SYMPLECTIC COMPLEX BUNDLES OVER REAL ALGEBRAIC FOUR-FOLDS

WOJCIECH KUCHARZ

(Received 28 April, 1988)

Communicated by J. H. Rubinstein

Abstract

Let X be a compact affine real algebraic variety of dimension 4. We compute the Witt group of symplectic bilinear forms over the ring of regular functions from X to C. The Witt group is expressed in terms of some subgroups of the cohomology groups $H^{2k}(X, \mathbb{Z})$ for k = 1, 2.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 57 R 22, 19 G 12.

1. Introduction

Let X be an affine real algebraic variety, that is, X is biregularly isomorphic to an algebraic subset of \mathbb{R}^n for some n (for definitions and notions of real algebraic geometry we refer to [3]). Denote by $\mathscr{R}(X,\mathbb{C})$ the ring of regular \mathbb{C} -valued functions on X (cf. [3, page 279]). Thus if X is an algebraic subset of \mathbb{R}^n and $X_{\mathbb{C}}$ is its Zariski closure in \mathbb{C}^n , then $\mathscr{R}(X,\mathbb{C})$ is canonically isomorphic to the localization of the affine ring $A(X_{\mathbb{C}})$ of $X_{\mathbb{C}}$ with respect to the multiplicatively closed subset

$$S=\{f\in A(X_{\mathbb{C}})|f(X)\subset\mathbb{C}\backslash\{0\}\}.$$

In this note we study symplectic (that is, skew-symmetric) nonsingular bilinear forms over $\mathcal{R}(X,\mathbb{C})$. More precisely, let $W^{-1}(\mathcal{R}(X,\mathbb{C}))$ denote the Witt group of symplectic bilinear forms over $\mathcal{R}(X,\mathbb{C})$ (cf. Section 2 or [1, 2, 11]).

^{© 1989} Australian Mathematical Society 0263-6115/89 \$A2.00 + 0.00

In [4, 6] (cf. also Section 2) we have defined the graded subring

$$H^{\mathrm{even}}_{\mathbb{C}\text{-}\mathrm{alg}}(X, \mathbf{Z}) = \bigoplus_{k \geq 0} H^{2k}_{\mathbb{C}\text{-}\mathrm{alg}}(X, \mathbf{Z})$$

of the cohomology ring $H^{\text{even}}(X, \mathbb{Z})$. Assuming that X is compact, nonsingular, dim X=4, we compute the group $W^{-1}(\mathcal{R}(X,\mathbb{C}))\otimes\mathbb{Z}/2$ and, in some cases, also the group $W^{-1}(\mathcal{R}(X,\mathbb{C}))$ in terms of the groups $H^{2k}_{\mathbb{C}\text{-alg}}(X,\mathbb{Z})$, k=1,2. Combining this result with [4], we obtain that for "most" algebraic hypersurfaces X of the real projective space $\mathbb{R}P^5$ of sufficiently high degree, the group $W^{-1}(\mathcal{R}(X,\mathbb{C}))$ is zero (the precise meaning of "most" is explained in Section 2). We also give examples of "exceptional" algebraic hypersurfaces X in $\mathbb{R}P^5$ of arbitrarily high degree with $W^{-1}(\mathcal{R}(X,\mathbb{C})) \neq 0$.

Let us recall that the real projective space $\mathbb{R}P^n$ with its usual structure of an abstract real algebraic variety is in fact an affine variety [3, Theorem 3.4.4]. Hence every algebraic subvariety of $\mathbb{R}P^n$ is also affine.

