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Abstract

Two new reverses of the celebrated Jensen’s inequality for convex functions in the general setting of
the Lebesgue integral, with applications to means, Holder’s inequality and f-divergence measures in
information theory, are given.
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1. Introduction

Let (Q, A, u) be a measurable space consisting of a set Q, a o-algebra A of parts
of Q and a countably additive and positive measure p on A with values in R U {co}.
For a u-measurable function w : Q — R, with w(x) > 0 for u-a.e. (almost every) x € Q,
consider the Lebesgue space

L, (Q, ) = {f :Q — R f is y-measurable and L w(xX)| f(x)] du(x) < oo}.

For simplicity of notation, we write everywhere in the following fQ w du instead of
Jo, W) du().

If f,g:Q — R are y-measurable functions, fQ wdu=1 and f, g, fg € L,(Q, p),
then we may consider the Cebysev functional

Tw(f’g):wagdﬂ—wadyngdu.

The following result is known in the literature as the Griiss inequality:

ITu(f, @)l < 3T = y)(A = 6),
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provided

—co<y< f(x)<T <00, —0<d<gx)<A<oo

for y-a.e. x € Q.
The constant i is sharp in the sense that it cannot be replaced by a smaller constant.

If we assume that —co <y < f(x) <T < oo for p-a.e. x€Q, then, by the Griiss
inequality for g = f and by Schwarz’s integral inequality,

fQW'f—fQWfdu‘dﬂS(Lszdu—(LWfd#)z)l/z STy

To provide a reverse of the celebrated Jensen’s integral inequality for convex
functions, in 2002, the author [12] obtained the following result.

THEOREM 1.1. Let @ : [m, M] CR — R be a differentiable convex function on (m, M)

and f: Q — [m, M] such that ® o f, f,®" o f, (D" o f) - f € L,(Q, i), where w >0 u-
a.e. on Q with fQ w du = 1. Then we have the inequality

OSLW((Dof)du—(D(wadu)

sfw(@'of)fdu—fw@'oﬁdufwfdu (1.2)
Q Q Q

1
< E(CD’(M) - @' (m)) f w‘f— f wf du|d,
Q Q

For a generalisation of the first inequality in (1.2) without the differentiability
assumption and the derivative @’ replaced with a selection ¢ from the subdifferential
0, see Niculescu [27].

fu@) <ocwand®o f, f,d o f, (@’ o f)- f e L(Q, u), then we have the inequality

1 1
0< ®o fd d
(Q)f( o f)du — (Q)ff u)

- duy — —— du - ——
Su(Q)fg( "7 (Q)f( PP (Q)ff“
1, 1

< 5 (@' (M) ~ ®'(m)) u(g)f f ,u‘d,u

(Q)
The following discrete inequality is of interest as well.

CorOLLARY |.2. Let @ : [m, M] — R be a differentiable convex function on (m, M).
If xpe[m,M] and w; >0 (i=1,...,n) with W,:=Y", w; =1, then we have the
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counterpart of Jensen’s weighted discrete inequality:

0< an wi®(x;) — ‘D(Zn: Wixi)
i=1 i

i=1

< Zn: wi D' (x;))x; — Zn: wi D’ (x;) i WiX; (1.3)
i=1 i=1 i=1

n
Xi — E ijj'
J=1

RemMark 1.3. The inequality between the first and the second terms in (1.3) was proved
in 1994 by Dragomir and Ionescu [15].

< %(@'(M) — @'(m)) Zl wi

Using the results (1.2) and (1.1), we can state the following string of reverse

inequalities:
Owa(CDof)d,u—(D(f wfd,u)
Q Q

sfw@'of)fdu—fw@'of)dufwfdu
Q Q Q

1
< Ly - @/ (m) f W‘f— f Wfdu‘ d (1.4)
Q Q

< Z(CD'(M) — @' (m)(M —m),

provided that @ : [m, M] Cc R — R is a differentiable convex function on (m, M) and f :
Q — [m, M] such that ® o f, f,®" o f, (®’ o f)- f € L, (Q, u), where w >0 u-a.e. on
Qwith [ wdu=1.

Remark 1.4. The inequality between the first, second and last terms from (1.4) was
proved in the general case of positive linear functionals in 2001 by the author [11].

Motivated by the above results, we establish in the current paper two new reverses
of Jensen’s integral inequality for a convex function. Some natural applications for
inequalities between means, reverses of Holder’s inequality and for the f-divergence
measure that play an important role in information theory are given as well.

