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Abstract

Let pod_,(n) denote the number of partition quadruples of n where the odd parts in each partition
are distinct. We find many arithmetic properties of pod_,(n) including the following infinite family of
congruences: for any integers @ > 1 and n > 0,
5-3%+1
+ ————
2

We also establish some internal congruences and some Ramanujan-type congruences modulo 2, 5 and 8
satisfied by pod_4(n).

pod_4(3"+1n ) =0 (mod 9).
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1. Introduction

Let pod_,(n) denote the number of partition k-tuples of n where in each partition the
odd parts are distinct. For k = 1, pod_,(n) is often denoted as pod(n). As usual,

S (¢ M%
W)= ) ¢ ==
HZ:(; (43 Deo

denotes one of Ramanujan’s theta functions, where (a;q),, = [1,-, (1 —aq") is the
standard g-series notation. Moreover, we introduce the notation

(a1, a2, .. ap3 Qoo = (A159) 023 Do~ (0 Peo-
It is not difficult to see that the generating function of pod_,(n) is
Caa)s _ 1
@D w(-g
In recent years, the arithmetic properties of pod_,(n) have drawn much attention.
In 2010, Hirschhorn and Sellers [3] studied the congruence properties of pod(n). They

> pod_(n)q" = (1.1)
n=0
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found some infinite families of Ramanujan-type congruences, including, for integers
a>0andn >0,

23 x 32042 4 |

d(32(1/+3 +
po n A

) = 0 (mod 3).
They also found some internal congruences such as
pod(81n + 17) = 5pod(9n + 2) (mod 27).

In 2011, Radu and Sellers [4] obtained further congruences for pod(z) modulo 5 and
7 by using modular forms. In 2014, the author [7] discovered many new congruences
for pod(n). For example, for any integers n > 0 and @ > 1,

11- 52(1+1 1
pod(52“+2n N TJF) = 0 (mod 5),
and
19. 52(1+1 1
pod(Sz‘”zn + T+) =0 (mod 5).

In 2011, Chen and Lin [2] investigated the arithmetic properties of pod_,(n). They
found two infinite families of congruences modulo 3 and 5, respectively.

Recently, the author [6] established many congruences modulo 7, 9 and 11 satisfied
by pod_;(n). For example, for any integers @ > 1 and n > 0,

23 x 3%+l 4 3

pod_5 (32(”271 + g

) =0 (mod 9).

It is natural to ask whether we can find similar properties for pod_,(n) for k > 4. It
turns out that the case k = 4 is similar to those described above, but as k increases the
problem becomes more difficult. In this paper, we present results about pod_,(n), the
number of partition quadruples of n where the odd parts in each partition are distinct.

The paper is organised as follows. In Section 2, we will present an infinite family
of Ramanujan-type congruences: for any integers @ > 1 and n > 0,

5-3*+1

d (3(1/+1
poa_, n-+ 3

) =0 (mod 9).
In Section 3, we prove various internal congruences such as
pod_,(27n + 14) = —pod_,(9n + 5) (mod 81).

In Section 4, we establish some congruences for pod_,(n) modulo 2, 5 and 8. For
example, if o-(m) denotes the sum of all positive divisors of m, then

pod_,(5n + 3) = (=1)""'o-(2n + 1) (mod 5).
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2. An infinite family of congruences modulo 9

We need some facts about y/(q) before presenting our results. The first is the
3-dissection of ¥/(q) (see [2, 3]):
W@ =1+q+¢ +q°+q"° +¢" +--- = A@") + q¥(q")

where

(P

Alg) = — 6 67
(4 Do (@° ¢°) s

The following two lemmas are also important in our discussion.

Lemma 2.1. Let p be a prime and « be a positive integer. Then
NPT — op. AP «
(4: D = (4" ¢")s (mod p%),
¥(9)" = ¢(g”) (mod p).

