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INTEGRAL POINTS ON ELLIPTIC CURVES OVER FUNCTION
FIELDS OF POSITIVE CHARACTERISTIC

AMiLcAR PACHECO

Let K be a one variable function field of genus g defined over an algebraically
closed field k of characteristic p > 0. Let E/K be a non-constant elliptic curve.
Denote by M the set of places of K and let S C Mg be a non-empty finite subset .

Mason in his paper “Diophantine equations over function fields” Chapter VI,
Theorem 14 and Voloch in “Explicit p-descent for elliptic curves in characteristic p”
Theorem 5.3 proved that the number of S-integral points of a Weiertrass equation of
E/K defined over Ry is finite. However, no explicit upper bound for this number was
given. In this note, under the extra hypotheses that E/K is semi-stable and p > 3,
we obtain an explicit upper bound for this number for a certain class of Weierstrass
equations called S-minimal.

1. INTRODUCTION

The paper is organised as follows. In Section 2 we introduce some preliminaries on
the canonical height and torsion points of E. In Section 3 we show our main result on
S-integral points.

2. PRELIMINARIES

Let A : E(K) — R be the canonical height of E. Given a place p of K, let vp be the
normalised valuation of K corresponding to p, K} the completion of K with respect to
vp and A, : E(Kp) — R the Néron function associated to p (see [8, Chapter VIJ).

Suppose that E/K is semi-stable. Let X be a smooth irreducible projective curve
defined over k£ with function field K. Denote by ¢¢ : £ = X the semi-stable minimal
model of E/K. Let je : X — P} be the j-map induced by @g and p° its inseparable
degree. In the sequel we regard jr as an element of K.

Goldfeld and Szpiro in [2, Proposition 11} gave an explicit version of a Theorem of
Manin in which % is computed in terms of an intersection number in £. This allows the
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decomposition h(P Z Ap(P) and reduces the problem of finding a lower bound for

pEMK
the canonical height of points P of infinite order of E to bounding Néron’s functions at
P. The main ingredient to obtain a global result is the following lemma due to Hindry
and Silverman.
LEMMA 1. [4, Proposition 1.2] Let p € Mg be such that v,(jg) < 0. For any
distinct points Py, --- , Py € E(K,) we have Y A,(P;i — P) > ((N + 1)2/120p(jg’)) -
il

(v + 1wy (z)/12).

DEFINITION 2: Let Dg/x be the minimal discrimimant of E/K and §g/k its con-
ductor. Denote dg/x = deg(De/x) and fe/x = deg(Fe/k). Let og/x = dEjx/fe/x be
the Szpiro’s ratio of E/K. Since E/K is semi-stable, dg/x = deg(j¢) = [K : k(jg)].

CONVENTION. Given a finite set T we denote by |T'| its cardinal.
PROPOSITION 3. Theset S, = {P € E(K);h(P) < dE/Kong/QG} has at
most 20, elements.

PROOF: Suppose that [S;| > 20% ;. Let N > 1 be any integer such that 20}, <
N +1 < |S,|. Let p € Mk be such that vy(je) > 0. It follows from [5, Chapter XI,
Theorem 5.1] that for any P € E(K), A\y(P) > 0. Given Py,---,Py € E(K), let H =
max A(P;). It follows from the triangle inequality that H > (1/(4N(N + 1))) %ﬁ(P,- -

0gigN
P)). Hence, Proposition 1 implies H > (1/(48N)) Z(((N + 1)/ Y) = vp(jgl)),
b

where where 3 denotes the sum over p € Mg such that v,(j¢) < 0. Since Y v,(j; ') =

P 4
dE/K and ‘{p € Mg ; ’l)p(jg) < O}I = fE/Ka H> (1/(48N)) ((N'*‘l)dE/KU;;?K _dE/K)-
By hypothesis N +1 > 20%/,‘,, therefore H > dE/KaE?K/%.

COROLLARY 4. For every P € E(K) of infinite order we have h(P) > (de/k
0554 )/1536.