2. Reverse inequalities
The following reverse of Jensen’s inequality holds.

THEOREM 2.1. Let @ : I — R be a continuous convex function on the interval of real
numbers 1 and let m, M € R, m < M, with [m, M] C I (where I is the interior of I).
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If f: Q — R is u-measurable, satisfies the bounds
—co<m< f(x)SM<oo  foru-a.e x€Q

and is such that f, ® o f € L,(Q, u), where w > 0 u-a.e. on Q with fQ wdu =1, then

0< fg W o f) it — D(for)

M - fe w f w
< ( Jaw)(faw —m) sup Wolt: m, M)
M-m 1€(m, M)

(2.1)
OL(M) — D (m)
m—————-

M—-m
1
< Z(M - m)(D_(M) — D, (m)),

< (M - fon)(faw —

where fq,, = fQ w(x) f(x) du(x) € [m, M] and Yo(-; m, M) : (m, M) — R is defined by

ot by = 2= 00 _ 00 = 0

We also have the inequality

_ 1 _
0< f WO f) i~ On) < (M~ m) ¥y m, M)
19 (2.2)
< 1M )@ (M) — ).

provided that fg,, € (m, M).

Proor. By the convexity of @,

fg WERD(F()) du(x) — D(foar)

_ f W(x)q)(m(M—f(X)) + M(f(x) —m))dﬂ(x)
Q M-m
m(M — f(x)) + M(f(x) —m)
o [
< [ M- f)Pm) + (f(x) — m)P(M)
- Q M—-m
_ (D(m(M - fQ,w) + M(]FQ,W - m))
M—-m
(M = fo,)P(m) + (fo,, — m)DM)
- M—-m
. q)(m(M - f_Q,w) + M(fQ,w - m)) — B.
M—-m

w(x) dp(x) (2.3)
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By denoting
Aot m, My = LZWOID + M = 000 _ g,y ¢ .
M—-m
we have

Ao(t: m. M) = (t = m)dM) + (M];I t_)(I’;(m) — (M — m)D(r)
_(t=mPM) + (M - )®(m) — (M — 1t + 1t — m)D(7)
B M—-m
@ =m)(D(M) — D)) — (M — 1)(D(r) — D(m))
B M—-m

M — -

for any ¢ € (m, M).
Therefore we have the equality

(M~ fau)(faw —m)
B M—-m

B

\Ildb(f_ﬂ,w; m, M)’ (24)

provided that fo,, € (m, M).
For fo,, =mor fu,, = M the inequality (2.1) is obvious. If fo,, € (m, M), then

Yol faw; m, M) < sup Wolt; m, M)

te(m,M)
_ (CD(M) - O(r) B (1) - (D(m))
) M -1 r—m
M) - D) @) — O(m)
< swp (S )+ sup (= )
LD -0 (D)~ D)
= sup (S )= e (SR

= OL(M) - D, (m),

which by (2.3) and (2.4) produces the desired result (2.1).
Since, obviously,

(M = fo)(faw—m) 1
Mo SgM-m.

then by (2.3) and (2.4) we deduce the first inequality (2.2). The second part is clear. O

CoroLLARY 2.2. Let ®:1 — R be a continuous convex function on the interval of
real numbers I and m, M e R, m < M, with [m, M) c . If x;€[m, M] and p; >0
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forie{l,... ,n}ywith )| pi=1, then we have the inequalities

0< " pid(x) - O(F,)
i=1

< (M - )_Cp)()_cp - m)

sup Yol(t; m, M)
M=m  cmin " 2.5)

O (M) — D (m)
M—-m

1
< 7 (M = m)(OL(M) - @/, (m),

<M - Xp)(Xp, —m)

and

0> pCx) - O(E,) < (M = m)¥oFyi m, M)
=1 4 (2.6)

1
< (M- m)(®_(M) — ', (m)),
where %, := 3,7 pix; € (m, M).

Remark 2.3. Define the weighted arithmetic mean of the positive n-tuple x =
(x1, ..., x,) with the nonnegative weights w = (wy, ..., w,) by

1 n
A,(w, x) = A Z WiX;,
=1

where W, := 3" | w; > 0, and the weighted geometric mean of the same n-tuple by
n 1/W,
G, 0= ([ 1)
i=1

It is well known that the following arithmetic mean—geometric mean inequality holds
true:

A,(w, x) > G,(w, x).

