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Abstract

A random intersection graph G(n, m, p) is defined on a set V of n vertices. There is an
auxiliary set W consisting of m objects, and each vertex v ∈ V is assigned a random
subset of objects Wv ⊆ W such that w ∈ Wv with probability p, independently for all
v ∈ V and all w ∈ W . Given two vertices v1, v2 ∈ V, we set v1 ∼ v2 if and only if
Wv1 ∩ Wv2 �= ∅. We use Stein’s method to obtain an upper bound on the total variation
distance between the distribution of the number of h-cliques in G(n, m, p) and a related
Poisson distribution for any fixed integer h.

Keywords: Stein’s method; Poisson approximation; random intersection graph

2010 Mathematics Subject Classification: Primary 60F05
Secondary 05C80

1. Introduction

In a random intersection graph there is a set of vertices V and an auxiliary set of objects W .
Each vertex v ∈ V is assigned a subset of objects Wv ⊆ W . Two vertices v1 and v2 are adjacent
if and only if Wv1 ∩Wv2 �= ∅. A general model of the random intersection graph, in which each
vertex is assigned a subset of objects Wv ⊆ W chosen uniformly from all d-element subsets,
where the cardinality d is determined according to the arbitrarily given probability distribution
P(m), was introduced in [9].

Random intersection graphs have been studied in relation to many applications, including
the ‘gate matrix layout’ for VLSI design (see, e.g. [13]), cluster analysis and classification (see,
e.g. [9], [10], and [11]), analysis of complex networks (see, e.g. [15] and [16]), network user
profiling (see [14]), secure wireless networks (see, e.g. [4] and [7]), and epidemics (see [3]
and [5]).

The random intersection graph G(n, m, p) as first defined in [13] is the special case of the
above model when P(m) has binomial distribution Bin(m, p), i.e. it is defined to be a graph
with |V| = n vertices, |W | = m objects, and P(w ∈ Wv) = p, independently for all v ∈ V
and w ∈ W . We set

m = �nα� (1)

for some constant α > 0. Given a fixed integer h ≥ 3 and a graph H on h vertices, define the
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Poisson approximation of cliques 827

threshold of appearance of copies of H to be a function τ(H) such that

lim
n→∞ P(H ⊆ G(n, m, p)) =

{
1 if p/τ(H) → 0,

0 if p/τ(H) → ∞,

where H ⊆ G(n, m, p) is the event that G(n, m, p) contains a copy of H . It was shown in [13]
that, for a clique Kh of size h, as long as mp2 = o(1),

τ(Kh) =
{

n−1m−1/h for α ≤ 2h/(h − 1),

n−1/(h−1)m−1/2 for α ≥ 2h/(h − 1).

It is worth mentioning that in the case in which h = 3 and α ≥ 3 the function τ(K3) coincides
with the threshold function for having a giant component τg (see [1]). However, when α < 3,
we have τ(K3) 
 τg . Therefore, we may expect that near τg the clustering coefficient of
G(n, m, p) should be higher than in G(n, p), where G(n, p) is the random Erdős–Rényi graph
with n vertices and edge probability p. It is known that it tends to a constant for α ≤ 1 (see [6]).

We are interested in showing that the number of copies of cliques Kh in G(n, m, p) is
approximately Poisson when p is near τ(Kh). Thus, we will assume that, for some constant
δ > 0, we have

α = 2δh

h − 1
(2)

and that, for another constant c > 0,

p(n) ∼

⎧⎪⎨
⎪⎩

cn−1m−1/h for 0 < δ < 1,

cn−(h+1)/(h−1) for δ = 1,

cn−1/(h−1)m−1/2 for δ > 1.

(3)

For m and p defined by (1), (2), and (3), it is easily checked that

mp2 = o(1) (4)

for all δ > 0 and
mp → ∞ (5)

for δ > 1
2 .

All limits in this paper are taken as n → ∞. Throughout this paper, we use the following
standard notation: an ∼ bn if an/bn → 1; an � bn if there exist constants c > 0 and C > 0
such that c ≤ |an/bn| ≤ C for all n ≥ 1; an = O(bn) if there exists a constant C > 0 such that
|an/bn| ≤ C for all n ≥ 1; and an = o(bn) if an/bn → 0.

