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Smoothness of Quotients Associated
With a Pair of Commuting Involutions

Aloysius G. Helminck and Gerald W. Schwarz

Abstract. Let σ, θ be commuting involutions of the connected semisimple algebraic group G where σ,

θ and G are defined over an algebraically closed field k, char k = 0. Let H := Gσ and K := Gθ be

the fixed point groups. We have an action (H × K) × G → G, where ((h, k), g) 7→ hgk−1, h ∈ H,

k ∈ K, g ∈ G. Let G//(H × K) denote the categorical quotient Spec O(G)H×K . We determine when

this quotient is smooth. Our results are a generalization of those of Steinberg [Ste75], Pittie [Pit72]

and Richardson [Ric82] in the symmetric case where σ = θ and H = K.

1 Introduction

Let σ, θ be commuting involutions of the connected reductive algebraic group G

where σ, θ and G are defined over an algebraically closed field k, char k = 0. Let

H := Gσ and K := Gθ be the fixed point groups. We have an action (H×K)×G → G,
where ((h, k), g) 7→ hgk−1, h ∈ H, k ∈ K, g ∈ G. Let G//(H × K) denote the
categorical quotient Spec O(G)H×K .

We want to determine when this quotient is smooth (resp., an affine space). Ex-
ample 2 below shows that this is only a reasonable task when G is semisimple. If, in
addition, G is simply connected, we have

Theorem 1 (See Corollary 2) Suppose that G is semisimple and simply connected.

Then G//(H × K) is smooth.

It is useful to first divide by the action of K. Let β : G → G, g 7→ gθ(g)−1.

Then β induces an isomorphism G/K
∼→ P := β(G), gK 7→ β(g) [Ric82, 2.4].

The left action of G on G/K becomes the twisted action g ∗ x := gxθ(g)−1, g ∈ G,
x ∈ P. In particular, the ∗-action is conjugation when restricted to K. Instead of
studying the quotient mapping π : G → G//(H × K) we study the quotient mapping

πP : P → P//H where H acts via ∗.

Theorem 2 Let G be semisimple, and let σ, H, etc. be as above. Then the following

are equivalent

(1) P//H is smooth.

(2) O(P)H is a polynomial algebra (i.e., P//H is an affine space).

(3) O(P) is a free O(P)H-module.

Received by the editors October 9, 2002; revised April 24, 2003.
First author is partially supported by N.S.F. Grant DMS-9977392. Second author is partially sup-

ported by N.S.F. Grant DMS-0070472
AMS subject classification: 20G15, 20G20, 22E15, 22E46.
c©Canadian Mathematical Society 2004.

945

https://doi.org/10.4153/CJM-2004-043-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-043-7
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We establish Theorem 1 in §3 using slice theorem techniques from [HS01] and
an argument along the lines of [Ric82, 14.3]. To establish Theorem 2 we have to use

the fact that the quotient P//H can also be obtained in terms of a torus A divided by
a “twisted” Weyl group W ∗

H(A) (see §2). We are able to reduce to the case that our
twisted Weyl group W ∗

H(A) is of the form WH(A)⋉F0 where WH(A) is the usual Weyl
group of A and F0 is a subgroup of the elements of order two in A. In §4 we introduce

our Main Theorem 7 which is a version of Theorem 2 in terms of A and W ∗
H(A). In

§5 we obtain Theorem 2 as a consequence of our Main Theorem 7. We also reduce
the proof of Theorem 7 to that of our Main Lemma 3 which we establish in §6. In §7
we consider the possible F0 that can occur when G is adjoint.

2 Quotients of Tori

Let G, P, etc. be as in §1. A torus S in G is θ-split if θ(s) = s−1 for all s ∈ S and
S is (σ, θ)-split if it is θ-split and σ-split. Let A be a maximal (σ, θ)-split torus of
G. From the twisted action ∗ we obtain a twisted Weyl group W ∗

H(A). Set N∗
H(A) =

{h ∈ H | h ∗ A = A}, Z∗
H(A) = {h ∈ H | h ∗ a = a for every a ∈ A} and

W ∗
H(A) = N∗

H(A)/Z∗
H(A).

Theorem 3 ([HS01, Theorem 6.5]) Let H act on P by ∗. Then the inclusion A → P

induces an isomorphism A/W ∗
H(A)

∼−→ P//H. In particular:

(1) The closed H-orbits are exactly those which intersect A.

(2) If a ∈ A, then (H ∗ a) ∩ A = W ∗
H(A) ∗ a.

2.1 We now take a closer look at W ∗
H(A) and its action on A. If h ∈ N∗

H(A), then h ∗
e = β(h) ∈ A, hence σ(β(h)) = β(h)−1. But σ fixes h, hence fixes β(h). Thus
β(h) ∈ A(2), the elements of A of order 2. If a ∈ A, then h ∗ a = hah−1hθ(h)−1

=

hah−1β(h), so that N∗
H(A) = {h ∈ NH(A) | β(h) ∈ A(2)} and Z∗

H(A) = {h ∈
ZH(A) | β(h) = e}. From the inclusions N∗

H(A) ⊂ NH(A) and Z∗
H(A) ⊂ ZH(A) we

obtain a group homomorphism φ : W ∗
H(A) → WH(A), and the mapping h 7→ β(h)

induces a mapping (which we also call β) from W ∗
H(A) to A(2). The homomorphism

φ has kernel W0 ≃ (ZH(A) ∩ N∗
H(A))/Z∗

H(A), and when restricted to W0, β induces
an isomorphism W0 ≃ F0 := β(W0). The subgroup F0 is WH(A)-stable.

Since WH(A) acts on A, we have a semidirect product WH(A) ⋉ A, with multipli-
cation (w, a) ∗ (w ′, a ′) = (ww ′, aw(a ′)), w, w ′ ∈ WH(A), a, a ′ ∈ A. We identify
A with {(e, a) | a ∈ A}. The action of W ∗

H(A) on A factors through the injective

homomorphism

ρ = (φ, β) : W ∗
H(A) → WH(A) ⋉ A(2).

2.2 Straightening the Action of W ∗

H(A)

The group W ∗
H(A) (or rather, its embedding in WH(A) ⋉ A(2)) can be quite compli-

cated. Fortunately, we can straighten things out, using quadratic elements. We say
that q ∈ A is quadratic if q2 ∈ Z(G). Let Q(A) denote the set of quadratic elements
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in A. Given q ∈ Q(A), let αq denote the automorphism of A which is multiplication
by q. If (w, a) ∈ WH(A) ⋉ A(2) and b ∈ A, then

αq(w, a) ∗ α−1
q b = qaw(q−1b) = qw(q−1)aw(b) = (w, qw(q−1)a) ∗ b.

Since q2 ∈ Z(G), (qw(q−1))2
= q2w(q−2) = e, so that conjugation by αq does indeed

induce an automorphism, denoted ηq, of WH(A) ⋉ A(2). Moreover, ηq acts as the

identity on F0.

