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Abstract

Let X be a compact affine real algebraic variety of dimension 4. We compute the Witt group
of symplectic bilinear forms over the ring of regular functions from X to C. The Witt group is
expressed in terms of some subgroups of the cohomology groups H2(X,2) for k = 1,2.
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1. Introduction

Let X be an affine real algebraic variety, that is, X is biregularly isomorphic
to an algebraic subset of R” for some n (for definitions and notions of real
algebraic geometry we refer to [3]). Denote by # (X, C) the ring of regular
C-valued functions on X (cf. [3, page 279]). Thus if X is an algebraic subset
of R" and X¢ is its Zariski closure in C”, then # (X, C) is canonically iso-
morphic to the localization of the affine ring A(X¢) of X¢ with respect to the
multiplicatively closed subset

S ={f € A(Xc)lf(X) C C\{0}}.

In this note we study symplectic (that is, skew-symmetric) nonsingular bilin-
ear forms over %# (X, C). More precisely, let W~1(Z# (X, C)) denote the Witt
group of symplectic bilinear forms over # (X, C) (cf. Section 2 or [1, 2, 11]).
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In [4, 6] (cf. also Section 2) we have defined the graded subring

g:?g(Xs Z)= @ Hé’falg(X’ 7)
k>0

of the cohomology ring H*V*"( X, Z). Assuming that X is compact, nonsingu-
lar, dim X = 4, we compute the group W~(#(X,C)) ® Z/2 and, in some
cases, also the group W~!1(#(X,C)) in terms of the groups Hé’fa,g(X, Z),
k = 1,2. Combining this result with [4], we obtain that for “most™ alge-
braic hypersurfaces X of the real projective space RP> of sufficiently high
degree, the group W~1(#(X,C)) is zero (the precise meaning of “most” is
explained in Section 2). We also give examples of “exceptional” algebraic
hypersurfaces X in RP3 of arbitrarily high degree with W~1(#(X,C)) # 0.

Let us recall that the real projective space RP" with its usual structure
of an abstract real algebraic variety is in fact an affine variety [3, Theorem
3.4.4]. Hence every algebraic subvariety of RP”" is also affine.

2. Results

Let A be a commutative ring with an identity element. A symplectic space
over A is a pair (P, 5), where P is a finitely generated projective 4-module and
s: P x P — A is a bilinear nonsingular symplectic form (recall that s is said
to be nonsingular if the homomorphism P — P* = Hom(P, 4), x — s(x,-)
is bijective). Every finitely generated projective A-module Q gives rise to a
symplectic space H(Q) = (Q®Q", h), where h((x, x*), (y,¥*)) = x*(¥)—y*(x)
for x, y in Q and x*, y* in Q*. An isometry of symplectic spaces is an
isomorphism of the underlying modules preserving the forms. The orthogonal
sum of two symplectic space (Py, s1) and (P, 52), denoted by (Py,s,) L (P2, $2),
is the symplectic space (P, @ P»,s), where s((x, x2), (V1,¥2)) = s1(x1,71) +
$2(x2,y2) for xi, ¥, in P, and x,, y; in P,. Two symplectic spaces (P, s;)
and (P, 5;) are said to be equivalent if there exist finitely generated projective
A-modules @, and Q- such that the symplectic spaces (Py,s;) L H(Q;) and
(Py,s3) L H(Q,) are isometric. The set W—!(4) of equivalence classes of
symplectic spaces over A forms an abelian group with operation induced by
orthogonal sum (we shall use additive notation). The equivalence class of
(P,s) in W~1(A4) will be denoted by [P,s]. The group W~!(A), called the
Witt group of symplectic bilinear forms over A, is an interesting invariant of
A (cf. [1, 2, 11]).