Applying the inequality between the first and third terms in (2.5) for the convex
function ®(¢) = —log ¢, t > 0,

An(w, 1
< % < exp(m(M = Ap(w, 0))(An(w, x) — m))

TR
R VR

provided that 0 <m < x; <M <ocoforie{l,..., n}.
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Also, if we apply the inequality (2.6) for the same function ® we obtain

| < A,(w, x)
G,(w, x)
M M-A,(w,x) m Ay (w,x)—m\—(M—-m)/4
((An(w, Xx) ) (An(w, Xx) ) )
< exp(l M)
- 4 mM

The following result also holds.

TueorEM 2.4. With the assumptions of Theorem 2.1, we have the inequalities

0< fQ w(® o f) du(x) — ®(fao..)

M_.fQ,W .fQ,w_m O(m) + O(M) 3 m+M 57
SZmax{ T M—m}( 5 (I)( 5 )) 2.7
1 _ _
= E maX{M - fQ,vw fQ,w - m}(q),_(M) - CD;(m))

Proor. We first recall the following result obtained by the author in [14] that provides
a refinement and a reverse for the weighted Jensen’s discrete inequality:

, 1 v 1 v
o gnin (5 35 00 =07 3 )

P - cb(% Z] pixi) 2.8)

.....

where @ : C — R is a convex function defined on the convex subset C of the linear
space X, {xi}ic(1,..., » are nonnegative numbers with
P, = er-lzl Di > 0.

For n = 2 we deduce from (2.8) that

,,,,,

2 min{z, 1 - t}((D(x) o0 _ ¢)(x hl y))

2 2
< 1®D(x) + (1 = HD(y) — Dex + (1 — 1)) 2.9)
<2 maxit, 1 t}(q)(x) ;“ o0 _ dJ(x ;“ y))

forany x,ye C and r € [0, 1].
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If we use the second inequality in (2.9) for the convex function ®:/ — R and
m, M € R, m < M, with [m, M] c I, we have for t = (M — fq,,)/(M — m) that

(M = fo,)®(m) + (fo,w — mP(M)

M—-m
M - fo.n) + M(fo,. —
B q)(m( faw) (fa. m)) 2.10)
M —m
M — fo, faw—m)[(®@m) + DM) m+ M
<2 max{ , }( - d)( ))
M-m M-m 2 2
Using (2.3) and (2.10) we deduce the first inequality in (2.7).
Since
Q20D _ (M) D) - (M) (M) — D(m)
M-m 4l - iy
and, by the gradient inequality,
D(M) — D m+M
;’WEMZ) <O (M)
M- ==
and ( +M)
O(2EE) — O(m) ,
w20,
2
then D(m)+O(M) M
m m+
I Y@ oy - @ am). (2.11)
M—-m T4 *
Making use of (2.10) and (2.11), we deduce the last part of (2.7). O

CoROLLARY 2.5. With the assumptions in Corollary 2.2, we have the inequalities

0< ) pid(x) - B(%)

i=1

{7 TG 0 yn )

< % max{M — X,, X, — m}(®_(M) — O, (m)).

REMARK 2.6. Since, obviously,
M — f_Q,w fQ,w —m
M-m’ M-m
we obtain from the first inequality in (2.7) the simpler but coarser inequality

<1,

O(m) + O(M) 3 (D(m + M))

0< fg W@ 0 f) du(0) - D) <2 T .
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[9] Some reverses of the Jensen inequality 185

The discrete version of this result, namely

O(m) + O(M) B <I)(m + M))

0< > pid(x) - B(E,) < 2( . :
i=1

was obtained in 2008 by Simic [34].

REmARKk 2.7. With the assumptions in Remark 2.3 we have the following reverse of the
arithmetic mean—geometric mean inequality

A, (w, x) ( A(m, M) )2 max{(M—A,(w,x))/(M=m),(A,(w,x)=m)/(M—m)}
, (2.12)

T Gy(w,x) " \G(m, M)

where A(m, M) is the arithmetic mean and G(m, M) is the geometric mean of the
positive numbers m and M.

3. Applications for the Holder inequality

It is well known that if f € L,(Q, i), p > 1, where the Lebesgue space L,(, u) is
defined by

Ly(Q, ) := {f :Q — R| fis u-measurable and fg Lf (O du(x) < oo},

and g€ L,(Q,u) with 1/p+1/g=1 then fge L(Q,u)=Li(Q, ) and the Holder
inequality holds true:

fg el de< fg |f|pdﬂ)1/p( fg gl” du)”q.