Theorem 4 ([HS01, Theorem 9.3 and 9.13]) There is a q ∈ Q(A) such that

ηq(ρ(W ∗
H(A))) = WH(A) ⋉ F0.

Using Theorem 4 and our calculation above we may always reduce to the case that
ρ(W ∗

H(A)) = WH(A) ⋉ F0.

2.3 Determining F0

Let T ⊂ G be a torus. If T is invariant under an involution α, then we use Tα
+ to

denote (Tα)0 and Tα
− to denote the (unique) maximal α-split subtorus of T. Then

T = Tα
+ Tα

−.

If T is stable under our commuting involutions σ and θ, then we define T
σ,θ
++ to be

(Tσ
+ ∩ Tθ

+)0, and similarly for T
σ,θ
−−, T

σ,θ
+− and T

σ,θ
−+. From [Hel88, 5.13] we know that

there are (σ, θ)-stable maximal tori T of G such that

(1) A = Tσ,θ
−−.

(2) AT
σ,θ
+− is a maximal θ-split torus.

(3) AT
σ,θ
−+ is a maximal σ-split torus.

We call such maximal tori standard. Now set τ := σθ. We then have

Theorem 5 (See [HS01, Theorem 8.12]) Let T be a standard maximal torus of G.

Then F0 = Tτ
− ∩ A.

We use Theorem 5 to construct examples.

Example 1 One can easily find cases where F0 = A(2): Let G1 be a reductive group

with maximal torus S and Weyl group W . Let α be an involution of G1 such that S is
α-split ([Hel88, 4.11]). Set G := G1 × G1. For (x, y) ∈ G, set θ(x, y) = (α(x), α(y))
and set σ(x, y) = (y, x). Then σ and θ commute, and A = {(s, s−1) : s ∈ S} is
a maximally (σ, θ)-split torus. Moreover, S × S is a standard torus T of G with

Tτ
− = {(s, s) : s ∈ S}. It follows that F0 = A ∩ {(s, s) : s ∈ S} = A(2).

Example 2 Here we show the complications that can occur if the group G is not
semisimple. Let G1 = SL2n, n ≥ 2. Set G0 = G1 × G1, and let σ = θ send (x, y)
to (y, x), (x,y) ∈ G1 × G1. Then A can be taken to be {(s, s−1) | s ∈ S} where
S is the standard diagonal maximal torus of SL2n. The Weyl group W ∗

H(A) is just
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W ≃ S2n acting by w(s, s−1) = (w(s), w(s−1)), s ∈ S, w ∈ W , and the quotient A/W

is smooth. Now set G := (G1×G1×k∗). Extend the actions of σ and θ to G such that

θ(x, y, λ) = (y, x, λ) and σ(x, y, λ) = (y, x, λ−1) for (x, y, λ) ∈ G. Then a maximal
(σ, θ)-split torus A is {(s, s−1, 1) | s ∈ S}. The torus Tτ

− is {(1, 1, λ) | λ ∈ k∗}.
Finally, divide G by the subgroup Z generated by (z, z,−1) ∈ G1 × G1 × k∗ where z

is minus the identity. In G/Z the intersection of A and Tτ
− has order 2 generated by

the image of (z, z, 1) ∈ G. Thus the quotient space we get is S/(S2n × {e, z}), which
is not smooth, as z does not act as a reflection on S/S2n ≃ k2n−1. Thus adding a torus
can change a smooth quotient to a nonsmooth one.

From now on we assume that G is semisimple.

3 G Simply Connected

We need to use properties of slice representations. Let A, W ∗
H(A), etc. be as above.

Let a ∈ A, and let Int(a) denote conjugation by a. Set τ̃ := σθ Int(a), and let G̃

denote Gτ̃ . Then σ is an involution of G̃ and we define H̃ to be G̃σ . One computes
that H̃ = {h ∈ H | h ∗ a = a} = Ha. Then we have

Theorem 6 ([HS01, Theorem 5.11]) Let a ∈ A, etc. be as above. Then there is an

étale slice for the action of H, and this étale slice is isomorphic to an H̃-stable neighbor-

hood of eH̃ in G̃/H̃ with the canonical action of H̃.

Corollary 1 Suppose that G is simply connected. Then the quotient P//H ≃
A/W ∗

H(A) is smooth.

Proof (Compare [Ric82, 14.3]) We continue with the notation of Theorem 6. Since

G̃ is connected (as G is simply connected [Ste68]), it is known that the quotient of
G̃/H̃ by H̃ is smooth near eH̃. In fact, up to étale morphisms, it is the quotient of the
Lie algebra of a maximal σ-split torus of G̃ by the corresponding Weyl group (which
is generated by reflections). Thus P//H is smooth near the image of a ∈ A (for any a),

and thus P//H is smooth.

3.1 The rest of this section is due to the referee. We continue to assume that G is simply
connected.

Consider G as a G × G-module via left and right multiplication. Then O(G) ≃⊕
ω V (ω) ⊗ V (ω)∗ as G × G-module, where ω runs over a system Ω of dominant

integral weights and V (ω) denotes the irreducible module with highest weight ω ∈
Ω. By restriction we have the action of H and K on G and O(G) as in §1. Since H and

K are spherical, for any simple module V (ω), ω ∈ Ω, the subspace of H (or K) fixed
vectors is at most one-dimensional, and V (ω) has a fixed line if and only if V (ω)∗

does. Set Ω0 := {ω ∈ Ω | dim V (ω)H 6= 0 6= V (ω)K}. Then O(G)H×K has a basis
consisting of nonzero elements ϕω ∈ V (ω)H⊗(V (ω)∗)K , ω ∈ Ω0. By Theorem 2 and
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Corollary 1, O(G)H×K is a polynomial algebra. This raises two natural questions:

Questions 1

(1) Is Ω0 a free monoid on generators ω1, . . . , ωl, l = dim A?

(2) If so, are the ϕωi
generators for O(G)H×K ?

We are only able to answer these questions affirmatively when we are in the sym-
metric case (σ = θ), which we assume until the end of this section.

3.2 Let A be a maximal θ-split torus in G and T = T0A a θ-stable maximal torus of
G, where θ is the identity on T0. We have the character groups X∗(T) and X∗(A)
and the root systems Φ(T) and Φ(A). We choose a system of positive roots Φ(T)+

which induces a system of positive roots Φ(A)+ for the (restricted) root system Φ(A).

Since G is simply connected, the dominant integral weights Ω (resp., Ω(A)) relative
to Φ(T)+ (resp., Φ(A)+) correspond to characters of T (resp., A). As before, let Ω0

denote the set of highest weights ω such that V (ω)K 6= 0. From [Vus74] or [Helg84,
Ch. V, 4.2] we have:

Lemma 1 Ω0 consists of the highest weights ω which are trivial on T0 and whose re-

strictions to A are in 2X∗(A). Conversely, any highest weight in 2X∗(A) extends to an

element of Ω0.