For any given graph H , we use the standard notation V (H) and E(H) to denote its set of
vertices and edges, respectively. In what follows we will often use the following definition.
For any subset of vertices V ′ ⊆ V (H), we will denote by H [V ′] an induced subgraph of H

with a set of vertices V ′ and a set of edges {(v1, v2) ∈ E(H) : v1, v2 ∈ V ′}.
The total variation distance between a random variable taking nonnegative integer values

and the random variable Pλ with Poisson distribution with parameter λ is defined to be

dTV(X, Pλ) = 1

2

∞∑
k=0

∣∣∣∣P(X = k) − e−λλk

k!
∣∣∣∣.
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828 K. RYBARCZYK AND D. STARK

Theorem 1. Let G(n, m, p) be a random intersection graph defined with m and p given in
terms of n by (1), (2), and (3), and let h ≥ 3 be a fixed integer. Let Xn be the random variable
counting the number of instances of Kh in G(n, m, p).

(i) If δ < 1 then λn = E Xn ∼ ch/h! and

dTV(Xn, Pλn) = O(n−2δ/(h−1)).

(ii) If δ = 1 then λn = E Xn ∼ (ch + ch(h−1))/h! and

dTV(Xn, Pλn) = O(n−2/(h−1)).

(iii) If δ > 1 then λn = E Xn ∼ ch(h−1)/h! and

dTV(Xn, Pλn) = O(n(1−δ)h−2/(h−1) + n−1).

In (iii), the bound n((1−δ)h−2/(h−1)) is larger than the bound n−1 if and only if

δ <
h2 − 3

h(h − 1)
.

We do not consider λn → ∞ in this paper, only convergent λn.
In comparison, for Erdős–Rényi graphs G(n, p̂), in which edges appear independently and

with probability p̂, the bound obtained by Stein’s method (presented in Section 2) for the total
variation distance between the number of cliques of size h and the Poisson distribution with
parameter λ = (

n
h

)
p̂(h

2) is of order O(n−1) for all fixed h ≥ 3 when λ is bounded. In light
of the equivalence theorem proved in [8], it is no surprise that the above result agrees with
the well-known result for Erdős–Rényi graphs G(n, p̂) when α > 6 and p̂ ∼ mp2, since the
abovementioned equivalence theorem says that, for α > 6 and p̂ ∼ mp2, the graphs G(n, m, p)

and G(n, p̂) have asymptotically the same properties. Moreover, this result is consistent with
the hypothesis from [8] of the equivalence of the models for α > 3 and their inequivalence for
α < 3. From the applied point of view, it would be interesting to obtain similar results for the
general random intersection graph models defined as in [9]. It seems that similar methods to
those used in this paper should give an analogous result for the random intersection graph model
with probability distributions defined as in [6] (random intersection graphs with tunable degree
distributions), i.e. for the binomial distribution with the parameter which is itself a random
variable. Unfortunately, in the other interesting case of the uniform random intersection graph
(in which P(m) is the degenerate distribution), which is used for example to model wireless
sensor networks [2], [4], [7], it seems it will not be straightforward to prove the analogous
result.

The paper is organised as follows. We describe Stein’s method in Section 2. In Sections 3,
4, and 5 we discuss the notion of a clique cover. Namely, in Section 3 definitions are given,
in Section 4 lemmas describing relations between various clique covers are presented, and in
Section 5 obtained results are used to describe the clique covers most likely to occur in random
intersection graphs. In the last two sections these results are used to complete the proof. In
Section 6 expectations and probabilities of the inclusion of one and two copies of Kh are
calculated, whereas in Section 7 Stein’s method is applied.
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2. Stein’s method

Stein’s method is a way of showing that the distribution of a random variable is close to
some target distribution. We will use a version of Stein’s method for Poisson approximation
given in terms of dependency graphs.

Suppose that X = ∑
β∈� Iβ is a sum over an index set � of indicator random variables.