2. Results

Let A be a commutative ring with an identity element. A symplectic space over A is a pair (P, s), where P is a finitely generated projective A-module and $s: P \times P \rightarrow A$ is a bilinear nonsingular symplectic form (recall that s is said to be nonsingular if the homomorphism $P \to P^* = \operatorname{Hom}(P, A), x \to s(x, \cdot)$ is bijective). Every finitely generated projective A-module Q gives rise to a symplectic space $H(Q) = (Q \oplus Q^*, h)$, where $h((x, x^*), (y, y^*)) = x^*(y) - y^*(x)$ for x, y in Q and x^* , y^* in Q^* . An isometry of symplectic spaces is an isomorphism of the underlying modules preserving the forms. The orthogonal sum of two symplectic space (P_1, s_1) and (P_2, s_2) , denoted by $(P_1, s_1) \perp (P_2, s_2)$, is the symplectic space $(P_1 \oplus P_2, s)$, where $s((x_1, x_2), (y_1, y_2)) = s_1(x_1, y_1) +$ $s_2(x_2, y_2)$ for x_1, y_1 in P_1 and x_2, y_2 in P_2 . Two symplectic spaces (P_1, s_1) and (P_2, s_2) are said to be *equivalent* if there exist finitely generated projective A-modules Q_1 and Q_2 such that the symplectic spaces $(P_1, s_1) \perp H(Q_1)$ and $(P_2, s_2) \perp H(Q_2)$ are isometric. The set $W^{-1}(A)$ of equivalence classes of symplectic spaces over A forms an abelian group with operation induced by orthogonal sum (we shall use additive notation). The equivalence class of (P,s) in $W^{-1}(A)$ will be denoted by [P,s]. The group $W^{-1}(A)$, called the Witt group of symplectic bilinear forms over A, is an interesting invariant of A (cf. [1, 2, 11]).

Now we need to recall some notions introduced in [4, 6].

Let V be a quasi-projective nonsingular n-dimensional complex algebraic variety. One defines the natural ring homomorphism

cl:
$$A^*(V) \rightarrow H^*(V, \mathbb{Z})$$
,

where $A^*(V) = \bigoplus_{k \geq 0} A^k(V)$ is the Chow ring of V and $H^*(V, \mathbb{Z})$ is the Čech cohomology of V, as follows. Let $Y \subset V$ be a closed irreducible subvariety of dimension k and let $\{Y\}$ be the elements of $A^{n-k}(V)$ represented by Y. Denote by [Y] the fundamental class of Y in the Borel-Moore homology group $H_{2k}^{BM}(Y,\mathbb{Z})$ (cf. [5] or [7, Chapter 19]). Then $\operatorname{cl}(\{Y\})$ is the element of $H^{2n-2k}(V,\mathbb{Z})$ which corresponds, via Poincaré duality, to the image of [Y] in $H_{2k}^{BM}(V,\mathbb{Z})$ under the homomorphism $H_{2k}^{BM}(Y,\mathbb{Z}) \to H_{2k}^{BM}(V,\mathbb{Z})$ induced by the inclusion $Y \subset V$. Extending by linearity, cl defines a natural homomorphism $\operatorname{cl}: A^*(V) \to H^*(V,\mathbb{Z})$. We set

$$H^{2k}_{\mathrm{alg}}(V, \mathbb{Z}) = \mathrm{cl}(A^k(V)).$$

Now let X be an affine nonsingular real algebraic variety and suppose for a moment that X is embedded in $\mathbb{R}P^n$ as a locally closed subvariety. We shall consider $\mathbb{R}P^n$ as a subset of the complex projective space $\mathbb{C}P^n$. Let $X_{\mathbb{C}}$ be the Zariski (complex) closure of X in $\mathbb{C}P^n$ and let U be a Zariski neighborhood of X in the set of nonsingular points of $X_{\mathbb{C}}$. We set

$$\begin{split} H^{2k}_{\mathbf{C}\text{-alg}}(X,\mathbf{Z}) &= H^*(i_U)(H^{2k}_{\mathrm{alg}}(U,\mathbf{Z})), \\ H^{\mathrm{even}}_{\mathbf{C}\text{-alg}}(X,\mathbf{Z}) &= \bigoplus_{k>0} H^{2k}_{\mathbf{C}\text{-alg}}(X,\mathbf{Z}), \end{split}$$

where $H^*(i_U)$ is the homomorphism induced by the inclusion mapping $i_U: X \to U$. One easily sees that $H^{\text{even}}_{\mathbf{C}\text{-alg}}(X, \mathbf{Z})$ does not depend on the choice of U (cf. [4] and [6]).

Given a continuous complex vector bundle ξ on X, let $c_k(\xi)$ denote its kth Chern class (cf. [10]). We shall consider $\mathcal{R}(X,\mathbb{C})$ as a subring of the ring $\mathcal{C}(X,\mathbb{C})$ of continuous C-valued functions on X (note that $\mathcal{R}(X,\mathbb{C})$ is dense in $\mathcal{C}(X,\mathbb{C})$ in the C^0 topology). If P is a finitely generated projective $\mathcal{R}(X,\mathbb{C})$ -module, then $\mathcal{C}(X,\mathbb{C})\otimes P$ is a finitely generated projective $\mathcal{C}(X,\mathbb{C})$ -module. We shall denote by ξ_P the continuous complex vector bundle on X associated with $\mathcal{C}(X,\mathbb{C})\otimes P$ in the usual way (cf. [12]).