Corollary 2 Let ω ′
1, . . . , ω

′
l denote generators of the monoid of dominant integral

weights relative to Φ(A)+ and let ω1, . . . , ωl denote the extensions of 2ω ′
1, . . . , 2ω ′

l to

elements of Ω0. Then ω1, . . . , ωl freely generate Ω0.

3.3 Note that

O(G/K) ≃ O(G)K ≃
⊕

ω∈Ω0

V (ω) ≃ (V (ω) ⊗ (V (ω∗)K ),

and that for every ω ∈ Ω0 we have our generator ϕω ∈ V (ω)K . Recall that for weights
w, w ′ ∈ Ω, we write ω ≤ ω ′ if the difference ω ′ − ω is a sum of positive roots.

Lemma 2 Let ω, ω ′ ∈ Ω0 and write ϕωϕω ′ as a sum
∑

ω ′ ′∈Ω0
c(ω ′ ′)ϕω ′ ′ . Then for

every c(ω ′′) 6= 0, ω ′′ ≤ ω + ω ′, and c(ω + ω ′) 6= 0.

Proof The product of V (ω) and V (ω ′) in O(G/K) is an image of the tensor product

V (ω)⊗V (ω ′), hence has only factors V (ω ′ ′) where w ′ ′ ≤ ω+ω ′. In [Rui89, Theorem
3.2] it is shown that c(ω ′ ′) 6= 0 if and only if V (ω ′ ′) actually occurs in the product
V (ω)V (ω ′). But clearly the product of the highest weight vectors in V (ω) and V (ω ′)
generates a copy of V (ω + ω ′). Thus c(ω + ω ′) 6= 0.

Proposition 1 Let ω1, . . . , ωl be the generators of Ω0 of Corollary 2. Then O(G)K×K

is the polynomial algebra on ϕω1
, . . . , ϕωl

.
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Proof Let ω ∈ Ω0 and write ω =
∑l

i=1 niωi , ni ∈ N. By Lemma 2,
∏l

i=1 ϕni

ωi

is a sum cϕω +
∑

d(ω ′)ϕω ′ where c 6= 0 and ω ′ < ω whenever d(ω ′) 6= 0. By

induction,
∑

d(ω ′)ϕω ′ is in the span of monomials in the ϕωi
, hence so is ϕω . Thus

we have C[ϕω1
, . . . , ϕωl

] mapping onto O(G)K×K , a polynomial algebra in l-variables.
It follows that the ϕωi

are algebraically independent generators of O(G)K×K .

4 The Main Theorem

Let A, W ∗
H(A), etc. be as in §2. Let V denote X∗(A) ⊗Z R. Then the roots of A in g

form a (not necessarily reduced) root system Φ in V , and X∗(A) is contained in the
associated weight lattice Λ [Hel88, Lemma 6.9]. The Weyl group WH(A) acts on Φ,
X∗(A) and Λ. We may split V into a direct sum of vector spaces V j , j = 1, . . . , r,

with irreducible root systems Φ j , weight lattices Λ j and Weyl groups W j so that Φ =

∪ jΦ j , Λ = ⊕ jΛ j and WH(A) =
∏

j W j . Let X j denote X∗(A) ∩ V j ⊇ Φ j . Then
X∗(A) contains ⊕ jX j , but it could be larger. By 2.2, Theorem 4, we may assume that
W ∗

H(A) = WH(A) ⋉ F0.

For each j = 1, . . . , r, let A j be a torus with character group Λ j . Let Z j (the
“center”) be the kernel of all the roots in Φ j considered as characters on A j . If Φ j is

non-reduced, then Z j = {e}. For reduced root systems Φ j , the center Z j corresponds
to the center of the simply connected algebraic group corresponding to Φ j . We have
A ≃ (

∏
j A j)/Z ′ where Z ′ ⊂

∏
j Z j . Let F ′ ⊂

∏
j A j denote the inverse image of

F0 ⊂ A. Then Z ′ ⊂ F ′ and A/W ∗
H(A) ≃ (

∏
j A j)/(WH(A) ⋉ F ′). Set F j := F ′ ∩ A j

and let W ∗
j denote W j ⋉F j . Then, in analogy to the symmetric case [Ric82], we have:

Theorem 7 (Main Theorem) Let A and the A j , etc. be as above. The following are

equivalent:

(1) A/W ∗
H(A) is smooth.

(2) O(A) is a free O(A)W∗

H
(A)-module.

(3) A/W ∗
H(A) is an affine space.

(4) Each A j/W ∗
j is smooth and F ′

=
∏

j F j .

Example 3 Suppose that we have Φ = Φ1 ∪ Φ2 where both Φ1 and Φ2 are reduced
root systems of rank 1. Then A1 ≃ A2 ≃ k∗ with Weyl group action z 7→ z−1,

z ∈ k∗. Suppose that A = (A1 × A2)/ ± I where I = (1, 1) ∈ A1 × A2. Then
by Theorem 7(4), the quotient A/W is not smooth as we have F1 = F2 = {e} and
F ′

= Z ′ ≃ Z/2Z. One sees the nonsmoothness directly as follows. Let λ1 and
λ2 be the usual coordinate functions on our two copies of k∗. Then O(A1 × A2)W ≃
C[λ1 +λ−1

1 , λ2 +λ−1
2 ] and ±I acts by sending λ1 +λ−1

1 and λ2 +λ−1
2 to their negatives.

Hence the quotient of A/W is not smooth.

The situation above arises when we consider G1 = SO4 ≃ (SL2 × SL2)/(Z/2Z) as

a symmetric space, i.e., one has G = G1 × G1 and the involution θ sends (g1, g2) to
(g2, g1), g1, g2 ∈ G1. Then K = Gθ ≃ G1 acts on P ≃ G1 by conjugation, and one
gets the A and W considered above.
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5 The Main Lemma

Let A j , etc. be as in §4, j = 1, . . . , r. Let p j be the projection of
∏r

k=1 Ak to A j ,
j = 1, . . . , r. To prove Theorem 7 we need the following

Lemma 3 (Main Lemma) Let A j , etc. be as above. Then

(1) Each E j := A j/W ∗
j is smooth if and only if it is an affine space.

(2) If E j is an affine space, then it has coordinates such that p j(F ′) acts as linear trans-

formations.

We will establish Lemma 3 by examining the possibilities for the A j , etc. case by
case. The details are not hard, and the case of the Weyl group of type F4 has a nice
twist. In any case, we now use Lemma 3 to establish Theorem 7 and Theorem 2.

Proof of Theorem 7 Clearly (4) and Lemma 3 imply (3). If A/W ∗
H(A) is smooth,

then the slice representations of W ∗
H(A) at all points of A must be linear representa-

tions of finite groups generated by reflections. But for such groups, the polynomials
on the representation space are a free module over the invariants. This tells us that

O(A) is locally a free O(A)W∗

H
(A)-module over A/W ∗

H(A). If A/W ∗
H(A) is actually an

affine space, then we get global freeness by the solution to the Serre Problem. Thus
(3) implies (2). From commutative algebra [Mat80, Theorem 51], one sees that (2)
implies (1). Thus we need only show that (1) implies (4).