Proor. The first congruence is [4, Lemma 1.2]. The second follows from the first and
the product representation of y(q). O

Lemma 2.2 (See [3, Lemma 2.1]). We have

3.4
A33 3 93=l/’(4)
@) +q¥(q) )

and
1w
v(@) g

AP = AP WD) + (@)

For convenience, in this section set s = A(¢) and = ¥(q°). We can rewrite
Lemma 2.2 as

: W)
9
I _¥@) (s? - gst+ qztz). 2.1

@) gy
TueorEM 2.3. For any integer a > 1,

N n a 3 +1 n — a-1 ‘rl/(q3)4
nzzo(—u pod_y(3"n+ == ¢" = (=) o (mod )

Proor. We proceed by induction on @. From (1.1) and (2.1),

o] 9 4
> (=1)"pod_y(n)q" = R o (2.2)

oy v w(g)'"®
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3k+2

If we extract all the terms of the form ¢**? in the expansion of (s> — gst + q2t2)4,

F(105°2 — 164358 + ¢°1%) = A5 + ) (mod 9). (2.3)

Hence,

(o)

Z (_1)3n+2p0d_4(3n + 2)q3n+2
n=0

w(q’ )

W(gH)'

9.4
AL (a7 3) qzzzq3)8 mod 9).
q

Dividing both sides by ¢?, then replacing ¢> by ¢,

00 4
Z (=1)*pod_,(3n + 2)¢" = s (mod 9).

Hence the result holds when o = 1.
Suppose

> (—1)"p0d_4(3”n e
n=0

Applying (2.1) again,

1 w(q )
"= (! (mod 9),
) W@

3 98
CRNTCRME —gst+ )", 2.4)

v(@®  w(g)®

3k+1

If we extract all the terms of the form ¢***! in the expansion of (s> — gst + qztz)g,

q(- 8s‘5t+266q3 21t~ 1016¢°5°1 + 7844° %" 112q12 3113 4+ 15119
= gi(s" + 5¢° 5P + 10¢°5°1° + 10¢° s + 5¢'*s°1'* + 15)

= qt(s +q t ) (mod 9).

Hence,
N \3nt a 341N 300 a-1 35 s (@)
24D pod_y(3°Gn+ 1)+ == ) = (<1 an(s +.q R
9
- (1) g [ACeN - (mod 9).
w(g®)®

Dividing both sides by —¢q and then replacing ¢* by ¢,

X 3 4] v
1\ a+1 n— (_1\(a+D-1
n§=0< 1'pod_y(3 !+ == J¢" = (=) o (mod o)

This implies that the result holds for @ + 1 and, by induction on @, completes
the proof. O
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For any positive integer n and prime p, we denote by v,(n) the power of p in the
unique prime factorisation of n. Let o(n) denote the sum of the positive divisors of 7.

CoroLLARY 2.4. For any integer n > 0,
pod_,(3n +2) = (-1)"c(2n + 1) (mod 3).

Moreover, pod_,(3n + 2) = 0 (mod 3) if and only if one of the following statements is
true.

(1)  There exists a prime p = 1 (mod 3) such that v,(2n + 1) = 2 (mod 3).
(2)  There exists a prime p = 2 (mod 3) such that v,(2n + 1) = 1 (mod 2).

Proor. Let @ = 1 in Theorem 2.3. By Lemma 2.1,

(9]

D (=1)"pod_y(3n +2)g" = vy = y(q)* —me)q (mod 3),

n=0 lﬂ( )8 n=0

where #4(n) denotes the number of representations of n as a sum of four triangular
numbers. Hence,

pod_,(3n + 2) = (=1)"t4(n) (mod 3).

From [1, Theorem 3.6.3], we know t4(n) = 0-(2n + 1). This proves the first assertion.
Write the prime factorisation of 2n + 1 as 2n + 1 = [] o1 p"7*"*". Because

o@n+ )= [ | Aap+-spr@eh),
pl2n+1

we see that 3| o(2n + 1) if and only if there exists a prime p | 2n + 1 such that
31 (1+p+---+ pwlnthy,

If p=3, then we have 1 + p + -+ + p"»@*D =1 (mod 3). If p = 1 (mod 3), then
L+p+-+pr®D=14v,2n+1) (mod 3)and 3 [ (1 + p + - -+ + p»?™*D) if and
only if v,(2n + 1) = 2 (mod 3). If p = 2 (mod 3), then since

vp(2n+1)+1 _ 1

l4p+- e+ vy2ntl) _ P ’
p p o1

we see that 3|1+ p+--- + p»@*D if and only if p»@*+D*! =1 (mod 3), that is,
vp(2n + 1) is odd. O

THEOREM 2.5. For any integers @ > 1 and n > 0,

5-3*+1

d (3(1/+1
pod_, n+ 7

) = 0 (mod 9).

Proor. By [6, Lemma 2.3], the coefficient of ¢***? in the series expansion of

(g’ )4/ ¥(q)® is divisible by 9. The result now follows from Theorem 2.3. O
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For distinct integers « > 1, the arithmetic sequences {3%*'n + %(5 -3+ 1)

n=0,1,2,...} are disjoint, and they account for
1 1 1 1
§+¥+”.+3ry+l _|...._g

of all nonnegative integers. The following corollary is an immediate consequence.