A dependency graph L is a graph with vertex set � having the property that whenever A ⊆ �

and B ⊆ � satisfy the property that there are no edges between A and B in L, it follows that
{Iβ : β ∈ A} and {Iγ : γ ∈ B} are mutually independent sets of random variables. We define
λ = EX, πβ = EIβ for β ∈ �, and Pλ to be a random variable with Poisson distribution with
parameter λ. From Theorem 6.23 of [12] we have

dTV(X, Pλ) ≤ min(λ−1, 1)

( ∑
β∈V (L)

π2
β +

∑
βγ∈E(L)

(E(IβIγ ) + πβπγ )

)
, (6)

where the sum
∑

βγ∈E(L) means summing over ordered pairs (β, γ ) such that {β, γ } ∈ E(L).
Denote by KV the complete graph on the set of vertices V. In our application of Stein’s

method � = {KV ′ : V ′ ⊆ V, |V ′| = h} and, for each β ∈ �, Iβ = 1(β ⊆ G(n, m, p)), where
1(β ⊆ G(n, m, p)) is the indicator random variable which equals 1 when β ⊆ G(n, m, p) and
equals 0 otherwise. With these definitions, X counts the number of h-cliques in G(n, m, p).
Note that

πβ = P(β ⊆ G(n, m, p))

and

E(IβIγ ) = P(β ⊆ G(n, m, p), γ ⊆ G(n, m, p)) = P(β ∪ γ ⊆ G(n, m, p)), (7)

where β ∪ γ is the graph with vertex set V (β ∪ γ ) = V (β) ∪ V (γ ) and edge set E(β ∪ γ ) =
E(β) ∪ E(γ ).

We define a dependency graph L with a vertex set � such that if β = KV ′ and γ = KV ′′ ,
then {β, γ } ∈ E(L) if and only if V ′ ∩ V ′′ �= ∅. Since subgraphs with disjoint vertex sets
appear independently in G(n, m, p), this is a well-defined dependency graph.

3. Clique covers

In order to estimate πβ as well as E(IβIγ ), we use the notion of clique covers of a graph
introduced in [13].

Let H be any subgraph of KV . A clique cover C is a set of subsets of V (H) such that, firstly,
|C| ≥ 2 for all C ∈ C and, secondly, such that, for any {v1, v2} ∈ E(H), there exists C ∈ C
such that v1, v2 ∈ C. Note that, from the definition, the cliques induced in KV by the sets in
C cover all the edges of H . To illustrate this, let H be a triangle. The nine clique covers of H

are depicted in Figure 1. Note that edges may be contained in more than one set from a clique
cover C, but must be contained in at least one of them.

In a random intersection graph the set of vertices associated with a particular object w ∈ W
always form a clique in G(n, m, p), and the set of edges in G(n, m, p) is the union of the m edge
sets of the cliques generated by the elements of W . We say that H ⊆ G(n, m, p) is given by a
clique cover C = {C1, . . . , Ct } if there is a family of disjoint nonempty subsets {W1, . . . , Wt } of
W such that, firstly, for all 1 ≤ i ≤ t , each element of Wi is an object assigned to all the vertices
of Ci and no other vertices from V (H), and, secondly, such that each w ∈ W \ ⋃t

i=1 Wi is an

https://doi.org/10.1239/jap/1285335412 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1285335412
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Figure 1: All the clique covers of a triangle.

Figure 2: Examples of a triangle being given by a clique cover consisting of one three-element set and
one two-element set.

object assigned to at most one vertex from V (H). Note that there is a large number of ways
in which a subgraph can be given by a particular clique cover. Figure 2 shows three ways in
which a triangle can be given by a clique cover containing exactly one set of size 3 and one set
of size 2.

Note that a graph H is given by exactly one clique cover and there are only a finite number
of clique covers covering H . Therefore, if we let π(H, C) denote the probability that H is
given by a clique cover C = {C1, . . . , Ct } then

πH =
∑

Clique covers C of H

π(H, C).

In view of the preceding paragraph, the asymptotic behaviour of πH is determined by the
clique covers C of H for which π(H, C) dominates asymptotically. To estimate π(H, C), we
will use

π(H, C) ∼
t∏

i=1

mp|Ci | (8)

from page 138 of [13] (we have used the fact that |Ci | ≥ 2 in the abovementioned definition of
a clique cover).

We will call a clique cover an edge cover if it contains only two-element sets. We will call
a clique cover a cover by one set if it consists of only one set.

4. Operations on clique covers

For particular subgraphs H (which we will later take to be of the form β or β∪γ for β, γ ∈ �

to apply the bounds of Section 2), we will be interested in finding clique covers C for which
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π(H, C) is of the largest asymptotic order of magnitude. To do this, we need information about
the convergence of the fraction π(H, C)/π(H, C′) for different clique covers C and C′ of H .