Suppose that A j/W ∗
j is not smooth for some j, say j = r, the largest index. Note

that, by construction, F ′ ′ := F ′/
∏

j F j acts faithfully on Qr :=
∏

i<r A j/W ∗
j . Take

a general point x ∈ Qr whose isotropy group is trivial for the action of F ′ ′. Let
y ∈ Ar/W ∗

r be a non smooth point. Then the étale slice at (x, y) is a neighborhood

of (x, y) in Qr × Ar/W ∗
r . Clearly the slice is not smooth at (x, y), hence A/W ∗

H(A) is
not smooth, and we have established necessity of the smoothness of each A j/W ∗

j .
It remains to show that if F ′ ′ 6= {e} and each E j := A j/W ∗

j is smooth, then
A/W ∗

H(A) is not smooth. By Lemma 3, each E j is an affine space, and the action of

F ′ ′ on each E j is linear (and diagonalizable). Let α ∈ F ′ ′ be nontrivial. Then, by
construction of F ′ ′, α must act nontrivially on at least two of the spaces E j . This
shows that α is not a reflection, so that F ′ ′ contains no nontrivial reflections, hence
the quotient

∏
E j/F ′ ′ is not smooth.

Proof of Theorem 2 The equivalence of (1) and (2) follows from Theorem 7, and
(3) implies (1) by [Mat80, Theorem 51]. Richardson (see [Ric81, Thm. B and Prop.
2.6] and [Ric82, §12]) gives criteria for (3) to hold, i.e., for O(P) to be a free O(P)H-

module. They are that

(a) O(P)H is a polynomial algebra.
(b) All fibers of πP : P → P//H have the same dimension.
(c) There is a dense open subset U ⊂ P consisting of H-orbits which are closed in

P, and for every x, y ∈ U , the isotropy groups Hx and Hy are conjugate.

Now (b) above is true for symmetric varieties [Ric82, 9.11]. It then follows from the
slice theorem 6 that (b) holds for πP. From [HS01, 6.4] there is an open and dense
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subset Apr of A such that H ∗Apr is open in P and such that each a ∈ Apr has isotropy
group Z∗

H(A). The H-orbits of points of A are closed by Theorem 3, hence we have

(c). It follows that (a), i.e., (2), implies (3).

6 Proof of The Main Lemma

We now have to establish Lemma 3. This involves some elementary combinatorics
with root systems and Weyl groups. Let A j , Z j , p j , etc. be as in §4 and §5, for 1 ≤
j ≤ r. We will need to show that F j and p j(F ′) are about the same size. To do this we
use the following fact:

Remark 1 Let f ∈ F ′ with pk( f ) = fk, k = 1, . . . , r. Let w ∈ W j for some j,
1 ≤ j ≤ r. Then f0 := f −1w( f ) = f −1

j w( f j) has trivial projection to Ak for k 6= j,
hence f0 ∈ F j .

To lighten the notation, we will drop the index j and consider a torus A with root
system Σ, Weyl group W , center Z, etc. We have a group F ′ and a homomorphism

p : F ′ → A such that F ⊂ p(F ′) are W -stable subgroups and such that p(F ′) projects
to a subgroup of (A/Z)(2). Remark 1 applies with F j replaced by F. Let W ∗ denote
W ⋉ F and let E denote the quotient A/W ∗. We say that the action of a group H on
E is linearizable if E is an affine space which has coordinates such that the action of H

is linear.

6.1 Type SLn, n ≥ 2

Let A denote the maximal torus of SLn. Then A has character group generated by
ǫ1, . . . , ǫn where (using additive notation)

∑
j ǫ j = 0. If t = diag(t1, . . . , tn) ∈ A,

then ǫ j(t) = t j , j = 1, . . . , n. The roots are {ǫ j − ǫk : j 6= k} and the Weyl group
is Sn, the symmetric group on n-letters, acting as usual. The center Z consists of the
scalar matrices, i.e., { f ∈ A : ǫ j( f ) = ξ for all j} where ξn

= 1.

Lemma 4 Suppose that p(F ′) contains an element not in Z ≃ Z/nZ. Then

A(2) ⊂ F.

Proof Note that p(F ′) is inside the pull back to A of (A/Z)(2) which consists of

elements f ∈ A such that ǫ j( f ) = ±ξ for all j, where ξ2n
= 1. If f ∈ p(F ′) is not

in Z, then we must have that ǫk( f ) = ξ and ǫl( f ) = −ξ for some k and l, where
ξ2n

= 1. Let w ∈ Sn be the involution switching ǫk and ǫl. Then f0 := f −1w( f )
satisfies ǫk( f0) = ǫl( f0) = −1 and ǫ j( f0) = 1 for j 6= k, l. Now f0 ∈ F by Remark 1,

and f0 and its images under the action of W generate A(2).

Corollary 3 Let A, etc. be as above. Then the quotient E is smooth if and only if

(1) F = {e},

(2) F = A(2) or

(3) n = 2.
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Moreover, in each case where E is smooth, the p(F ′)-action on E is linearizable.

Proof First suppose that p(F ′) ⊂ Z. Then from [Ste75] we know that E is smooth if

and only if F = {e} or n = 2 and F = Z = A(2). In either case, the action of Z on E is
linearizable, hence so is that of p(F ′). If p(F ′) 6⊂ Z, then we have that A(2) ⊂ F. Now
A/A(2) is essentially the same as A: the character group is generated by the weights
±2ǫ j with the induced action of W . We replace F by F/A(2) and p(F ′) by p(F ′)/A(2)

and reduce to the case where p(F ′) ⊂ Z. Then we can repeat our argument above.

6.2 Type Sp2n, n ≥ 2

Let A be the standard n-torus, and let ǫ1, . . . ǫn be the standard characters on A. The
root system of type Cn consists of the characters ±2ǫ j and ±ǫ j ± ǫk, j < k. The
Weyl group W is generated by the reflections ǫ j 7→ −ǫ j and the symmetric group

Sn permuting the ǫ j . The torus A is the maximal torus of Sp(2n), and the character
group (weight lattice) is generated by the ǫ j . The center Z is of order 2 and is gen-
erated by the element z defined by the conditions ǫ j(z) = −1 for all j. Let 1

2
A(2)

denote { f ∈ A(2) | ǫ j( f ) = −1 for an even number of j}. Note that p(F ′) lies in

the pullback Ã(2) of (A/Z)(2) to A, and Ã(2) consists of elements f ∈ A with either
ǫ j( f ) = ±1 for all j or ǫ j( f ) = ±i for all j.

Lemma 5 Let A, etc. be as above, and suppose that f ∈ p(F ′) with ǫ j( f ) = 1 for

some j and ǫk( f ) = −1 for some k. Then F ⊃ 1
2
A(2). If f ∈ p(F ′) such that ǫ j( f ) = ±i

for some j, then F ⊃ A(2).