CoroLLARY 2.6. For at least 1/6 of all nonnegative integers, pod_,(n) is divisible by 9.

3. Some internal congruences
If we let @ = 1 and @ = 2 in Theorem 2.3, respectively, we deduce that
pod_,(9n + 5) = —pod_,(3n + 2) (mod 9).
By more careful treatment, we can improve this congruence to the following theorem.
Tueorem 3.1. For any integer n > 0,
pod_,(27n +5) = —pod_,(9n + 2) (mod 9),
pod_,(27n + 14) = —pod_,(9n + 5) (mod 81),
pod_,(27n + 23) = —pod_,(9n + 8) (mod 27).
Before we prove this theorem, we need to establish the following lemma.

Lemma 3.2. We have

\ v v Nt
(=D)"pod_,(B3n +2)q" = 10 - 36 + 27" ——,
Zﬁ POt o = T T T o)

°° w(g®* w(g®’ ()"
(=1D)"pod_,(9n + 5)¢" = 35 + 18 - 27
Z: PO = T @ T T w@)®

~27qu(q)" (mod 81).

Proor. Let us go back to the proof of Theorem 2.3. By (2.2) and (2.3), if we extract all

the terms of the form ¢>**? in the expansion of ¥(g)~*, then divide by ¢* and replace
3
q° by g,
N n n_¢(q3)4 6., 3,2 3,035 . 2, 3.8
D (=1)'pod_4(3n +2)g" = S AV~ 1604 ) + U())
n=0

By Lemma 2.2, A(q)’¥(¢®) = (9)* — qu(g®)". Substituting this formula into the
identity above, after simple manipulations, we obtain the first identity.
Now we turn to the second congruence identity. If we extract all the terms of the

. . 8
341 in the expansion of (s> — gst + ¢*1%),

—8qs15t + 2665]4s12t4 - 1016q759t7 + 784q10s6t10 - 11261135"31‘13 + q16t16
= gi(s° + 1) (=85° = 3453¢°8 + ¢°1°) (mod 81).

form ¢
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3k+1

By (2.4), extracting all the terms of the form ¢***! in the expansion of y(g> )4 Ju(g)®

and reducing modulo 81,

99 314\ 3
q;,p((i))% . (ww((qq;) ) (=8(s* + @) — 184’ (s* + ¢°F) + 274°%)
q
W@ (WD s esvd)
-8 - 18
w<q3>'6( WPy Y uy
w((] ) 4 lﬁ(q ) 7W(CI9)

=y e T e D GD

Denote by F(g) the sum of all the terms of the form ¢
100(¢*)' /¥(@)®. Then

q +27¢°0(q°) )

31 in the expansion of

9\4 9,8 9
(g )8 1804° (g ) +270¢ 1¥(q )]6
W(g?) w(gH)" c//( %)

0\4 9 9y 1
(g )8 184* (g )12 Yl C R w(g®)"
w(q®) w(q®) W(gH)'"

F(g) = —80¢q

¢ (mod 81). (3.2)

=q
Similarly, by (2.1),

v w(g”)"”

12
= t+q* ) . 33
VD o) ( - gst + ¢*1%) (3.3)

If we extract all the terms of the form ¢ in the expansion of (s — gst + ¢*2)",

— 35257171 + 80745'8¢%° — 432525161 + 737895"2¢"1'? — 432525°¢" 11
+8074S6 18 18 352s3 21 21 +q24t24

= (s + 4" (mod 9). (3.4)
Now, if we denote by G(g) the sum of all the terms of the form ¢**! in the expansion
of =36qu(q*)" 1(g)"2,
9412 94
Gg) = —36424 )40 () + 1) = —364 2L - (mod 81). (3.5)
(¢ (61 )’

In the same way, since ¥(q)* = ¥(¢°) (mod 3), by (2.1),

3 7
274 JU(q? )" =274 w(q’)
w(g)'® ¥(q)

If we denote by H(g) the sum of all the terms of the form ¢°**" in the expansion
of 27¢%u(g®)"” Jw()"S, then H(q) = 27¢*w(¢°) w(g?)’ (mod 81). Together with (3.2),

= 21RO (5 = gst + ¢*1) (mod 81).