LEMMA 1. Let X be an affine nonsingular real algebraic variety.

- (i) If P is a finitely generated projective $\mathcal{R}(X,\mathbb{C})$ -module, then $c_k(\xi_P)$ belongs to $H^{2k}_{\mathbb{C}\text{-alg}}(X,\mathbb{Z})$ for $k \geq 0$.
- (ii) If v is in $H^2_{\mathbb{C}\text{-alg}}(X,\mathbb{Z})$, then there exists an invertible $\mathcal{R}(X,\mathbb{C})$ -module L with $c_1(\xi_L) = v$.

PROOF. Both (i) and (ii) are quite straightforward consequences of the definition of $H^{2k}_{\text{C-alg}}(X, \mathbb{Z})$; (i) is proved in [4, Theorem 5.3] (cf. also [6]), while (ii) follows from [4, Proposition 5.1, Remark 5.4] (cf. also the proof of Lemma 2 below).

LEMMA 2. Let X be a compact affine nonsingular real algebraic variety of dimension 4.

- (i) For every element u in $H^4_{\mathbb{C}\text{-alg}}(X, \mathbb{Z})$, there exists a symplectic space (P, s) over $\mathcal{R}(X, \mathbb{C})$ with $c_2(\xi_P) = u$.
- (ii) If (P, s) is a symplectic space over $\mathcal{R}(X, \mathbb{C})$ and $c_2(\xi_P) = 0$, then (P, s) is isometric to $H(\mathcal{R}(X, \mathbb{C})^n)$, where 2n = rank P.

PROOF. First observe that every finitely generated projective $\mathcal{R}(X,\mathbb{C})$ -module M with rank $M \geq 3$ has a unimodular element. Indeed, since dim X = 4, the complex vector bundle ξ_M admits a nowhere zero continuous section (cf. [9, Chapter 8, Proposition 1.1]). This implies, from [13, Theorem 2.2(a)], that M has a unimodular element.

In the proof of (i) we may assume that X is a locally closed subvariety of $\mathbb{R}P^n$. Let U be a Zariski neighborhood of X in the set of nonsingular points of the Zariski (complex) closure of X in $\mathbb{C}P^n$. By definition of $H^4_{\mathbb{C}-alg}(X,\mathbb{Z})$, there exists an element v in $A^2(U)$ such that $H^*(i)(\operatorname{cl}(v)) = u$, where

$$H^*(i): H^4(U, \mathbb{Z}) \to H^4(X, \mathbb{Z})$$

is the homomorphism induced by the inclusion mapping $i: X \to U$. Clearly, we may assume that U is an affine variety (cf. for example the proof of [4, Proposition 5.1]). Now it follows from [7, Example 15.3.6] that there exists an algebraic (complex) vector bundle η on U with $C_1(\eta) = 0$ and $C_2(\eta) = v$, where $C_k(\cdot)$ stands for the kth Chern class with values in the Chow ring. Since $cl \circ C_k = c_k$ (cf. [5, (4.13)], where this relation is proved for k = 1; by a standard argument, $cl \circ C_k = c_k$ must be true for all k), we obtain $c_1(\eta|X) = 0$ and $c_2(\eta|X) = u$, where the restriction $\eta|X$ is considered as a continuous complex vector bundle on X. It easily follows (cf. [4, Proposition 5.1]) that $\eta|X$ is topologically isomorphic to a vector bundle of the form ξ_Q for some finitely generated projective $\mathcal{R}(X, \mathbb{C})$ -module Q. By the remark at the beginning of the proof, $Q = P \oplus F$, where F is free and rank P = 2. In particular,

$$c_1(\xi_P) = c_1(\xi_Q) = 0,$$
 $c_2(\xi_P) = c_2(\xi_Q) = u.$

Let $L = \det P$. Since $c_1(\xi_L) = c_1(\xi_P) = 0$, the bundle ξ_L is topologically trivial (cf. [9, Chapter 16, Theorem 3.4]) and, by virtue of [13, Theorem 2.2(a)], L is free.

In order to finish the proof of (i) it suffices to show that there exists a symplectic nonsingular bilinear form on P. This however is obvious because det P is free and rank P = 2.