Now we need to recall some notions introduced in (4, 6].
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Let V' be a quasi-projective nonsingular n-dimensional complex algebraic
variety. One defines the natural ring homomorphism

cl: A*(V) — H*(V,Z),

where A*(V) = @, 4*(V) is the Chow ring of V' and H*(V, Z) is the Cech
cohomology of ¥, as follows. Let Y c V be a closed irreducible subvari-
ety of dimension k and let {Y} be the elements of 4”~*(V') represented by
Y. Denote by [Y] the fundamental class of Y in the Borel-Moore homology
group HEM(Y,Z) (cf. [5] or [7, Chapter 19]). Then cl({Y}) is the element of
H?n=2k(V, 7) which corresponds, via Poincaré duality, to the image of [Y] in
HEM(V,7) under the homomorphism HZM(Y,Z) — HEM(V,1) induced by
the inclusion Y C V. Extending by linearity, cl defines a natural homomor-
phism cl: A*(V) — H*(V,Z). We set

HY(V,T) = cl(4*(V).

Now let X be an affine nonsingular real algebraic variety and suppose for a
moment that X is embedded in RP” as a locally closed subvariety. We shall
consider RP" as a subset of the complex projective space CP”. Let Xc¢ be the
Zariski (complex) closure of X in CP” and let U be a Zariski neighborhood
of X in the set of nonsingular points of Xc. We set

HZ, (X, 1) = H*(iv)(H3(U, 7)),

HES(X,T) = D HE,, (X, 1),
k>0

where H*(iy) is the homomorphism induced by the inclusion mapping
iy: X — U. One easily sees that Hg{g};(x , Z) does not depend on the choice
of U (cf. [4] and [6]).

Given a continuous complex vector bundle £ on X, let ¢, (£) denote its
kth Chern class (cf. [10]). We shall consider #(X,C) as a subring of the
ring % (X, C) of continuous C-valued functions on X (note that #(X,C) is
dense in (X, C) in the CP topology). If P is a finitely generated projective
(X, C)-module, then Z(X,C)Q P is a finitely generated projective & (X, C)-
module. We shall denote by £p the continuous complex vector bundle on X
associated with Z (X, C) ® P in the usual way (cf. [12]).

LEMMA 1. Let X be an affine nonsingular real algebraic variety.

(i) If P is a finitely generated projective Z (X, C)-module, then c;,(Ep) be-
longs to HE, (X, Z) for k > 0.

(i) If v is in HE (X, Z), then there exists an invertible # (X, C)-module
L withc,(&L) = v.

-alg
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ProofF. Both (i) and (ii) are quite straightforward consequences of the
definition of Hé’falg(X,Z); (i) is proved in [4, Theorem 5.3] (cf. also [6]),
while (ii) follows from [4, Proposition 5.1, Remark 5.4] (cf. also the proof
of Lemma 2 below).

LEMMA 2. Let X be a compact affine nonsingular real algebraic variety of
dimension 4.

(i) For every element u in Hé_alg(X , L), there exists a symplectic space (P, s)
over Z(X,C) with c;(&p) = u.

(ii) If (P,s) is a symplectic space over #Z(X,C) and c;(&p) = O, then (P, s)
is isometric to H(Z# (X, C)"), where 2n = rank P.

ProoF. First observe that every finitely generated projective #Z(X,C)-
module M with rank A > 3 has a unimodular element. Indeed, since dim X
= 4, the complex vector bundle £,y admits a nowhere zero continuous sec-
tion (cf. [9, Chapter 8, Proposition 1.1]). This implies, from [13, Theorem
2.2(a)], that M has a unimodular element.

In the proof of (i) we may assume that X is a locally closed subvariety of
RP”, Let U be a Zariski neighborhood of X in the set of nonsingular points
of the Zariski (complex) closure of X in CP". By definition of Hé_alg(X ,2),
there exists an element v in A%2(U) such that H*(i)(cl(v)) = u, where

H*(i): HY(U,1) — HYX, )

is the homomorphism induced by the inclusion mapping i: X — U. Clearly,
we may assume that U is an affine variety (cf. for example the proof of [4,
Proposition 5.1]). Now it follows from [7, Example 15.3.6] that there exists
an algebraic (complex) vector bundle # on U with C;(n) = 0 and Cy() = v,
where Ci(-) stands for the kth Chern class with values in the Chow ring.
Since cl o C; = ¢, (cf. [5, (4.13)], where this relation is proved for k = 1;
by a standard argument, cl o C; = ¢, must be true for all k), we obtain
ci(n]X) = 0 and c3(n|X) = u, where the restriction n|X is considered as a
continuous complex vector bundle on X. It easily follows (cf. [4, Proposition
5.1]) that #|X is topologically isomorphic to a vector bundle of the form &y
for some finitely generated projective # (X, C)-module Q. By the remark at
the beginning of the proof, Q = P @ F, where F is free and rank P = 2. In
particular,

alr)=ce) =0, clr)=c2lp) =u.