3k+1
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(3.5) and the first identity in this lemma, this gives

D (=1)™*'pod_4(3(3n + 1) +2)g™"*!
n=0
=F(q) +G(q) + H(g)

W@ W@ g

38—1851 312+27q NT:
¥(q°) ¥(q°) ¥(q°)
By dividing both sides by —g, replacing ¢> by ¢ and using y(¢)* = ¥(¢>) (mod 3), we
obtain the second congruence identity. O

= -35¢ +27¢*v(@*) w(g®)’ (mod 81).

Now we are ready to prove Theorem 3.1.

Proor oF THeEorREM 3.1. The first congruence follows from Lemma 3.2 since

00

Z (=1)"(pod_,(3n + 2) + pod_,(9n + 5))q"
n=0

3\4 348
59(St/f(q) _th/f(q) B

v @
Moreover, since ¥/(g*) = ¥(q)* (mod 3),

3qw(q3)4) (mod 81). (3.6)

Z (—=1)*(pod_,(3n + 2) + pod_,(9n + 5))q"
n=0

@ "

Since ¥(q) = A(g®) + q¥(¢?), the terms of the form ¢***? vanish on the right-hand side
of this identity to yield the third congruence:

334 3,8
= 18( D0 M) = 18wig* i) - quig")") (mod 27).

pod_,(9n + 8) + pod_,(27n + 23) = 0 (mod 27).

For the second congruence, first note that by (3.4), the sum of all the terms of the
form ¢ in the expansion of (s> — gst + ¢>2)'” is congruent to (s> + ¢*#*)° modulo 9.
If we denote by I(g) the sum of all the terms of the form ¢***! in the expansion of
~2qu(q®)" /u(g)"?, then by (3.3),

3.4 8 9\ 12 9.4
Y(q 9) ) Y(q )40 =2 Y(q )8 (mod 9).
CRRRCD) ¥(g*)

By (3.1), the sum of all the terms of the form ¢3**! in the expansion of 5y(¢®)" /u(q)®
is congruent to —4qt,//(qg)4 / gl/(q3)8 modulo 9. Hence, if we extract all the terms of the

I(g) = ~2(
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form ¢**! on both sides of (3.6),

(o)

(=1 (pod_y(9n + 5) + pod_y(27n + 14))g™*!
n=0
4
(q) 4 4
- 27(—2q‘/’ D~ quia) ) = _81y(¢®)" (mod 81).
¥(g°)
The second congruence follows. O

RemMark 3.3. The modulus in Theorem 3.1 cannot be replaced by a higher power of 3
because

pod_,(5) + pod_,(2) =3* x2x7,
pod_,(14) + pod_,(5) = 3* x 2%,
pod_,(23) + pod_,(8) = 3% x 19 x 2027.

4. Congruences modulo 2, 5 and 8

Tueorem 4.1. We have

N (@)Y
pod_,Cn)q" = ——=—,
ZO ! (@ D g%
N (q*: qM%,
pod_,2n+ 1)g" =4—T"=—.
nz:(; ! (7 D%(q% 422
Proor. By (1.1),
G N O/l 00 M (7o o 8

pod_,(n)q" = = = :
; ) @ (@b (@:hgh g

From [5, Corollary 2.4],

Cal' o AT . 461(612;qz)‘.fo(qg;qg)ifo
(: P& g% (@B 4D (g% g%
Hence 4. 4\10 8. 8\4
- (g% g (¢%4*)%
pod_,(n)q" = +4q ,
,;1 (@)% 0D% (@t ghE
from which the theorem follows. O

THeEOREM 4.2. We have the following results.

(1) For any integer n > 0, pod_,(4n + 2) = 0 (mod 2).
(2) Ifn=k(k+1) for some integer k, then pod_,(2n + 1) = 4 (mod 8). Otherwise,
pod_,(2n + 1) = 0 (mod 8).
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Proor. (1) By Theorem 4.1 and Lemma 2.1,

| O/

@GDY (gD (5D

Z pod_,(2n)q" = (mod 2).
n=0

Note that terms of the form ¢?**! do not appear on the right-hand side of the above
equation and hence pod_,(4n + 2) = 0 (mod 2).
(2) Again by Theorem 4.1 and Lemma 2.1,

o0 4 4. gy
> pod_y2n+ 1)g" = QUATRX

= 4(¢%; ¢*)2, (mod 8).
pr (@ D% (4% )%

By Jacobi’s identity [1, Theorem 1.3.4],

()%= Y DRk + DD = 374D (mod 2).
k=0 =0

Hence
> pod_4(2n+ 1)g" =4 )" ¢**V (mod 8).
n=0 k=0
Comparing the coefficients of ¢" on both sides completes the proof. O

TuEOREM 4.3. Let p > 3 be a prime and m = —1 (mod p). If r is an integer such that
8r + 1 is a quadratic nonresidue modulo p, then

pod_,,(pn + r) = 0 (mod p).