Assume that p > 1. If h: Q — R is y-measurable, satisfies the bounds
O<m<|h(x)| <M <oo foru-ae. xeQ

and is such that A, |h|” € L,,(€, u), for a y-measurable function w : Q — R, with w(x) >
0 for y-a.e. x € Q and fQ w du > 0, then, from (2.1),

. Jo 1MW dy ( I, 1w dp )p

- fQ wdu fQ w du

(M — [hlg,,)(hlg,, — m)
< M —m B,(m, M) 3.1

MP=! — ! — —
< p—r—— (M = Thlg,)(Ihlg,, = m)
—m

1

< 7P(M = m)(M"™! = m"™),
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where [hl,, := [, lhw du/ [, wdp € [m, M1, W,(;m, M) : (m, M) > R is defined by

MP — P tP —mP

M-t t-m

’

Y,(t;m, M) =

and

B,(m, M) := sup W¥,(t;m, M).
te(m,M)

From (2.2) we also have the inequality

S fQIhlpwd,u_( I, Valw dp
J;zwdu wid,u

< 4—11 p(M — m)(MP~! — mP~h,

o —
) < Z(M - m)\ij(|h|Q,w; m, M)
(3.2)

Proposition 3.1. If fe L,(Q, ), g€ Ly (Q, ) with p>1, 1/p+1/qg=1, and there
exist constants y, I > 0 such that

v < /1 T <T'p-a.eonQ,
lgl7~
then
ool (fg /3l dM)P
Jo lgledu [ 1817 du
_ B0 (r- Jo 78l dﬂ)( Jo |8l dp )
-y J, lgle dp N [ 1gle dy (3.3)
s —y"‘l(r Jo I7¢l dﬂ)(fg |fgl dp )
<p - -
-y 1819 dp /N [ 18149 dpa
1 _ _
< 7P =T =y,
and
ool (fg I£3l du)p
Jolgledu N [ 18l du
f feld (3.4)
1 8lap 1 _ _
< =By T) < 2= ! =y,
I, 1817 du
where By(-, ) and ¥ ,(-; -, -) are defined above.
Proor. The inequalities (3.3) and (3.4) follow from (3.1) and (3.2) by choosing
|1
h=—— and w=|g|%
gl ¢
The details are omitted. O
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RemMark 3.2. We observe that for p = g =2 we have WY, (#; v, I) =T —y = By(y, ') and
then from the first inequality in (3.3) we get the following reverse of the Cauchy—
Bunyakovsky—Schwarz inequality:

fg 18 du f FP dya - f el )

s(l‘ I, 17l d/«t)(fglfgl du )(L of d,u)z,

Jo leP du N [ 19l dy

provided that f, g € L,(€, ), and there exist constants y, I' > 0 such that

y<ﬂ<l"u a.e on Q.

CoroLLARY 3.3. With the assumptions of Proposition 3.1 we have the following
additive reverses of the Holder inequality:

o<( fg 7)) fg ot ) - fg \fel i

(Bp(Y,F))l/P(F_fQ|fg|d/1)l/P(fQ|fg|dﬂ , l/pfglgl"du

IA

r-7 oltda? [ lgle dp
< pw(u)w(r IR dﬂ)“”(fg fel dp )“f’ 3.5)
=y o lgtrdu? [ Igle dy

f g1 du

1/p l/pp-1 _ P IN1/p q
< P =P " [ i

and

s(f 11 du) 1/pf|g|‘fdu ]/q—flfgldﬂ

ral/p( Jo 18141 .
< 41,p(r p (R i ™) |, et s (3.6)
41/p l/p(r 7,)1/17(1*17 1 _ Y- 1 l/p f \gl? du,

where p>1land 1/p+1/g=1.
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Proor. By multiplying in (3.3) with (fQ lgl? dwP,

[rad [ ot ) - INZZ)

_BO.D (r I, 14l d,u)( I, 1f ¢l du _y)( fg » dﬂ)”

T TI-y Joo 181 du A [ 1l dpa

B Fl"l—yp“(r_fglfgldﬂ)(fglfgldﬂ_ )(f| " )P

=p T—y 2l d 2l d Y Qg H
[, 1819 dp/\ [ 1819 dp

1 1 1 ’
< 1Py fg 81 di)

which is equivalent to

fg 11 fg ot )