PROOF: Suppose that 77,( P) < dE/KaE/K/ISSG For any integer n such that 1 <
n < 40% h(nP) = n?h(P) = de/K0g K /96 But this shows that |S,| > 40}, which
contradicts Proposition 3.

Corollary 4 implies the following version of a conjecture of Lang (see [3, Theorem

0.2]).

THEOREM 5. Forevery P € E(K) ofinfinite order there exists a constant ¢ (je, g)
depending on g and on the inseparable degree p® of je : X — P such that h(P) >
c2(Je, 9)de K, where c;(je, g) is equal to ((2.18)10‘10);;‘6‘, ifdg/x > 24p°(9 — 1) and to

((3.4)10-12) p~tg~8, if dg/x < 24p°(g — 1).
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PROOF: Szpiro’s theorem on the minimal discriminant of elliptic curves over func-
tion fields states that dg/xk < 6p°(29 — 2 + fg/k) (see [9, Théoréme 1]). Hence,
op)x = (6p°)7" = (29 — 2)dg),. In the case where dg/x > 24p°(g — 1), we obtain
og/k < 12p°. Otherwise, og/x € degjx < 24p®(g — 1). These two inequalities and
Corollary 4 prove the theorem. 0

REMARK 6. Theorem 5 slightly improves [3, Theorem 0.2] in the sense that the lower
bound for the canonical height of points of infinite order depends polynomially on og/x,
instead of exponentially. This had already been remarked and proved for elliptic curves
over number fields by David (see [1, Corollaire 1.5]) using transcendence methods, which
in contrast with Hindry-Silverman’s method is global rather than local.

As a consequence of Proposition 3 we obtain an upper bound for the torsion subgroup
E(K)ir of E(K).
THEOREM 7. IE(K)tor

2
< QUE/K.

REMARK 8. In (2, Theorem 13] Goldfeld and Szpiro proved that IE (K )tor

< (6p*((20-
2

2)fE/K + 1)) . It follows from Szpiro’s discriminant theorem that the bound of Theorem

7 is twice the bound of [2, Theorem 13]; however the method is different.

3. INTEGRAL POINTS

DEFINITION 9: Let Rg C K be the ring of S-integers and Ry C Rs the group of
S-units. Let L be a finite extension of K and o € L. Define hp(a) = [L : k(a)], ifaé¢k,
otherwise h.(a) = 0. Denote by Sy, the set of places of L lying over S. Let g, be the
genus of L, Rs, C L the ring of S -integers and R5, C Rs, the subgroup of Sp-units.

DEFINITION 10: Let 3% = f(z) be a Weierstrass equation for E/K. Suppose that
f(X) € Rs[X] and denote by A its discriminant. This equation is called S-minimal if
hk(A) is minimal subject to f(X) € Rs[X].

DEFINITION 11: Let f(X) = (X — e:)}(X — €2)(X — €3) be the factorisation of
f(X) in K[X]. Given P = (zp,yp) € E(Rs) and i € {1,2,3}, let £2 = zp — ¢; and
L = K{e1,¢€9,€3,&1,&,&3). For any permutation {7,!,m} of the elements of {1,2, 3}, let
= = {6 — €)/(6 — &m)s (& — €)/(& + Em), (6 + 6)/(6 = &m), (& + )/ (& + Em) |

The main result needed to obtain an explicit bound for the number of S-integral
points of an S-minimal Weierstrass equation for E is an upper bound for the height of
the y-coordinates of integral points (see [3, Proposition 8.2]). Before doing this it is
necessary to obtain an upper bound for the height of S-units.