Now we turn to the proof of (ii). First suppose that rank P > 2. Then P has a unimodular element and, by [2, (4.11.2)], (P, s) is isometric to a symplectic space of the form $(Q, t) \perp H(\mathcal{R}(X, \mathbb{C}))$. Since, obviously, $c_2(\xi_Q) = 0$, using induction with respect to rank P, one reduces the proof to the case rank P = 2. In that case, $c_2(\xi_P) = 0$ implies that ξ_P has a nowhere zero continuous section (cf. [10, page 171, Problem 14-C]). Thus, by [13, Theorem 2.2(a)], P has a unimodular element and, finally, by [2, (4.11.2)], (P, s) is isometric to $H(\mathcal{R}(X, \mathbb{C}))$.

Let X be an affine nonsingular real algebraic variety. Observe that

$$G(X) = \{2u + v^2 | u \in H^4_{\mathbb{C}-alg}(X, \mathbb{Z}), v \in H^2_{\mathbb{C}-alg}(X, \mathbb{Z})\}$$

is a subgroup of $H^4_{C-alg}(X, \mathbb{Z})$. Indeed, if u_i are in $H^4_{C-alg}(X, \mathbb{Z})$ and v_i are in $H^2_{C-alg}(X, \mathbb{Z})$ for i = 1, 2, then

$$(2u_1 + v_1^2) - (2u_2 + v_2^2) = 2(u_1 - u_2 + v_1v_2 - v_2^2) + (v_1 - v_2)^2$$

is in G(X).

For every finitely generated projective $\mathcal{R}(X,\mathbb{C})$ -module Q, we have

$$c_{2}(\xi_{Q \oplus Q^{*}}) = c_{2}(\xi_{Q} \oplus \xi_{Q^{*}})$$

$$= c_{2}(\xi_{Q}) + c_{2}(\xi_{Q^{*}}) + c_{1}(\xi_{Q})c_{1}(\xi_{Q^{*}})$$

$$= c_{2}(\xi_{Q}) + c_{2}((\xi_{Q})^{*}) + c_{1}(\xi_{Q})c_{1}((\xi_{Q})^{*})$$

$$= 2c_{2}(\xi_{Q}) - c_{1}(\xi_{Q})^{2}$$

and hence, by Lemma 1(i), $c_2(\xi_{Q\oplus Q^*})$ is in G(X). It easily follows (again from Lemma 1(i)) that

$$\varphi_X \colon W^{-1}(\mathscr{R}(X,\mathbb{C})) \to H^4_{\mathbb{C}\text{-alg}}(X,\mathbb{Z})/G(X)$$

 $\varphi_X([P,s]) = c_2(\xi_P) + G(X)$

is a well-defined group homomorphism.

THEOREM 3. Let X be a compact affine nonsingular real algebraic variety of dimension 4. Then the homomorphism

$$\varphi_X \colon W^{-1}(\mathscr{R}(X,\mathbb{C})) \to H^4_{\mathbb{C}\text{-alg}}(X,\mathbf{Z})/G(X)$$

is surjective and

$$\ker \varphi_X = 2W^{-1}(\mathscr{R}(X,\mathbb{C})).$$

In particular,

$$W^{-1}(\mathcal{R}(X,\mathbb{C}))/2W^{-1}(\mathcal{R}(X,\mathbb{C})) \cong W^{-1}(\mathcal{R}(X,\mathbb{C})) \otimes \mathbb{Z}/2$$

is canonically isomorphic to $H^4_{\mathbb{C}\text{-alg}}(X, \mathbb{Z})/G(X)$. Moreover, if $2H^4_{\mathbb{C}\text{-alg}}(X, \mathbb{Z}) = 0$, then φ_X is bijective.

PROOF. It follows from Lemma 2(i) that φ_X is surjective. Now we turn to the proof of $\ker \varphi_X = 2W^{-1}(\mathcal{R}(X,\mathbb{C}))$. Let [P,s] be in $W^{-1}(\mathcal{R}(X,\mathbb{C}))$. Then

$$\varphi_X(2[P, s]) = c_2(\xi_{P \oplus P}) + G(X)$$

$$= c_2(\xi_P \oplus \xi_P) + G(X)$$

$$= 2c_2(\xi_P) + c_1(\xi_P)^2 + G(X) = 0.$$

This shows that $2W^{-1}(\mathcal{R}(X,\mathbb{C}))$ is contained in ker φ_X .