: [ 1fglduy [ 1 f8ld,
s(fg el + Bl{(zyﬂ(r_ ﬁ|gid5)(ﬁ|gidﬁ )

o ([ rat )

S(L el d,u)p+p(l" Iy 172l d,u)(fg |fgl du _7)

o lele du N 1gle dp

prpr-1 _ -1
x(f 8l ) ———
Q -

<( fg Faldu) + gp = =y fg 81 di)

Raising to the power 1/p with p > 1 and employing the elementary inequality that for
p>landa,B>0,

(3.7)

(o +ﬁ)1/p <al/r +B1/P,

we have from the first part of (3.7) that

( fg 7 d) fg o)

B,(y,D\Vr [ Ifglduntiey [ Ifgldu  \Up
du+|———) (I- 2 - 3.8
sfglfgl i () fQ|g|qdu) (fQ'glqu "6
X flgl"du,
Q

and since 1 —1/p =1/q we get from (3.8) the first inequality in (3.5). The rest is
obvious.
The inequality (3.6) can be proved in a similar manner; the details are omitted. O
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If 7 : Q — R is y-measurable, satisfies the bounds
O<m<|h(x)| <M <oo foru-ae. xeQ

and is such that &, |h|P € L,,(Q, u), for a u-measurable function w : Q — R, with w(x) >
0 for p-a.e. x € Q and fQ w du > 0, then from (2.7) we also have the inequality

g Jo InPwdy (fg \klw du )p

wid,u fgwdu
mP + MP (m+ M\ M—mg,w Wg,w—m (3.9
2 2 M—-m M—-m

1 - - —
< EP(MP ' —mP™hy max(M — Ihlg,,, Ihl,, — m),

where, as above, mg’w = fQ |hlw du/ fQ wdu € [m, M].
From (3.9) we can state the following result.

ProrosiTION 3.4. With the assumptions of Proposition 3.1 we have

0<f9|f|pd#_(f9|fg|dy)p
~ylelrdu N [ I8l du
gz.wmax{r_fsz|f3|d#,fglfgld#_ }
F-y o gl du [ 1814 du
Jolfeldu [ \fgldu }
Jo lgledu” [ 1gle dy 7

Finally, the following additive reverse of the Holder inequality can also be stated.

<

pIrt —yp7ly max{F -

N =

CoroLLARY 3.5. With the assumptions of Proposition 3.1,

0<( fg 7 a) fg ot du) - fg fel d

yP+IP y+I\p
<ol (2 -5 )"
= F—’}/

X max{(l“ - fQ ¢! d,u)l/p’ (fQ sl dy - )’)l/p} L gl? du

I, gl du I, gl du
1 |fel du\l/p |feld 1/p
¢ L (- LBy VRl
2/r I, gl du I, 1817 du

x (P! )1 f gl du
Q
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RemMark 3.6. As a simpler but coarser inequality we have the following result:

OSQLUVwQWQQBWWYMjLumﬁt

P 4 TP r\»\/p
szl/l’.(7 A —(7+ ) ) flgl"du,
2 2 Q

where f and g are as above.

4. Applications for f-divergence

One of the important issues in many applications of probability theory is finding
an appropriate measure of distance (or difference or discrimination) between two
probability distributions. A number of divergence measures for this purpose have
been proposed and extensively studied by Jeffreys [19], Kullback and Leibler [24],
Rényi [30], Havrda and Charvat [17], Kapur [22], Sharma and Mittal [32], Burbea and
Rao [4], Rao [29], Lin [25], Csiszar [7], Ali and Silvey [1], Vajda [39], Shioya and
Da-Te [33] and others (see, for example, [26], and the references therein).

These measures have been applied in a variety of fields such as: anthropology [29],
genetics [26], finance, economics and political science [31, 36, 37], biology [28], the
analysis of contingency tables [16], approximation of probability distributions [6, 23],
signal processing [20, 21] and pattern recognition [2, 5]. A number of these measures
of distance are specific cases of Csiszar f-divergence and so further exploration of this
concept will have a flow-on effect to other measures of distance and to areas in which
they are applied.

