der Fall†.

To illustrate this idea we present an example that cannot be found in Šimerka’s article.
Let ∆ =−32137459 and consider the form Q= (5, 1, 1606873) with discriminant ∆. It is
quickly seen that Q26(1, 0) = 112. This observation immediately leads to a factorization

†In factorizations with this method one often finds fa=m2, or such a form can be derived from certain
determination equations; then we have (f2a/m2) = (fa/m)2 = 1, and fa :m can only be an end or a middle
form. Most often, the latter possibility occurs.
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of ∆: the form Q26 represents 112, hence Q13 represents 11, as does Q11 = (11, 3, 730397).
Thus (Q13R−1)2 represents 1, which implies that Q13R−1 is ambiguous (see [22, p. 36]).
In fact, Q13R−1 = (1511, 1511, 5695), which gives the factorization ∆ =−1511 · 21269.

5. Shanks

The factorization method based on the class group of binary quadratic forms was rediscovered
by Shanks [21], who, however, used a completely different method for computing the class
group: he estimated the class number h using truncated Dirichlet L-series and then found the
correct value of h with his baby step – giant step method. Attempts to speed up the algorithm
led, within just a few years, to Shanks’s discovery of the infrastructure and his square form
factorization method SQUFOF.

The factorization method described by Šimerka was rediscovered by Schnorr [18]; the Šimerka
map is defined in [18, Lemma 4] (see also [20, Theorem 3.1]), although in a slightly different
guise: a quadratic form Q= (a, b, c) is factored into ‘prime forms’ Ip = (p, bp, C), where B = bp
is the smallest positive solution of B2 ≡∆ mod 4p for ∆ =−N ≡ 1 mod 4. Thus the equation
corresponding to our

š(Q) =
n∏

i=1

p±ei
i looks like Q=

n∏
i=1

(Ip)±ei

in [20], ‘where the plus sign in the exponent ei holds if and only if b≡ bpi
mod 2pi’. Variations

of this method were later introduced by Mc Curley and Atkin.
The main difference between the methods of Šimerka and Schnorr is that Šimerka factors

the forms Qn
p for small prime numbers p and small exponents n, whereas Schnorr factors

products Qn1
1 . . . Qnr

r of forms Qj = (pj , ∗, ∗) for primes in his factor base and exponent vectors
(n1, . . . , nr) chosen at random.

The basic idea of combining relations, which is also used in factorization methods based
on continued fractions, quadratic sieves or the number field sieve, is not due to Šimerka but
rather occurs already in the work of Fermat and played a role in his challenge to the English
mathematicians, notably Wallis and Brouncker. In this challenge, Fermat explained that if one
adds to the cube 343 = 73 all its proper divisors, then the sum 1 + 7 + 72 + 73 = 400 = 202 is
a square, and asked for another cube with this property.

Fermat’s solution is best explained by studying a simpler problem first, namely that of
finding a number n with σ(n2) =m2, where σ(n) =

∑
d|n d is the sum of all divisors of a

number. Making a table of σ(p) for small prime powers p one observes that σ(24) = σ(52) = 31,
hence σ(202) = 312.

The solution† of Fermat’s challenge also exploits the multiplicativity of σ(n): with little effort
one prepares a table for the values of σ(p) for small primes p such as the following.

p σ(p3)
2 3 · 5
3 23 · 5
5 22 · 3 · 13
7 24 · 52

11 23 · 3 · 61

p σ(p3)
13 22 · 5 · 7 · 17
17 22 · 32 · 5 · 29
19 23 · 5 · 181
23 24 · 3 · 5 · 53
29 22 · 3 · 5 · 421

p σ(p3)
31 26 · 13 · 37
37 22 · 5 · 19 · 137
41 22 · 3 · 7 · 292

43 23 · 52 · 11 · 37
47 25 · 3 · 5 · 13 · 17

Then it is readily seen that n= 751530 = 2 · 3 · 5 · 13 · 41 · 47.

†Sufficiently many hints can be found in Frenicle’s letter in [29, XXXI], and in subsequent letters by Wallis
and Schooten. See also the detailed exposition given by Hofmann [11].
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Concluding remarks

Šimerka’s contributions to the theory of quadratic forms and the factorization of numbers
would have remained unknown if his articles could not be found online. In particular, his
memoirs [22, 23, 24] can be accessed via google books†, and the articles that appeared in the
journal Časopis are available on the website of the GDZ‡ in Göttingen. I would also like to
remark that a prerequisite for understanding the importance of [22] is a basic familiarity with
composition of binary quadratic forms.

Šimerka’s question in Section 4 concerning the number of primes p such that the forms
(p, B, C) generate the class group was answered under the assumption of the Extended
Riemann Hypothesis by Schoof [19, Corollary 6.2], who showed that the first c log2 |∆| prime
numbers suffice; Bach [2] showed that, for fundamental discriminants ∆, we can take c= 6.
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