Given a clique cover C of H , we say that C′ is obtained from C by merging two sets if, for
some C1, C2 ∈ C, C′ is obtained from C by replacing C1 and C2 with C1 ∪ C2. We say that
C′ is obtained from C by an edge cover of a set if, for some C ∈ C, C′ is obtained from C by
replacing C with the set of edges in H [C].

We now define a quantity k0 which appears in the next two lemmas. We will show in
Lemma 1 and Lemma 2 below that k0 is roughly the set size below which replacing sets by
edge covers increases π(H, C) and above which merging sets increases π(H, C). In view of
(1), (2), and (3), there is a real number a such that p(n) � n−a defined by

a =

⎧⎪⎨
⎪⎩

h − 1 + 2δ

h − 1
for δ ≤ 1,

1 + δh

h − 1
for δ ≥ 1.

We define the quantity k0 by

k0 = α

2a − α
.

Using (2), we note that

k0 =
⎧⎨
⎩

δh

h − δh − 1 + 2δ
for δ ≤ 1,

δh for δ ≥ 1.

Moreover, we have

0 < k0 < h for δ < 1, k0 = h for δ = 1, k0 > h for δ > 1. (9)

Lemma 1. Let H be any fixed graph, let m and p be given by (1), (2), and (3), and let C be
any clique cover of H . Moreover, let C′ be a clique cover of H obtained from C by replacing
any C ∈ C for which |C| = k > 2 with an edge cover of H [C]. Then, if k0 ≥ 3,

π(H, C)

π(H, C′)
=

{
o(1) for 2 < k < k0,

O(1) for k = k0.

Moreover, if H [C] is a clique then

π(H, C)

π(H, C′)
= o(1) for 2 < k < k0,

π(H, C)

π(H, C′)
� 1 for k = k0,

π(H, C′)
π(H, C)

= o(1) for k > max{k0, 2}.

Proof. We will compare the probabilities of the clique covers π(H, C) and π(H, C′), where
C′ is obtained from C by replacing C ∈ C, |C| = k, with an edge cover of H [C]. Let e be the
number of edges in H [C]. Then,

mpk � nα−ka
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and

(mp2)(
k
2) � nk(k−1)(α−2a)/2.

Thus, from (8),

π(H, C)

π(H, C′)
� mpk

(mp2)e
≤ mpk

(mp2)(
k
2)

= nf (k)/2,

where

f (k) = 2α − 2ka − k(k − 1)(α − 2a)

= (2a − α)k2 − (4a − α)k + 2α

= (2a − α)(k − 2)(k − k0);

thus,

f (k) = 0 if and only if k = 2 or k = k0

and, since 2a − α > 0,

f (k) < 0 for k ∈ (2, k0), k0 > 2,

and

f (k) > 0 for k > max{k0, 2}.

Moreover, if e = (
k
2

)
then

π(H, C)

π(H, C′)
� nf (k)/2.

We call a clique cover C a simple clique cover if, for any two different C1, C2 ∈ C, we have
|C1 ∩ C2| ≤ 1.

Lemma 2. Let H be any fixed graph, let m and p be given by (1), (2), and (3), and let C be
a simple clique cover of H . Moreover, suppose that |C1 ∩ C2| = 1 and assume that in H , for
C1, C2 ∈ C, there are exactly k edges {e1, . . . , ek} with one vertex in C1 and one vertex in C2.
If C′ is a clique cover of H obtained from C by replacing C1 and C2 with C1 ∪ C2 and then
merging all sets containing at least one edge from {e1, . . . , ek} with C1 ∪ C2, then

π(H, C)

π(H, C′)
=

{
o(1) for k > 1

2k0 − 1
2 ,

O(1) for k = 1
2k0 − 1

2 .