Proor. By Lemma 2.1,

(e8]

1 ( 1 )(m+1)/P

d —q)' = =
2" pod_,,(m(9) e

d p).
24 Q)" Y(g) (mod p)

Note that (q) = 3.2, ¢""*1/? and the congruence r = n(n + 1)/2 (mod p) is equivalent
to 87+ 1= (2n + 1)*> (mod p). If 8r + 1 is a quadratic nonresidue modulo p, then g”**"
vanishes in the expansion of the right-hand side. This completes the proof. O

The particular case p = 5 and m = 4 gives the corollary.
CoroLLARY 4.4. For any integer n > 0,
pod_,(5n + 2) = pod_,(5n + 4) = 0 (mod 5).

Lemma 4.5. We have
W(q) = AWQ) + 4B(@) + ¢¥(q>),
where
AQ =0 ~. T B@=(-0.-7"0:0)e.
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Proor. Since y(q) = 3,7, ¢""* V72 and the residue of n(n + 1)/2 modulo 5 can only
be 0, 1 or 3, there is a dissection

W) = AQ) +9B(@) + ¢’ C(g).
Because n(n + 1)/2 = 0 (mod 5) if and only if n = 0,4 (mod 5), we have

A( qs) _ Z an(5n+1)/2 + Z q(5n+4)(5n+5)/2'
n=0 n=0

Replacing ¢’ by ¢, replacing the index n by —n — 1 in the second summation, so that the
summation over n runs from —co to —1, and applying Jacobi’s triple product identity,

2
Alg)= D ¢ = (- -4, ¢ ).

n=—0oo

Since n(n + 1)/2 = 1 (mod 5) if and only if n = 1,3 (mod 5), in a similar way we can
show that B(q) = (-¢,—¢", ¢°; ¢°)... Finally, since n(n + 1)/2 = 3 (mod 5) if and only
if n =2 (mod 5),

qSC(qs) — Z q(5n+2)(5n+3)/2 — qu(qZS)'
n=0

The proof of this lemma is now complete. O

THEOREM 4.6. For any integer n > (),
pod_,(5n +3) = (=1)""'o(2n + 1) (mod 5).

Moreover, pod_,(5n + 3) = 0 (mod 5) if and only if one of the following statements is
true.

(1)  There exists a prime p = 1 (mod 5) such that v,(2n + 1) = 4 (mod 5).

(2) There exists a prime p = 2,3 or 4 (mod 5) such that v,(2n + 1) = 3 (mod 4).

Proor. By Lemma 2.1, we have zﬁ(q)5 = y(g’) (mod 5). By Lemma 4.5,

NP WY@ _ 1
;(—1) pod_y(n)q" = e w(q5)<A(q5)+qB<q5>+cfw(q”)) (mod 5).

If we extract all the terms of the form ¢>**3, then divide by —¢* and replace ¢° by ¢
and apply ¥(¢)” = ¢(¢°) (mod 5) again,

(o] 5 (o)
D 1pod_yGn+ 3" = =) = (gt == " tmig” (mod 5).
= Y(q) g

Since #4(n) = 0(2n + 1), comparing the coeflicients of ¢" on both sides yields

pod_,(5n + 3) = (=1)""'o:(2n + 1) (mod 5).
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Write the prime factorisation of 2n + 1 as 2n + 1 = [ ,pps1 p"»@D Then

ocn+1) = l_[ (14 p 4o+ pirmDy.

pl2n+1

Let p be any prime factor of 2n+ 1. For p =5, 1+ p + --- + p»@*D =1 (mod 5). If
p=1(mod5), l+p+---+p»@D=1+y,2n+1) (modS5)and 5|1 +p+---+
p@* D if and only if v,(2n + 1) = 4 (mod 5). If p = 2,3 or 4 (mod 5), then

pvp(2n+1)+1 _
L+ p+-o o+ pr@h = (mod 5)
p—1
and 5|1+ p+---+ p»@*D if and only if p"»@*D*! =1 (mod 5), which is also
equivalent to v,(2n + 1) = 3 (mod 4). O
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