PROPOSITION 12. Lety? = f(z) be a Weierstrass equation for E/K. Suppose
that f(X) € Rs[X], A € Ry and p > 2. For any n € = we have h (n) < 2p“(2gL -2+

1S1)-
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PROOF: Let t = (e3 — €1)/(e2 — €1) and denote by y? = z(z ~ 1)(z — t) a Legendre
form of E/K. Note that since the inseparable degree of jg is p®, je € K» — K**'. But
je = 28(82 =t +1)3/(#3(t — 1)?), thus ¢ ¢ L***". Furthermore, any permutation of 1, 2
and 3 replaces t by an element of {t, 1-t,1/t,1/(t-1),t/(t~-1),(t - 1)/t}. Therefore,

for any distinct 2,{,m € {1,2,3}, k = (e, — €;)/(em ~ €i) = (({,- - &)/ (& — {,,,)) ((é‘,- +
&)/ (& + §m)) ¢ L”"'. Suppose that for any 7 € = we have n ¢ L**'. Let 0 < r,s < e
be the smallest integers such that k € I”" — [ and n € L’ — L”"*', respectively.
Denote k, = &% and 7, = 7. Observe that ,,1 — k,,7,,1 — 7, € R5, N (L ~ L?). 1t
follows from [6, Chapter VI, Lemma 10] that hy(k.), hr(ns) < 2¢1 — 2 + |SL|. Hence,
hi(s), he(n) < p° (QgL -2+ ISL]). If some 7 € E lies in IP*" | then 7 = kyp~! ¢ 7.
By using the same argument as above we conclude that h.(7) < p® (ZgL -2+ |SL|).
Therefore, hy(n) = hr(k)+hy(7) < 2p° (2gL —2+|SL|), which proves the proposition. [

PROPOSITION 13. With the same hypothesis and notation of Proposition 12,
suppose furthermore that p > 3. For any P = (zp,yp) € E(Rs) we have hx(yp/A) <
48pe(2g 2+ |S|).

PRrROOF: The proof follows the same lines as [3, Proposition 8.2] replacing {3, (42)]
by the inequality of Proposition 12. However, we need to remark that the Riemann-

Hurwitz formula can be applied for L/ K, because p > 3 implies that L/K is separable
and has no wild ramification. 1]

In order to obtain an explicit upper bound for |E(Rs)|, recall from [7, Lemma 1.2
(a)] that ’E(R5)| < IE(K)wrl(l + 2/BJa)'e, where a = min{E(P); P e (B(K) -
B(K)ior) N E(Rs)}, g = max{E(P); Pe E‘(Rs)} and rg = rank(E(K)). The lower
bound « is obtained from Theorem 5.

REMARK 14. Since p > 3, we write the Weierstrass equation of E/K as y? = 2% +
Az + B. Suppose it is S-minimal. In this case, § < p®(12g + 4|S| + 5dg/k). The proof
of this inequality is the same as in {3, Corollary 8.5] replacing [3, Proposition 8.2} by
Pro\position 13.

THEOREM 15. Suppose that p > 3 and y? = 23 + Az + B is an S-minimal

TE

equation for E/K. If dg/x > 24p°(g—1), then !E(Rs)’ < 288p2€(((8.57)105)1)45\/]5]) ;
otherwise ‘E(Rs)l < (1152);)2‘392(((2.51)107)1)“‘5514 |S|) ‘)

PROOF: Suppose that dg/x > 24p°(g— 1). Thus g < de/xkp™¢/24 + 1 and og/x <
12p°. Since |S] > 1, B/a < ((4.59)109)p7°(5+(129+4|S|) ;;;K) < ((4.59)1011)p7e 1S.
Theorem 7 implies |E(K )°°'I < 20% /K S 288p?. This proves the first part of the the-
orem. Suppose now that dg/x < 24p°(g — 1). In this case, since |S| > 1 and g > 2,
Bla < ((2.94)101‘)p7egﬁ(5+(12g+4|S|)d5}K) < ((3.94)1013)1;7697 IS]. 1t follows from
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Theorem 7 that [E(K Yeor
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2
< 20}23/,( < 2(24pe(g - 1)) . Hence, the second part of the

theorem is proved. 1]

REMARK 16. Theorem 15 is an analogue for char(k) = p > 3 of (3, Theorem 8.1].

1]
(2]
(3]
(4]

(5]
(6]
(7]
(8]
(9]
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