Proof In the first case, let w denote the permutation of ǫ j and ǫk. Then f −1w( f ) ∈
F, and ǫm( f ) = 1 for m 6= j, k and ǫ j( f ) = ǫk( f ) = −1. Clearly, then, F con-

tains 1
2
A(2). In the second case with ǫ j( f ) = ±i for some j, consider f −1w( f )

where w is the reflection sending ǫ j to −ǫ j . Then ǫk( f −1w( f )) = 1 for k 6= j,
and ǫ j( f −1w( f )) = −1. It follows that F ⊃ A(2).

Corollary 4 Let A, etc. be as above. Then there are the following possibilities:

(1) {e} ⊂ F ⊂ p(F ′) ⊂ {e, z}.

(2) F =
1
2
A(2) ⊂ p(F ′) ⊂ A(2).

(3) A(2) ⊂ F ⊂ p(F ′) ⊂ Ã(2).

Corollary 5 Let A, etc. be as above. Then E is smooth if and only if

(1) F = {e},

(2) F =
1
2
A(2),

(3) F = A(2) or

(4) n = 2.

Moreover, whenever E is smooth, p(F ′) acts linearizably on E.
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Proof We consider the cases in Corollary 4. In case (1) it is classical [Ste75] that E

is smooth if F = {e} and nonsmooth if F = {e, z} and n ≥ 3. Moreover, p(F ′) acts

linearizably on E when F = {e}. In case (2) the quotient of A by 1
2
A(2) has character

group generated by the weights ±2ǫi and ±ǫ1 ±· · ·± ǫn. This is the weight lattice for
the maximal torus of Spin(2n + 1), so we can apply our results in Corollary 6 below
to F/ 1

2
A(2) and p(F ′)/ 1

2
A(2). They show that we have a linearizable action of p(F ′)

on E in case F =
1
2
A(2) or F = A(2).

In case (3), we may divide everything by A(2) as in the proof of Corollary 3 to
reduce to case (1). Finally, when n = 2, we have {e, z} =

1
2
A(2), so that we have

smoothness of the quotient E (and a linearizable action of p(F ′) on E) in all of the

cases (1)–(3).

6.3 Type BCn

Suppose that we have a root system of type BCn. Then we can consider that we
have the maximal torus A of Sp2n, as above, where the root system has the characters
±2ǫ j and ±ǫ j ± ǫk, j < k, along with the characters ±ǫ j . The Weyl group is that
of Sp2n and the center Z is trivial. Thus we have that F ⊂ p(F ′) ⊂ A(2). Let z be

defined by ǫ j(z) = −1 for all j. Applying the arguments of Lemma 5, Corollary 4
and Corollary 5, we obtain

Proposition 2 There are the following possibilities:

(1) {e} ⊂ F ⊂ p(F ′) ⊂ {e, z}.

(2) F =
1
2
A(2) ⊂ p(F ′) ⊂ A(2).

(3) F = p(F ′) = A(2).

Proposition 3 Let A, etc. be as above. Then E is smooth if and only if

(1) F = {e},

(2) F =
1
2
A(2),

(3) F = A(2) or

(4) n = 1 or 2.

In all smooth cases, p(F ′) acts linearizably on E.

6.4 Type Spin2n, n ≥ 4 and Spin2n+1, n ≥ 2

Let Â be the double cover of the standard n-torus A. Then Â has character group

generated by the ǫ j , j = 1, . . . , n and χ := 1
2

∑
j ǫ j . Let z0 denote the element

defined by: ǫ j(z0) = 1 for all j and χ(z0) = −1. If n is even, let z1 be defined by
ǫ j(z1) = −1 for all j, and χ(z1) = 1. If n is odd, define z4 by ǫ j(z4) = −1 for all j

and χ(z4) = i. Then in the case of Spin2n, the center Z is {e, z4, z2
4, z3

4} if n is odd,

and is {e, z0, z1, z0z1} if n is even. For Spin2n+1, the center is always {e, z0}. The Weyl
group for the Spin2n+1 case is Sn ⋉ (Z/2Z)n, where Sn permutes the roots as usual,
and the generators of (Z/2Z)n send ǫ j to −ǫ j , j = 1, . . . , n. The Weyl group for
Spin2n is isomorphic to Sn ⋉ (Z/2Z)n−1 where Sn acts as usual and the generators of
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(Z/2Z)n−1 send pairs of weights ǫ j and ǫk to −ǫ j and −ǫk. The roots for Spin2n+1 are
the ±ǫ j ± ǫk, j < k and the ±ǫ j , while the roots of Spin2n are the ±ǫ j ± ǫk, j < k.

Lemma 6 Let Â, etc. be as above. Then there are the following possibilities:

(1) Â(2) ⊂ F.

(2) {e} ⊂ F ⊂ p(F ′) ⊂ Z.

(3) (n even, Spin2n+1): {e, z0} ⊂ F ⊂ p(F ′) ⊂ {e, z0, z1, z0z1}.

(4) (n odd, Spin2n+1): {e, z0} ⊂ F ⊂ p(F ′) ⊂ {e, z4, z2
4, z3

4}.

Proof Suppose that there is an f ∈ p(F ′) with ǫ j( f ) = ±i for some j. Then, from
the description of the centers, we must be in the case of Spin2n and every ǫk must be
±i, k = 1, . . . , n. Let w ∈ W send ǫ1 and ǫ2 to their negatives and leave all other ǫk

fixed. Then f0 := f −1w( f ) ∈ F, and ǫ1( f0) = ǫ2( f0) = −1 while ǫk( f0) = 1 for

k > 2.

Now we suppose that there is an f ∈ p(F ′) with ǫ j( f ) = 1 and ǫk( f ) = −1 for
some j and k. Let w be the generator of W which sends ǫ j and ǫk to their negatives
and leaves all other ǫm fixed. Note that w(ǫm)( f ) = ǫm( f ) for all m = 1, . . . , n. Let λ
be a weight of the form 1

2
(±ǫ1 ± · · · ± ǫn). Then w(λ) = λ± ǫ j ± ǫk for some choice

of pluses and minuses. It follows that w(λ)( f ) = −λ( f ), so that w( f ) = f z0 and
f −1w( f ) = z0 ∈ F. Let w ′ ∈ W interchange j and k. Then f1 := f −1w ′( f )) satisfies
χ( f1) = 1, ǫm( f1) = 1 for m 6= j, k, and ǫ j( f1) = ǫk( f1) = −1. Finally, z0 and all the

W translates of f1 generate Â(2). Thus we are in case (1).