Assume that a set Q and the o-finite measure u are given. Consider the set of all
probability densitieson ytobe P:={p|p: Q - R, p(x) >0, fQ p(x) du(x) = 1}. The
Kullback-Leibler divergence [24] is well known among the information divergences.
It is defined as

p(x)

%WWLMM—WMAM? @.1)
Q q(x)

where log is to base e.

In information theory and statistics, various divergences are applied in addition
to the Kullback-Leibler divergence. These are, for example, the variation distance
D,, Hellinger distance Dy [18], Xz—divergence D, a-divergence D,, Bhattacharyya
distance Dpg [3], harmonic distance Dy,, Jeffreys distance Dj [19], triangular
discrimination D [38]. They are defined as follows:

D,(p,q) = fg Ip(x) — g(0)| du(x), p,qeP; 4.2)

Dy (p, q) := fg [Vp(x) = Vg0l du(x), p,qeP; 4.3)
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. g\ )

sz(p,q).— f p(x )(( ()) 1)du(x>, p.qeP; (4.4)

Dy(p, q) := 1— f (P2 (g(x)) 1+ dﬂ(X)) p.geP;  (45)

Dg(p, q) := fg Vp()g(x) du(x), p,qeP; 4.6)
2p(x)q(x)

Dy.(p, q) := —d , , P, 4.7

Ha(Ds @) fp(x)+q(x) u(x), p,qe 4.7)

Dy(p, q):= f (p(x) - q(x))log(p f ;)du(X), p.geP; 4.8)
_ 2

Da(p, q) := Mdu(xx p,qEP. 4.9

o px)+g(x)

For other divergence measures, see Kapur [22] or the book online by Taneja [35].
Csiszar f-divergence is defined as follows [8]:

1(p.q) = f p(x)f("( ))dmx), pgeP,

where f is convex on (0, c0). It is assumed that f is strictly convex and satisfies
the condition that f(1) =0. By appropriately defining this convex function, various
divergences are derived. Most of the above distances (4.1)—(4.9) are particular
instances of Csiszar f-divergence. There are also many others which are not in
this class (see, for example, [35]). For the basic properties of Csiszar f-divergence,
see [8, 9] and [39].

The following result holds.

ProrosiTioN 4.1. Suppose that f : (0, 00) = R be a convex function with the property
that f(1) = 0. Assume that p, g € P and there exist constants 0 <r <1 <R < 0o such

that

q( ») <R foru-a.e. xeQ.

p(X)
Then we have the inequalities

R-1D(A-r)
Ir(p,q) < - S— sup ¥ r, R)
-r €(r,R)
<(R-1)(1- )f,(R) fi(r) (4.10)
-r

1
< Z(R = )(fZ(R) = f1(r),
where W¢(-; 1, R) : (r, R) — Ris defined by

JR-f@O fO-f)
R—1t t—r

Wyt R) =
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We also have the inequality

JRA =n)+ f(HR-1
(R-1)(1-r)

1
Ir(p,q) < Z(R_ r)
@.11)

1
< Z(R = (fL(R) = f1(r).
The proof follows by Theorem 2.1 by choosing w(x) = p(x), f(x) = g(x)/p(x),m =r

and M = R and performing the required calculations. The details are omitted.
Using the same approach and Theorem 2.4 we can also state the following result.

ProrosiTion 4.2. With the assumptions of Proposition 4.1,

I(p, q)S2max{R_ 1, 1—"}(f(r);f(R) _f(r-;R))

. e R (4.12)
< 3 max{R — 1,1 = r}(f (R) — fi(r)).

The above results can be used to obtain various inequalities for divergence measures
in information theory that are particular instances of f-divergence.

Consider the Kullback—Leibler divergence

(x)
Dgr(p, q) := f p(x) IOg(p—) du(x), p.qeP,
Q gq(x)
which is an f-divergence for the convex function f : (0, o) —» R, f(¢) = —log t.
If p, g € P such that there exist constants 0 < r < 1 < R < oo with

r< @ <R forpu-ae. xeQ,
plx
then we get from (4.10) that
R-1D({1-r
Dir(p, q) < w,
rR

from (4.11) that
Dki(p, g) < (R — 1) log(R™V/ D= 1/0=0)

and from (4.12) that

Der(p.q) <2 {R—l l—r}1 (A(r,R))
max (0]
KL ) = R-r R—r) 2\G(rR)

1 R-
< 3 max(R—1,1- r}( rRr),

where A(r, R) is the arithmetic mean and G(r, R) is the geometric mean of the positive
numbers r and R.
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