Proof. Let H be any graph on h1 vertices, let p � n−a, m = nα , and let k1 + 1 ≥ 2
and k2 + 1 ≥ 2 be the sizes of sets C1 and C2 in a clique cover C, respectively. Moreover, let
{e1, . . . , ek} be the set of all edges with one vertex in C1 and one vertex in C2. Since C is simple
for each ei , there is exactly one set Cei

∈ C containing ei . In addition, for i �= j , Cei
�= Cej

(otherwise, |Cei
∩C1| ≥ 2 or |Cei

∩C2| ≥ 2). From the statement of the lemma, C′ is obtained
from C by replacing C1, C2, Ce1 , . . . , Cek

with one set C = C1 ∪ C2 ∪ Ce1 ∪ · · · ∪ Cek
. From
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the assumption that C is simple we have |Cei
∩ (C1 ∪ C2)| = 2 for all 1 ≤ i ≤ k; thus,

∣∣∣∣C1 ∪ C2 ∪
k⋃

i=1

Cei

∣∣∣∣ =
∣∣∣∣C1 ∪ C2 ∪

k⋃
i=1

(Cei
\ (C1 ∪ C2))

∣∣∣∣
≤ |C1 ∪ C2| +

k∑
i=1

(|Cei
| − 2)

= k1 + k2 + 1 +
k∑

i=1

(|Cei
| − 2)

and
1

p|C1∪C2∪⋃k
i=1 Cei

| ≤ 1

pk1+k2+1
∏k

i=1 p|Cei
|−2

.

Hence,

π(H, C)

π(H, C′)
∼ mpk1+1mpk2+1 ∏k

i=1 mp|Cei
|

mp|C1∪C2∪⋃k
i=1 Cei

|

= O(1)
m2pk1+k2+2

mpk1+k2+1

k∏
i=1

mp|Cei
|

p|Cei
|−2

= O(1)mp(mp2)k

= O(1)nα−a+k(α−2a)

= O(1)ng(k),

where g(k) = α − a + k(α − 2a). Since 2a − α > 0,

g(k) ≤ 0 ⇐⇒ α − a + k(α − 2a) ≤ 0

⇐⇒ α − a ≤ k(2a − α)

⇐⇒ k ≥ α − a

2a − α
= α/2 − a + α/2

2a − α
= 1

2
k0 − 1

2
.

5. Optimal clique covers

We will call a clique cover C of a graph H an optimal clique cover if π(H, C′)/π(H, C) =
O(1) for all other clique covers C′ of H . Note that, since there is a finite number of clique
covers, an optimal clique cover exists, and that

πH ∼
∑

C optimal clique cover

π(H, C). (10)

It follows from Lemma 3 that we may assume that optimal clique covers are simple. Recall
assumption (4).

Lemma 3. Let C be an optimal clique cover for graph H . There are no sets C1, C2 ∈ C such
that |C1 ∩ C2| ≥ 2.
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Proof. Let |C1| ≥ 2 and |C2| ≥ 2. We create a new clique cover C′ from C by replacing
C1 and C2 with C = C1 ∪ C2, for which

π(H, C) = π(H, C′)mp|C1|mp|C2|

mp|C| = π(H, C′)mp|C1∩C2| = o(π(H, C′)).

We will also need the following lemma.

Lemma 4. Let C be an optimal clique cover of H . There is no set C ∈ C such that C = C1∪C2,
C1 ∩ C2 = ∅, and C1, C2 �= ∅, and such that there are no edges between C1 and C2 in H .

Proof. Assume that in C there is a set C such that C = C1 ∪ C2, C1 ∩ C2 = ∅, and
C1, C2 �= ∅, and that there are no edges between C1 and C2 in H .

If |C1| = 1 and |C2| = 1, then C′ = C \ {C} is a clique cover of H and π(H, C) =
π(H, C′)mp2 = o(π(H, C′)).

Let |C1| = 1 and |C2| ≥ 2. If C′ is obtained from C by replacing C with C2, then obviously
C′ is a clique cover and π(H, C) = π(H, C′)mp|C|/mp|C2| = o(π(H, C′)).

Let |C1| ≥ 2 and |C2| ≥ 2. If C′ is obtained from C by replacing C with C1 and C2, then
π(H, C) = π(H, C′)mp|C|/m2p|C| = o(π(H, C′)).

We now use our results from the previous section to find optimal clique covers for complete
graphs. In Lemma 6 below we find optimal clique covers for unions of two complete graphs.
Lemma 5 below can be deduced from the proof of Corollary 6 of [13].