Suppose that [P,s] is in $\ker \varphi_X$. Then $c_2(\xi_P)=2u+v^2$, where u is in $H^4_{\mathbb{C}\text{-alg}}(X,\mathbb{Z})$ and v is in $H^2_{\mathbb{C}\text{-alg}}(X,\mathbb{Z})$. By Lemma 2(i), there exists a symplectic space (Q,t) over $\mathscr{R}(X,\mathbb{C})$ such that $c_2(\xi_Q)=-u$. Also, by Lemma 1(ii), one can find an invertible $\mathscr{R}(X,\mathbb{C})$ -module L with $c_1(\xi_L)=v$. Let

$$(P',s')=(P,s)\perp(Q,t)\perp(Q,t)\perp H(L).$$

Then one obtains

$$c_2(\xi_{P'}) = c_2(\xi_P) + 2c_2(\xi_Q) - c_1(\xi_L)^2$$

= $(2u + v^2) - 2u - v^2 = 0$.

By Lemma 2(ii), [P', s'] = 0 and hence [P, s] = -2[Q, t]. Thus [P, s] is in $2W^{-1}(\mathcal{R}(X, \mathbb{C}))$, which shows that $\ker \varphi_X$ is contained in $2W^{-1}(\mathcal{R}(X, \mathbb{C}))$.

To finish the proof of the theorem, we note that if $2H_{C-alg}^4(X, \mathbb{Z}) = 0$, then, by Lemma 2(ii), $2W^{-1}(\mathcal{R}(X, \mathbb{C})) = 0$ and hence φ_X is an isomorphism.

Theorem 3 immediately implies the following

COROLLARY 4. Let X be a compact affine nonsingular real algebraic variety of dimension 4. Assume that each connected component of X is nonorientable as a C^{∞} manifold. Then the groups $W^{-1}(\mathcal{R}(X,\mathbb{C}))$ and $H^4_{\mathbf{C}\text{-alg}}(X,\mathbf{Z})/G(X)$ are canonically isomorphic.

PROOF. Let M be a connected component of X. Since M is nonorientable, $H^4(M, \mathbb{Z}) \cong \mathbb{Z}/2$ (cf. [8, (23.28), (22.28), (26.18)]). It follows that $2H^4(X, \mathbb{Z}) = 0$ and hence $2H^4_{C-alg}(X, \mathbb{Z}) = 0$. Now it suffices to apply Theorem 3.

Our next result says that for a "generic" hypersurface X of $\mathbb{R}P^5$ of sufficiently high degree, one has $W^{-1}(\mathcal{R}(X,\mathbb{C}))=0$.

More precisely, let n and k be positive integers. Denote by P(n,k) the projective space associated with the vector space of all homogeneous polynomials in $R[x_0, \ldots, x_n]$ of degree k. If an element H in P(n,k) is represented

by a polynomial G, then V(H) will denote the subvariety of $\mathbb{R}P^n$ defined by G.

THEOREM 5. There exists a nonnegative integer k_0 such that, for every integer k greater than k_0 , one can find a subset Σ_k of P(5,k) which is a countable union of proper Zariski closed algebraic subvarieties of P(5,k) and has the property that for every H in $P(5,k)\backslash\Sigma_k$, the set V(H) is empty or V(H) is nonsingular, dim V(H)=4, and $W^{-1}(\mathcal{R}(V(H),\mathbb{C}))=0$.

PROOF. Let n be an integer, $n \geq 3$. It is proved in [4, Theorem 4.10] (cf. also [6]) that there exists a positive integer k_0 such that for every integer k greater than k_0 , one can find a subset Σ_k of P(n,k) which is a countable union of proper Zariski closed algebraic subvarieties of P(n,k) and has the property that for every H in $P(n,k)\backslash\Sigma_k$, the set V(H) is empty or V(H) is nonsingular, dim V(H)=n-1, and $H^{\text{even}}_{\text{C-alg}}(V(H),\mathbf{Z})$ is equal to the image of the homomorphism

$$H^{\text{even}}(\mathbb{R}P^n, \mathbb{Z}) \to H^{\text{even}}(V(H), \mathbb{Z})$$

induced by the inclusion $V(H) \subset \mathbb{R}P^n$.