Let L = det P. Since ¢(£.) = ¢1(¢p) = 0, the bundle &; is topologically trivial
(cf. [9, Chapter 16, Theorem 3.4]) and, by virtue of [13, Theorem 2.2(a)], L
is free.
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In order to finish the proof of (i) it suffices to show that there exists a
symplectic nonsingular bilinear form on P. This however is obvious because
det P is free and rank P = 2,

Now we turn to the proof of (ii). First suppose that rank P > 2. Then P has
a unimodular element and, by [2, (4.11.2)], (P, s) is isometric to a symplectic
space of the form (Q,?) L H(Z# (X, C)). Since, obviously, c;({p) = 0, using
induction with respect to rank P, one reduces the proof to the case rank P =
2. In that case, c;(¢p) = O implies that £p has a nowhere zero continuous
section (cf. [10, page 171, Problem 14-C}). Thus, by [13, Theorem 2.2(a)], P
has a unimodular element and, finally, by [2, (4.11.2)], (P,s) is isometric to
H(#(X,0)).

Let X be an affine nonsingular real algebraic variety. Observe that
G(X) = {2u +v2|u € HE (X, T),v € HE 1, (X, 1)}
is a subgroup of Hé-alg(X ,Z). Indeed, if u; are in Hé_als(X ,Z) and v; are in
Hé_alg(X, Z) for i = 1,2, then

Quy + v}) — Qua + v3) = 2(u; — Uz + v1v3 — v3) + (V) — v3)?

is in G(X).
For every finitely generated projective # (X, C)-module Q, we have
c2(8gag-) = c2(&p @ &p-)
= 02(8o) + c2(8g-) + c1{&g)er(Eo-)
= c2(8o) + 2((§)*) + a1(ég)e1((€o)®)
= 20(&p) — a1(ép)?
and hence, by Lemma 1(i), ¢2({pgo-) 1s in G(X). It easily follows (again
from Lemma 1(i)) that
ox: WHZ(X,C)) ~ HE 44(X,2)/G(X)
px([P,s]) = c2(8p) + G(X)
is a well-defined group homomorphism.

THEOREM 3. Let X be a compact affine nonsingular real algebraic variety
of dimension 4. Then the homomorphism
ox: W I(F(X,C)) = HE 4y(X,1)/G(X)

is surjective and
kergpy = 2W =Y (#(X,C)).

In particular,
WY F(X,C))2W Y F(X,C) =W H{F(X,C)®1/2
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is canonically isomorphic to Hé_alg(X ,L)/G(X). Moreover, if 2H¢ ,.(X,Z) =
0, then gy is bijective.

Proor. It follows from Lemma 2(i) that gy is surjective.
Now we turn to the proof of kerpy = 2W ~1(# (X, C)).
Let [P,s] be in W~1(#(X,C)). Then

¢x(2[P,s]) = c2(pepr) + G(X)
= c2(¢p ®&p) + G(X)
= 2¢2(&p) + ¢1(Ep)? + G(X) = 0.

This shows that 2W ~!(# (X, C)) is contained in kerpy.