Lemma 5. Let β be a clique on h vertices. For m given by (1) and (2), and p given by (3), the
only optimal clique covers of β are: (i) a cover by one set when δ < 1; (ii) an edge cover and
a cover by one set when δ = 1; (iii) an edge cover when δ > 1.

Proof. Let C be any simple clique cover.
(i) Suppose that δ < 1. We know from (9) that 0 < k0 < h. If C consists of only sets of

size at most k0 then from Lemma 1 we have π(β, C) = O(π(β, C′)) = o(π(β, C′′)), where
C′ is an edge cover and C′′ is a cover by one set. If C contains a set C for which

|C| − 1 ≥ max{k0, 2} − 1 > 1
2k0 − 1

2 ,

then we can merge C with other sets from C repeatedly until we get the cover by one set C′′, and
from Lemma 2 we have π(β, C) = o(π(β, C′′)). Thus, C′′ is the only optimal clique cover.

(ii) Suppose that δ = 1. In this case k0 = h. We know that if in any clique cover C of β we
replace all sets with at most h − 1 vertices by edge covers, we will create a clique cover C′, for
which π(β, C) = o(π(β, C′)). Thus, from Lemma 1, an edge cover and a cover with only one
set on h vertices are the only optimal clique covers.

(iii) Suppose that δ > 1. Then we know that k0 > h and so, by Lemma 1, for any C different
from an edge cover, π(β, C) = o(π(β, C′)), where C′ is an edge cover.

Now, let β and γ be two different cliques intersecting at at least one vertex. We need to
find at least one optimal clique cover for β ∪ γ in order to estimate the order of magnitude of
E(IβIγ ) (see (7)) appearing in (6).

We will say that a clique cover C′ of H is at least as good as another clique cover C of H

if π(H, C) = O(π(H, C′)).

Lemma 6. Let β and γ be complete graphs on h vertices with V (β)∩V (γ ) �= ∅. For m given
by (1) and (2), and p given by (3), the optimal clique covers of β ∪γ include: (i) a clique cover
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containing at least one set C for which C ⊇ V (β) or C ⊇ V (γ ), and otherwise containing
two element subsets when δ ≤ 1; (ii) either an edge cover or a cover by one set when δ > 1.

Proof. Let C be any simple clique cover of β ∪ γ .
If all sets in C are of size at most k0 then from Lemma 1 an edge cover of β ∪ γ is at least

as good as C.
If in C there is at least one set of size |C| ≥ �k0� + 1, then either it is entirely contained

in β or γ , or, from Lemma 4, it has at least one vertex in V (β) ∩ V (γ ). In the latter case at
least (|C| − 1)/2 + 1 vertices of C are in one of the sets V (β) and V (γ ). Thus, without loss
of generality, we may assume that

|C ∩ V (γ )| ≥ �k0�
2

+ 1 ≥ k0 − 1

2
+ 1,

i.e.

|C ∩ V (γ )| − 1 ≥ 1
2k0 − 1

2 .

Given any vertex v ∈ V (γ ) not contained in C, there is a set C1 containing v and one vertex
from C. Moreover, since |C ∩ V (γ )| − 1 ≥ k0/2 − 1

2 , there are at least k0/2 − 1
2 edges in

β ∪ γ joining v ∈ C1 with vertices from C. Using Lemma 2, without losing optimality, we
can merge C1, C, and all the sets containing at least one edge joining vertices from C1 and C.
Without losing optimality of the cover, we may repeat the procedure until in the clique cover
we have a large set containing all the vertices from V (γ ). This clique cover is at least as good
as C. For all the sets from C of size larger than k0, if they were not merged before, we repeat
the procedure above to obtain a clique cover which is at least as good as the previous one. This
clique cover contains at least one set containing V (β) or V (γ ). Finally, any remaining sets
which are of size at most k0, if they exist and cannot be merged, can be replaced by edge covers
without losing optimality using Lemma 1.

(i) Assume now that δ ≤ 1 and that C is an edge cover. In this case, using the second
part of Lemma 1, we can prove that a cover with one set C = V (γ ) and all other sets being
two-element sets is at least as good as the edge cover.