Recall that $H^{2k}(\mathbb{R}P^n, \mathbb{Z}) \cong \mathbb{Z}/2$ for $0 < 2k \le n$. Moreover, if $n \ge 4$, then the nonzero element u of $H^4(\mathbb{R}P^n, \mathbb{Z})$ is of the form $u = v^2$, where v is the nonzero element of $H^2(\mathbb{R}P^n, \mathbb{Z})$. Hence $2H^{2k}_{\mathbf{C}\text{-alg}}(V(H), \mathbb{Z}) = 0$ for $0 < 2k \le n$ and $H^4_{\mathbf{C}\text{-alg}}(V(H), \mathbb{Z}) = G(V(H))$ for H in $P(n, k) \setminus \Sigma_k$.

With n = 5, the conclusion follows from Theorem 3.

REMARK 6. Theorem 5 cannot be much improved. More precisely, for every positive integer k_0 there exists an integer k greater than k_0 and an element H_{2k} in P(5,2k) such that $V(H_{2k})$ is a nonsingular algebraic hypersurface of $\mathbb{R}P^5$ and $W^{-1}(\mathcal{R}(V(H_{2k}),\mathbb{C})) \neq 0$. Let H_{2k} be the element of P(5,2k) represented by the polynomial $x_0^{2k} - \sum_{i=1}^5 x_i^{2k}$. Clearly, $V(H_{2k})$ is a nonsingular algebraic hypersurface of $\mathbb{R}P^5$ diffeomorphic to the 4-dimensional sphere S^4 . Moreover, by [4, Proposition 4.8],

$$H^{4}_{C-alg}(V(H_{2k}), \mathbb{Z}) = H^{4}(V(H_{2k}), \mathbb{Z}) \cong \mathbb{Z}.$$

Since $H^2(V(H_{2k}), \mathbb{Z}) \cong H^2(S^4, \mathbb{Z}) = 0$, one obtains

$$G(V(H_{2k})) = 2H_{\mathbf{C}-alg}^4(V(H_{2k}), \mathbf{Z}).$$

Hence, by Theorem 3, $W^{-1}(\mathcal{R}(V(H_{2k}),\mathbb{C})) \otimes \mathbb{Z}/2$ is isomorphic to $\mathbb{Z}/2$, and $W^{-1}(\mathcal{R}(V(H_{2k}),\mathbb{C})) \neq 0$.

References

- [1] J. Barge and M. Ojanguren, 'Fibrés algébriques sur une surface réele,' Comment. Math. Helv. 62 (1987), 616-629.
- [2] H. Bass, 'Unitary algebraic K-theory,' Algebraic K-Theory III, pp. 57-265 (Lecture Notes in Math., vol. 343, Berlin, Heidelberg, New York, Springer 1973).
- [3] J. Bochnak, M. Coste and M.-F. Roy, Géométrie algébrique réele, (Ergebnisse Math. Grenz-geb., vol. 12, Springer, 1987).
- [4] J. Bochnak, M. Buchner and W. Kucharz, 'Vector bundles over real algebraic varieties,' to appear in K-Theory.
- [5] A. Borel and H. Haefliger, 'La classe d'homologie fondamentale d'un espace analytique,' Bull. Soc. Math. France 89 (1961), 461-513.
- [6] M. Buchner and W. Kucharz, 'Algebraic vector bundles over real algebraic varieties,' Bull. Amer. Math. Soc. 17 (1987), 279-282.
- [7] W. Fulton, Intersection theory, (Ergebnisse Math. Grenzgeb., vol. 2, Springer, 1984).
- [8] M. Greenberg and J. Harper, Algebraic topology, (Benjamin/Cummings, 1981).
- [9] D. Husemoller, Fibre bundles, (GTM 20, Springer, 1975).
- [10] J. Milnor and J. Stasheff, Characteristic classes, (Princeton, Princeton University Press, 1974).
- [11] M. Ojanguren, R. Parimala and R. Sridharan, 'Symplectic bundles over affine varieties,' Comment. Math. Helv. 61 (1986), 491-500.
- [12] R. Swan, 'Vector bundles and projective modules,' Trans. Amer. Math. Soc. 105 (1962), 264-277.
- [13] R. Swan, 'Topological examples of projective modules,' Trans. Amer. Math. Soc. 230 (1977), 201-234.

Department of Mathematics and Statistics University of New Mexico Albuquerque, New Mexico 87131 U.S.A.