Suppose that [P,s] is in kerpy. Then c;(¢p) = 2u + v?, where u is in
H¢ 4, (X,Z) and v is in H ,, (X,Z). By Lemma 2(i), there exists a symplectic
space (Q, t) over #Z (X, C) such that c;(£p) = —u. Also, by Lemma 1(ii), one
can find an invertible # (X, C)-module L with ¢|(£;) = v. Let

(P',s") = (P,s) L(Q,1t) L (Q,t) L H(L).
Then one obtains

c2(&Epr) = ca(ép) + 262(8Q) — c1(&L)?
=Qu+v?)-2u—-v2=0.
By Lemma 2(ii), [P’,s'] = 0 and hence [P,s] = —2[Q,t]. Thus [P,s] is in
2W-1(#(X,C)), which shows that ker px is contained in 2W~1(Z (X, C)).
To finish the proof of the theorem, we note that if 2Hé_alg(X ,Z) =0, then,
by Lemma 2(ii), 2W~!(#(X, C)) = 0 and hence ¢y is an isomorphism.
Theorem 3 immediately implies the following

COROLLARY 4. Let X be a compact affine nonsingular real algebraic variety
of dimension 4. Assume that each connected component of X is nonorientable
as a C* manifold. Then the groups W~'(Z(X,C)) and H¢ ,(X,Z)/G(X)
are canonically isomorphic.

PROOF. Let M be a connected component of X. Since M is nonori-
entable, H4(M,Z) = Z/2 (cf. [8, (23.28), (22.28), (26.18)]). It follows that
2H*(X,Z) = 0 and hence 2H¢ (X, Z) = 0. Now it suffices to apply Theorem
3.

Our next result says that for a “generic” hypersurface X of RP> of suffi-
ciently high degree, one has W-1(%Z(X,C)) = 0.

More precisely, let n and k be positive integers. Denote by P(n,k) the
projective space associated with the vector space of all homogeneous polyno-
mials in R[x, ..., x,] of degree k. If an element H in P(n,k) is represented
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by a polynomial G, then V(H) will denote the subvariety of RP” defined by
G.

THEOREM 5. There exists a nonnegative integer ko such that, for every inte-
ger k greater than kg, one can find a subset X, of P(5,k) which is a countable
union of proper Zariski closed algebraic subvarieties of P(5,k) and has the
property that for every H in P(5,k)\X, the set V(H) is empty or V(H) is
nonsingular, dim V (H) = 4, and W~ (#(V(H),C)) = 0.

PROOF. Let n be an integer, n > 3. It is proved in [4, Theorem 4.10]
(cf. also [6]) that there exists a positive integer kp such that for every integer
k greater than kg, one can find a subset X, of P(n, k) which is a countable
union of proper Zariski closed algebraic subvarieties of P(n,k) and has the
property that for every H in P(n, k)\X, the set V(H) is empty or V(H) is
nonsingular, dim V(H) = n — 1, and HZZR (V(H), Z) is equal to the image of
the homomorphism

Heven(RPn’ 7)— Heven(V(H)’ Z)

induced by the inclusion V' (H) C RP".

Recall that H%*(RP",Z) = Z/2 for 0 < 2k < n. Moreover, if n > 4, then
the nonzero element u of H*(RP*,Z) is of the form u = v2, where v is the
nonzero element of H2(RP",Z). Hence 2HZ (V(H),Z) =0for0<2k <n
and Hé_alg(V(H),Z) = G(V(H)) for H in P(n,k)\X;.

With n = 5, the conclusion follows from Theorem 3.

REMARK 6. Theorem 5 cannot be much improved. More precisely, for ev-
ery positive integer ko there exists an integer k greater than ky and an element
H,, in P(5,2k) such that V' (H,,) is a nonsingular algebraic hypersurface of
RP3 and W—1(#(V (Hy),C)) # 0. Let Hy, be the element of P(5,2k) rep-
resented by the polynomial x3* — 33| x2. Clearly, ¥ (Hy) is a nonsingular
algebraic hypersurface of RP? diffeomorphic to the 4-dimensional sphere S*.
Moreover, by [4, Proposition 4.8],

HE y(V(Hu), 7) = H(V (Hy), 7) = L.
Since H2(V(Hy),7) = H?*(S*,7) = 0, one obtains
G(V (Ha)) = 2HE yo(V (Hy), Z).

Hence, by Theorem 3, W—1(#(V(Hy),C)) ® Z/2 is isomorphic to Z/2, and
W-1(Z(V(Hx),C)) # 0.
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