It remains to consider the cases where p(F ′) consists of elements f with ǫ j( f ) = 1
for all j or ǫ j = −1 for all j. In the case of type Spin2n, one easily sees that we are
always in case (2) (where Z has order 4). We need only now consider the case of

Spin2n+1, and to get (3) and (4) we only have to show that if p(F ′) is of order 4, then
F ⊃ {e, z0}. In case (3), suppose that z1 ∈ p(F ′). Let w ∈ W fix all ǫ j except that
it sends ǫ1 to −ǫ1. Then one shows as above that z−1

1 w(z1) equals z0. Similarly, if
z4 ∈ p(F ′) (n odd), then z−1

4 w(z4) = z0.

Corollary 6 Let Â, etc. be as above. Then E is smooth in precisely the following cases:

(1) F = {e} or F = Â(2).

(2) F is of order 2 or is an order 2 extension of Â(2) and W is of type Spin2n+1.

(3) W is of type Spin5.

Moreover, if E is smooth, then p(F ′) acts linearizably on E.

Proof In the case of type Spin2n there is nothing to show, since everything is classical
(or becomes classical upon division by Â(2)). In the case of type Spin2n+1 (assuming
that we have already divided by Â(2) if need be) we end up in one of cases (2), (3)
or (4) of Lemma 6. Case (2) is classical. In cases (3) and (4) we may consider the

quotient of Â by the action of z0. The weights on the quotient of Â by {e, z0} are
generated by the ǫi . In other words, we are in the case of the maximal torus of Sp2n,
and we can apply Corollary 5.
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6.5 Type G2

Proposition 4 Let A be a maximal torus of G2. Then p(F ′) = {e} or F = p(F ′) =

A(2). In particular, the quotient E is an affine space with trivial action of p(F ′).

Proof Since Z is trivial in this case, F and p(F ′) are subgroups of A(2). It follows
from Lemma 4 (applied to the action of the copy of S3 ⊂ W (G2)) that if p(F ′) is not
trivial, then F = A(2). Thus we can always reduce to the classical case F = {e} where
E ≃ k2.

6.6 Type E8

There is a homomorphism SL9 → E8 such that the adjoint representation of E8

(which is faithful) decomposes as ∧3(k9) ⊕ ∧6(k9) plus the adjoint representation
of SL9 (see [Dyn52, Table 25]).

Proposition 5 Let A be the maximal torus of E8. Then p(F ′) = {e} or F = p(F ′) =

A(2). In particular, the quotient E is an affine space with trivial action of p(F ′).

Proof Let F̃ (resp., F̃ ′) be the inverse image of F (resp., p(F ′)) in the maximal torus
Ã of SL9. If f̃ ∈ F̃ ′ maps to f ∈ p(F ′) and ω̃ ∈ W (SL9) has image ω ∈ W (A), then

f̃ −1ω̃( f̃ ) has image f −1ω( f ) ∈ F, so that f̃ −1ω̃( f̃ ) lies in F̃. So we can calculate in Ã.
Since the kernel Z̃ of Ã → A has order 3, F̃ (resp., F̃ ′) is a product of a subgroup

F̃0 (resp., F̃ ′
0) of Ã(2) and Z̃. Lemma 4 shows that F̃ ′

0 = {e} or F̃0 = Ã(2). Hence
p(F ′) = {e} or F = p(F ′) = A(2). Dividing by A(2) if necessary we arrive at the

classical case F = {e} where E ≃ k8.

6.7 Type E6

Let A denote a maximal torus of E6. From [Dyn52, Table 25] there is a homomor-
phism (SL3)3 → E6 such that the fundamental (27-dimensional) representation V of
E6 restricts to the representation

V1 ⊗V ∗
2 ⊕V ∗

1 ⊗V3 ⊕V2 ⊗V ∗
3 ,

where V j is the fundamental three-dimensional representation of the j-th copy of
SL3. Thus we have an injection (SL3)3/(Z/3Z) → E6. There is also an injection
(SL6 × SL2)/(Z/2Z) → E6, where V decomposes as ∧2(k6) ⊕ (k6)∗ ⊗ k2. Recall that

the center Z of E6 is cyclic of order 3.

Lemma 7 Let A be as above, and let F̂ be a W -stable subgroup of A(2). Then F̂ = {e}
or F̂ = A(2).

Proof Since we have an injection of the maximal torus of (SL3)3/(Z/3Z) into A,
the order of F̂ is 1, 4, 16 or 64. Since we have an injection of the maximal torus of
(SL6 × SL2)/(Z/2Z) → A where (Z/2Z) sits diagonally in SL6 × SL2, F̂ cannot have

order 4 or 16. Thus the order of F̂ is 1 or 64.
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Lemma 8 Let A, etc. be as above. Then F ⊂ p(F ′) ⊂ Z, or A(2) ⊂ F.

Proof Since Z has order 3, p(F ′) splits as a direct sum of a subgroup of Z and a
W -stable 2-group F ′ ′. By Lemma 7, if F ′ ′ 6= {e}, then F ′ ′

= A(2), and then clearly F

also has to contain A(2).

From [Ste75] we get

Corollary 7 The quotient E is smooth if and only if F = {e} or F = A(2). In either

of these cases, p(F ′) = F or p(F ′) is an extension of F by the center Z, and p(F ′) acts

linearizably on E.

6.8 Type E7

Let A and W be the maximal torus and Weyl group of E7. From [Dyn52, Table 25]
there is a homomorphism SL8 → E7 such that the fundamental (56-dimensional)
representation of E7 restricts to ∧2(k8) ⊕ ∧6(k8). The adjoint representation of E7

restricts to the representation ∧4(k8) plus the adjoint representation of SL8. There is

also a homomorphism SL6 × SL3 → E7 such that the fundamental representation of
E7 restricts to k6⊗k3⊕∧3(k6)⊕(k6)∗⊗(k3)∗. Let A j−1 denote the standard maximal
torus of SL j for j = 3, 6, 8. Then the homomorphism A5 × A2 → A has kernel a
cyclic group of order 3 and the kernel of the homomorphism A7 → A has order 2.

Let z̃ ∈ A7 be defined by ǫ j(z̃) = i for j = 1, . . . , 8. If t is an eighth root of unity,

let tA(2)
7 ⊂ A7 denote {t f : f ∈ A(2)

7 }.

Lemma 9 Let F̃ ′ (resp., F̃) denote the inverse image of p(F ′) (resp., F) in A7. Then

(1) F̃ ′ ⊂ {1, z̃, z̃2, z̃3} or

(2) F̃ ⊃ A(2)
7 + iA(2)

7 .

Proof Let t be a primitive eighth root of 1. Suppose that F̃ ′ 6⊂ {1, t, . . . , t7} ≃
Z/8Z, the center of the maximal torus A7 of SL8. Lemma 4 then shows that F̃ ⊃ A(2)

7 .