(ii) Assume now that δ > 1. A simple clique cover with two sets, C1 and C2, containing
V (β) and V (γ ), respectively, may be replaced by an edge cover if |C1| < k0 and |C2| < k0
without losing optimality by Lemma 1. Moreover, since |V (β ∪ γ )| ≤ 2h − 1, k0 > h, and
we consider only simple clique covers, we may now assume without loss of generality that C
contains one large set C such that C ⊇ V (γ ) and otherwise contains only two-element subsets.
Define x by x = |C ∩ V (β)| and s by

s = h − |V (β) ∩ V (γ )|. (11)

If x = 1 then we must have s = h−1 and C = V (γ ). In this case from Lemma 1 we know that
an edge cover is at least as good as C. Suppose now that x ≥ 2 (i.e. max{h − s, 2} ≤ x ≤ h).
Since an edge cover is optimal for a clique on h vertices, πγ ∼ (mp2)(

h
2) and

π(β ∪ γ, C) ∼ (mp2)(
h
2)−(x

2)mps+x ∼ πγ

mpx

(mp2)(
x
2)

ps.

For s = h − 1, since k0 > h, from the proof of Lemma 1 we know that mpx/(mp2)(
x
2) is of the
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largest order of magnitude when x = 2. Thus, because of (5), from Lemma 1 we have

π(β ∪ γ, C) ∼ (mp2)(
h
2)ph−1

= O(1)(mp2)(
h
2)mpph−1

= O(1)(mp2)2(h
2)

mph

(mp2)(
h
2)

= O(1)(mp2)2(h
2)

= O(π(β ∪ γ, C′)),

where C′ is an edge cover. Thus, an edge cover is at least as good as C. For 1 ≤ s ≤ h − 2,
we have h − s ≤ x ≤ h and from the proof of Lemma 1 we know that mpx/(mp2)(

x
2) is of the

largest order of magnitude when x = h − s or x = h. If x = h − s then C = V (γ ) and, from
Lemma 1, an edge cover is at least as good as C. If x = h then C is a cover by one set.

6. Probabilities of cliques and their unions

In this section we estimate the terms πβ and E(IβIγ ) appearing in (6). Recall that Xn is the
random variable counting the number of instances of Kh in G(n, m, p), i.e. Xn = ∑

β∈� Iβ is
a sum over an index set {KV ′ : V ′ ⊆ V, |V ′| = h}, where Iβ is an indicator random variable
of the event β ⊆ G(n, m, p).

Lemma 7. Suppose that m is given by (1) and (2), and that p is given by (3). Then, for each
β ∈ �,

πβ ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ch

nh
for δ < 1,

ch + ch(h−1)

nh
for δ = 1,

ch(h−1)

nh
for δ > 1.

(12)

Moreover, let λn be defined by

λn := EXn =
(

n

h

)
πβ. (13)

Then,

lim
n→∞ λn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ch

h! for δ < 1,

ch + ch(h−1)

h! for δ = 1,

ch(h−1)

h! for δ > 1.

(14)

Proof. Let β be a clique on h vertices. Using (8), (10), and Lemma 5, we have

• if δ < 1 and C is a cover by one set, then

πβ ∼ π(β, C) ∼ mph ∼ ch

nh
;
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• if δ = 1, C is a cover by one set, and C′ is an edge cover of β, then

πβ ∼ π(β, C) + π(β, C′) ∼ mph + (mp2)(
h
2) ∼ ch + ch(h−1)

nh
;

• if δ > 1 and C is an edge cover, then

πβ ∼ π(β, C) ∼ (mp2)(
h
2) ∼ ch(h−1)

nh
.

The limits in (14) follow immediately from (13) and (12).

In the following lemma we let π stand for πγ for any γ ∈ �.

Lemma 8. Suppose that m is given by (1) and (2), and that p is given by (3). Define s by (11).
Then, for each β, γ ∈ �,

P(β ⊆ G(n, m, p), γ ⊆ G(n, m, p))

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O(π2 + πph−1) if δ ≤ 1 and s = h − 1,

O(πps) if δ ≤ 1 and s < h − 1,

O(π2 + mp2h−1) if δ > 1 and s = h − 1,

O(mph+s + π2n(h−s)(h−s−1)/(h−1)) if δ > 1 and s < h − 1.

Proof. Let C be a cover of β ∪ γ described in Lemma 6, and let C be the largest set in C.
First assume that δ ≤ 1.
Case 1: s = h − 1 and |C ∩ V (β)| ≤ 1, which implies that |V (β) ∩ V (γ )| = 1. Since C

covers no edges of β, it must be the case that C \ {C} is a cover of β and, therefore,

π(β ∪ γ, C) = O(1)π2.