If F̃ = A(2)
7 , then the image of F̃ in A has order 26 and is W -stable. But this subgroup

of A(2) must also be the image of an (S3×S6)-stable subgroup of A(2)
2 ×A(2)

5 , and there

is no stable subgroup of order 26. Thus F̃ contains A(2)
7 and t iA(2)

7 for some i = 1, 2,

or 3. It follows that F contains A(2)
7 + iA(2)

7 whose image in A is A(2).
We are left with showing that F̃ ′

= {1, . . . , t7} is not possible. If this case occurs,
then the image of p(F ′) in A/Z is a W -stable subgroup of order 2. From our decom-

position of Ad E7 as the SL8-representation Ad SL8 ⊕
∧4

k8, one sees that t acts as −1

(resp., 1) on
∧4

k8 (resp., Ad SL8). Since W acts transitively on the roots of E7, t does
not generate a W -stable subgroup.

Corollary 8 We have

(1) F ⊂ p(F ′) ⊂ Z(E7) ≃ Z/2Z or

(2) F ⊃ A(2).
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Then E is smooth if and only if F = {e} or F = A(2), in which case p(F ′) acts lineariz-

ably on E.

Proof Parts (1) and (2) are immediate from Lemma 9. The smoothness criterion is
classical; in case F ⊃ A(2) one first needs to quotient by A(2).

6.9 Type F4

Let Â denote the double cover of the standard 4-torus. Then Â has character group
generated by the ǫ j , j = 1, . . . , 4 and β := 1

2
(ǫ1 + · · ·+ǫ4) or γ := 1

2
(ǫ1 +ǫ2 +ǫ3−ǫ4).

The roots of F4 are:

(1) the long roots ±ǫ j ± ǫk, j < k,
(2) the short roots ±ǫ j ,

(3) the short roots 1
2
(±ǫ1 ± ǫ2 ± ǫ3 ± ǫ4) where the number of minus signs is even,

and
(4) the short roots 1

2
(±ǫ1 ± ǫ2 ± ǫ3 ± ǫ4) where the number of minus signs is odd.

Note that these roots are the weights of the fundamental representations of the group
D4 where ω2, the adjoint representation, has weights in the long roots (1), the repre-
sentation ω1 has the weights in (2), ω3 has the weights in (3) and ω4 has the weights
in (4). The center Z is trivial. The Weyl group of F4 is a semidirect product of a

copy of S3 and the Weyl group of D4. The S3 subgroup acts as permutations on the
highest weights α := ǫ1, β and γ and the subgroup permutes the long roots amongst
themselves.

The center of D4 is a copy of Z/2Z⊕Z/2Z, and S3 acts transitively on the comple-

ment of {e}. No nontrivial proper subgroup of Z/2Z ⊕ Z/2Z is S3-stable. We have
F ⊂ p(F ′) ⊂ Â(2).

Proposition 6 There are the following possibilities:

(1) {e} = F = p(F ′) or Â(2)
= F = p(F ′).

(2) Z/2Z ⊕ Z/2Z = F = p(F ′) or F = p(F ′) is an extension of Â(2) by Z/2Z ⊕ Z/2Z.

In each case, E is an affine space and p(F ′) acts trivially on E.

Proof From our results for the case of D4, we know that p(F ′) 6⊂ Z/2Z ⊕ Z/2Z

implies that F ⊃ Â(2). Dividing by Â(2) we can then reduce to the case that p(F ′) ⊂
Z/2Z ⊕ Z/2Z. Then, since no nontrivial subgroup of Z/2Z ⊕ Z/2Z is S3-stable, we
see that (1) or (2) has to hold. If {e} = F = p(F ′), there is nothing to prove,

since we know, classically, that Â/W ≃ k4. We only need to consider the case F =

Z/2Z ⊕ Z/2Z and show that the quotient is an affine space.
We calculate the invariants of W ⋉ (Z/2Z ⊕ Z/2Z) by first finding the invariants

of the normal subgroup W (D4). The invariants are:

(1) f2 :=
∑

w∈W (D4) w(ǫ1 + ǫ2),
(2) fx :=

∑
w∈W (D4) w(ǫ1),

(3) fy :=
∑

w∈W (D4) w(β), and
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(4) fz :=
∑

w∈W (D4) w(γ).

The action of S3 permutes fx, fy and fz while leaving f2 fixed.

We now bring in the action of Z/2Z ⊕ Z/2Z. The action on f2 is trivial, while the
action on the other variables has generators the first of which fixes fx and sends fy

and fz to their negatives, and the second of which fixes fz and sends fx and fy to their

negatives. The action of S3 ⋉ (Z/2Z ⊕ Z/2Z) on the span of fx, fy and fz is just the

standard reflection representation of W (D3), hence E ≃ k4. The generators of the

invariants of the total Weyl group action are f2, f 2
x + f 2

y + f 2
z , f 2

x f 2
y + f 2

x f 2
z + f 2

y f 2
z and

fx fy fz.

We have now completed the proof of the Main Lemma 3.

7 Classification of F0, Adjoint Case

Throughout this section we assume that G is adjoint.

Remark 2 Let T ⊃ A be standard. Since G is adjoint, X∗(T) is the lattice generated
by Φ(T). Moreover, X∗(A) is the lattice generated by Φ(A). This easily follows from

the fact that X∗(A) is the set of restrictions of the elements of X∗(T) to A and that
Φ(A) is the set of roots obtained by restricting the elements of Φ(T) to A (see [Hel88,
Lemma 5.6]).

7.1 To compute F0, it suffices to reduce to the case that Φ(A) is irreducible. We will use
the following notation. Let T ⊃ A be standard and let g(A, λ) denote the root space

corresponding to λ ∈ Φ(A). Since σ(λ) = θ(λ) = −λ, τ = σθ stabilizes g(A, λ). Set

g(A, λ)τ
± = {X ∈ g(A, λ) | τ (X) = ±X},

m±(λ, τ ) = dim g(A, λ)τ
±.

For λ ∈ Φ(A) call (m+(λ, τ ), m−(λ, τ )) the signature of λ. Let ∆ be a basis of Φ(A).
Following [Hel88, 6.11] we say that (σ, θ) is a standard pair if m+(λ, τ ) ≥ m−(λ, τ )

for any λ ∈ ∆. One can always make a pair (σ, θ) standard (without changing F0) by
replacing θ by θ Int(q) for some quadratic element q. Then W ∗

H(A) ≃ WH(A) ⋉ F0

(see [HS01, Theorem 9.13] and §2.2, Theorem 4), so it suffices to determine F0 in the
case that (σ, θ) is a standard pair.

We use [HS01, Theorem 10.7] to classify F0. In particular, F0 = {e} iff m+(λ, τ ) 6=
m−(λ, τ ) for all λ ∈ ∆ and F0 = A(2) iff m+(λ, τ ) = m−(λ, τ ) for all λ ∈ ∆. The
classification of the pairs of commuting involutions in [Hel88, Tables II, III, IV and V]
includes a classification of the restricted root systems Φ(A) and a classification of the

signatures for the basis elements of Φ(A). So one can easily determine in which cases
F0 = A(2) or F0 = {e}. We refer to both these cases as the trivial case.