Case 2: s < h − 1 or |C ∩ V (β)| ≥ 2. Without loss of generality, we may assume that
V (γ ) ⊆ C. Clearly, C[β] = {C′ ∩ V (β) : C′ ∈ C} is a clique cover of β and

π(β ∪ γ, C) = π(β, C[β])ps = O(1)πps.

Now assume that δ > 1.
Case 1: |C| = 2, so C is an edge cover. For s = h − 1,

π(β ∪ γ, C) = O(1)π2.

For s < h − 1,

π(β ∪ γ, C) ∼ π2(mp2)−(h−s
2 ) � π2n(h−s)(h−s−1)/(h−1),

where we have used (3).
Case 2: |C| = h + s. This is a cover by one set and

π(β ∪ γ, C) ∼ mph+s .
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7. Proof of Theorem 1

We will use (6) with the dependency graph L defined in Section 2. Observe that, since
πβ = πγ for all β, γ , and |V (L)| < |E(L)|,

∑
β∈V (L)

π2
β ≤

∑
βγ∈E(L)

πβπγ ,

and, therefore, we only need to estimate the following two sums:∑
βγ∈E(L)

πβπγ

and ∑
β∈V (L)

h−1∑
s=1

∑
γ∈V (L)

|V (β)∩V (γ )|=h−s

P(β ⊆ G(n, m, p), γ ⊆ G(n, m, p)). (15)

Note that, for given β ∈ V (L),

|{γ ∈ V (L) : |V (β) ∩ V (γ )| = h − s}| = O(ns),

|{γ ∈ V (L) : |V (β) ∩ V (γ )| �= ∅}| = O(nh−1),

and
|E(L)| = |V (L)||{γ ∈ V (L) : |V (β) ∩ V (γ )| �= ∅}| = O(n2h−1).

Hence, using nhπ = O(1) gives∑
βγ∈E(L)

πβπγ = O(n2h−1π2) = O(n−1).

We now use Lemma 8 to estimate (15). For δ ≤ 1, it holds that np � m−1/h = n−2δ/(h−1).
If δ ≤ 1 and s = h − 1, then∑

β∈V (L)

∑
γ∈V (L)

|V (β)∩V (γ )|=h−s

P(β ⊆ G(n, m, p), γ ⊆ G(n, m, p))

= O(n2h−1π2 + πn2h−1ph−1)

= O(n−1 + (np)h−1)

= O(n−1 + n−2δ).

If δ ≤ 1 and 1 ≤ s < h − 1, then∑
β∈V (L)

∑
γ∈V (L)

|V (β)∩V (γ )|=h−s

P(β ⊆ G(n, m, p), γ ⊆ G(n, m, p)) = O(nhπnsps)

= O(n−2δs/(h−1))

= O(n−2δ/(h−1)).
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For δ > 1, we can check that np � n(h−2)/(h−1)m−1/2 = n((1−δ)h−2)/(h−1) = o(1). If δ > 1
and s = h − 1, then∑

β∈V (L)

∑
γ∈V (L)

|V (β)∩V (γ )|=h−s

P(β ⊆ G(n, m, p), γ ⊆ G(n, m, p))

= O(n2h−1π2 + n2h−1mp2h−1)

= O(n−1 + nh+1mph+1)

= O(n−1 + (np)h+1m)

= O(n−1 + n((h+1)((1−δ)h−2)+2δh)/(h−1))

= O(n−1 + n(1−δ)h−2/(h−1)).

If δ > 1 and 1 ≤ s < h − 1, then∑
β∈V (L)

∑
γ∈V (L)

|V (β)∩V (γ )|=h−s

P(β ⊆ G(n, m, p), γ ⊆ G(n, m, p))

= O(nh+smph+s + n2hπ2ns−hn(h−s)(h−s−1)/(h−1))

= O(nh+1mph+1 + n((h−s)(h−s−1)−(h−s)(h−1))/(h−1))

= O(n(1−δ)h−2/(h−1) + n−(h−s)s/(h−1))

= O(n(1−δ)h−2/(h−1) + n−1).

Using the estimates above in (6) along with (14) proves Theorem 1.
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