Remark 3 From the classification of the signatures in [Hel88] it follows that for
each type of irreducible root system Φ(A) each trivial case occurs for some triple
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(G, σ, θ). The case F0 = {e} occurs when σ = θ, since then Tτ
− = {e}. The case

F0 = A(2) occurs for any type of (reduced or non reduced) irreducible root system

Φ(A) for the following triples (G, σ, θ). Take G = G1 × G1, σ(x, y) = (y, x) and
θ(x, y) = (θ1(x), θ1(y)), (x, y) ∈ G with θ1 any involution of G1. For the case that
Φ(A) is reduced one can also use Example 1. For G simple and σ 6= θ the root system
Φ(A) can only be of type An, Bn, Cn, BCn or F4 and for these not all trivial cases for

F0 occur.

All the results that follow heavily depend on the classification of the pairs of com-
muting involutions in [Hel88, Tables II, III, IV and V], [HS01, Theorem 10.7] and a
case by case verification.

7.2 Classification of F0 for G Adjoint and Φ(A) Irreducible

In the following we discuss which subgroups F0 of A(2) occur in the case that G is
adjoint and Φ(A) is irreducible. We also discuss smoothness of the corresponding
quotient of A. Let X∗(A) denote the group of rational one-parameter multiplicative
subgroups of A. The group X∗(A) can be put in duality with X∗(A) by a pairing

〈 · , · 〉 defined as follows: if χ ∈ X∗(A), λ ∈ X∗(A), then χ(λ(t)) = t<χ,λ> for all
t ∈ k∗.

Let ∆ = {α1, . . . , αn} be a basis of Φ(A) and let {λ1, . . . , λn} be the one pa-
rameter subgroups dual to α1, . . . , αn, i.e., 〈αi, λ j〉 = δi j for i, j = 1, . . . , n. The
elements qi = λi(−1) ∈ A are quadratic elements (see 2.2), and since Φ(A) is ir-

reducible, any quadratic element is WH(A)-conjugate to one of the qi , i = 1, . . . , n

(see [BdS49] or [Hel88, Theorem 8.13]). Since G is adjoint, Z(G) = {e}, and hence
{q1, . . . , qn} ⊂ A(2).

7.2.1 Φ(A) of Type A1

In this case F0 is always trivial and by Corollary 3 the quotient is smooth.

7.2.2 Φ(A) of Type An, n ≥ 2

In this case F0 is always trivial. The group F in Corollary 3 is an extension of F0 by
the center Z/nZ, and Corollary 3 shows that the quotient is not smooth.

From now on let ǫ1, . . . ǫn be the standard characters on the standard n-torus A1

sitting inside GLn, and let ǫ̃i ∈ X∗(A1) be the standard one-parameter subgroup of
A1 dual to ǫi , 1 ≤ i ≤ n. We use additive notation for the one-parameter subgroups.

7.2.3 Φ(A) of Type Bn, n ≥ 2

The roots are α1 = ǫ1−ǫ2, . . . , αn−1 = ǫn−1−ǫn, αn = ǫn, and λ j is just ǫ̃1 + · · ·+ ǫ̃ j ,

1 ≤ j ≤ n. The only case with F0 nontrivial occurs when m+(αi , τ ) 6= m−(αi , τ )
for i = 1, . . . , n − 1 and m+(αn, τ ) = m−(αn, τ ). Then F0 is generated by qn =

λn(−1) = (ǫ̃1 + · · · + ǫ̃n)(−1), which is fixed under the Weyl group. So F0 has
order 2, which corresponds to the case where F has order 4 in Corollary 6. Hence
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the quotient is not smooth for n ≥ 3 and smooth for n = 2. In all trivial cases the
quotient is smooth.

7.2.4 Φ(A) of Type Cn, n ≥ 3

The roots are α1 = ǫ1 − ǫ2, . . . , αn−1 = ǫn−1 − ǫn, αn = 2ǫn, which we consider as
characters on the torus A2 = A1/(± Id). Then λi = ǫ̃1 + · · ·+ ǫ̃i , 1 ≤ i ≤ n−1 which

we consider as elements of X∗(A2) via projection from A1. We have λn =
1
2
(ǫ̃1 +

· · · + ǫ̃n), i.e., λn(t) is the projection to A2 of diag(
√

t, . . . ,
√

t) (same choice of
√

t

in each slot). The only case with F0 nontrivial occurs when m+(αi , τ ) = m−(αi , τ )
for i = 1, . . . , n − 1 and m+(αn, τ ) 6= m−(αn, τ ). By [HS01, Theorem 10.7(1)]
F0 consists of the W -orbits in A(2)

2 represented by qi = (ǫ̃1 + · · · + ǫ̃i)(−1), where

i runs from 1 to n − 1, and does not contain the W -orbit in A(2)
2 represented by

qn = λn(−1) =
1
2
(ǫ̃1 + · · · + ǫ̃n)(−1). Now λn(−1) is the image in A2 of q =

diag(i, . . . , i) ∈ A1. The Weyl group orbit of q consists of elements diag(±i, . . . ,±i).
If we multiply all entries of such an element by −1, we get the same image in A2. Thus
the W -orbit of λn(−1) has cardinality 2n−1, hence F0 has cardinality 2n−1. Lifting F0

to A1 we get A(2)
1 , so by Corollary 5 the quotient is smooth. In both trivial cases the

quotient is not smooth.

7.2.5 Φ(A) of Type BCn, n ≥ 1

The root system is the union of those for type Bn (7.2.3) and Cn (7.2.4). The αi

and λi are as in (7.2.3). The only case with F0 nontrivial occurs when m+(αi , τ ) 6=
m−(αi , τ ) for i = 1, . . . , n − 1 and m+(αn, τ ) = m−(αn, τ ). Then F0 = {e, qn}
where qn = λn(−1) = (ǫ̃1 + · · · + ǫ̃n)(−1) is W -fixed. This corresponds to the case
F0 = {e, z} in Proposition 3. The quotient is nonsmooth if n ≥ 3 and smooth if

n = 1 or 2. For both trivial cases the quotient is smooth.

7.2.6 Φ(A) of Type Dn, n ≥ 4

In this case F0 is always trivial and by Corollary 6 the quotient is never smooth.

7.2.7 Φ(A) of Type F4

By Borel and de Siebenthal [BdS49] (see also [Hel88, Theorem 8.13]) there are two
nontrivial W -orbits in A(2) with representatives q1 and q4. Since m+(α1, τ ) 6=
m−(α1, τ ) and m+(α4, τ ) = m−(α4, τ ) it follows that q4 ∈ F0 and q1 6∈ F0. Thus
F0 6= A(2), and by Propositon 6 we have F0 ≃ Z/2Z ⊕ Z/2Z and a smooth quotient.
In both trivial cases the quotient is smooth.

7.2.8 Φ(A) of Type E6, E7, E8, or G2

In these cases F0 is always trivial. By Corollary 7 and Corollary 8 the quotient is
never smooth if Φ(A) is of type E6 or E7 and by Proposition 4 and Proposition 5 the
quotient is smooth if Φ(A) is of type E8 or G2.
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