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IDENTITIES FOR EXISTENCE VARIETIES
OF REGULAR SEMIGROUPS

T.E. HALL

A natural concept of variety for regular semigroups is introduced: an existence variety (or
e-variety) of regular semigroups is a class of regular semigroups closed under the operations
H, S., P of taking all homomorphic images, regular subsemigroups and direct products
respectively. Examples include the class of orthodox semigroups, the class of (regular)
locally inverse semigroups and the class of regular E-solid semigroups. The lattice of
e-varieties of regular semigroups includes the lattices of varieties of inverse semigroups
and of completely regular semigroups. A Birkhoff-type theorem is proved, showing that
each e-variety is determined by a set of identities: such identities are then given for many
e-varieties. The concept is meaningful in universal algebra, and as for regular semigroups
could give interesting results for e-varieties of regular rings.

1. PRELIMINARIES

A semigroup S (or (S, -), though we will always replace - by juxtaposition) is
called regular (in the sense of von Neumann for rings) if for each a € S there exists
z € S such that are = a. The element y = zaz then satisfies both aye = @ and
yay = y, and is called an inverse of a in 5. A semigroup is called an inverse semigroup
if each element has a unique inverse, and a semigroup S (not necessarily regular) is
called a locally inverse semigroup if for each idempotent e € S, the subsemigroup eSe
is inverse.

We follow the notation and conventions of Clifford and Preston {2] and Howie [9],
especially for Green’s relations £, R, D, H and J.

An orthodox semigroup is a regular semigroup in which the idempotents form a
subsemigroup. A semigroup S is called E-solid if for all idempotents ¢, f, g € 5 such
that e £ f R g there exists an idempotent i € S such that e RhLg. Such semigroups
include inverse semigroups (in fact, orthodox semigroups) and completely regular semi-
groups (defined as regular semigroups which are unions of groups).

For any class C of regular semigroups we define classes H(C),S.(C) and P(C) as
follows: H(C) is the class of all (regular) semigroups that are homomorphic images of
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semigroups in C; S.(C) is the class of all regular subsemigroups of semigroups in C;
and P(C) is the class of all direct products of semigroups in C. A class V of regular
semigroups is called an existence variety, or e-variety, if H(V) C V,S.(V) C V and
P(V)C V.

2. A BIRKHOFF THEOREM

Simultaneously, and quite independently of the present paper, Kadourek and Szen-
drei [10, Section 1] have considered e-varieties of just orthodox semigroups, which they
call bivarieties of orthodox semigroups, and have also obtained a Birkhoff-type theorem.
By restricting in a natural way the type of identities considered, they obtain the re-
sult that bivarieties of orthodox semigroups are precisely equational classes of orthodox
semigroups (their definition of “an orthodox semigroup (S, -) satisfies an identity” is
prima facie slightly different, and might not be equivalent: for example, for the word
zz'y'y they can substitute aa’'a*e with a', a* being different inverses of a).

For any regular semigroup (5, ) (or more simply §), there is (by the Axiom
of Choice) a unary operation ': § — § on S such that, forall z € S, za'z = = and
z'za’ = z'; we call such an operation an inverse unary operation. By a unary semigroup
we mean an algebra (.5, -, ') such that (5, ) is a semigroup and ' is a unary operation
on S, while by a regular unary semigroup we mean a unary semigroup (S, -, ') such
that (S, -) is a regular semigroup and ' is an inverse unary operation on (S, ). We
denote the variety of all regular unary semigroups by RUS, and the e-variety of all
regular semigroups by RS. For each class € of regular semigroups, define a class C' of
regular unary semigroups by C' = {(5, -, ') € RUS: (S, -) € C}.

For each element z in a semigroup 5, we put
V(z)={y € S: zyz = =z & yey =y},

the set of inverses of = in S. Then the number of inverse unary operations on a
regular semigroup § is of course Hs |V ()|, the product of the cardinalities of the sets
V(z), # € §. Thus for each S in ZCE, the [] |V(z)| regular unary semigroups obtained
from S, by adding an inverse unary operzaeti)n in all possible ways, all belong to C'.
THEOREM 2.1. For each existence variety V of regular semigroups, the class V' is

a variety of (regular) unary semigroups.

Proor: Takeany (S, -,') € V', and any unary semigroup (T, -, ') such that there
exists a (unary semigroup) morphismn ¢ of (S5, -, ') onto (T, -,'). Then ¢ is also a
(semigroup) morphism of (S, -) onto (T, -),so (T, -) € V, whence (T, -,') € V', s0 V'
is closed under H, the taking of all homomorphic images.
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Take any (S, -,') € V' and any (regular) unary subsemigroup (T, -, ') of (S, -,').
Then (T, -) € V so again (T, -, ') € V', whence V' is closed under S, the taking of
all (regular) unary subsemigroups. Entirely similarly, we see that V' is closed under
taking all direct products, which completes the proof. 0

For each e-variety V of regular semigroups, we denote by Id (V') the set of all
(unary semigroup) identities satisfied by all members of V'. We now obtain a Birkhoff
theorem for e-varieties (in the proof, the brackets indicate an alternative statement).

THEOREM 2.2. For any existence variety V of regular semigroups, and for any set
of (unary semigroup) identities B containing zz't = = and z'zz' = z', the following
two conditions are equivalent:

(i) B is a basis of Id(V');
(ii) V is given by

V ={(S, ) € RS : for some inverse unary operation ' on

(S,-), (S, -, ') satisfies B}
and by

V ={(S,) € RS : for every inverse unary operation ' on
(S, ), (S, -, ') satisfies B} .

PROOF: (i) = (ii). Assume (i). If for some [for every] inverse unary operation ' on
(S,:), we have that (S, -, ') satisfies B, then (S, -,') is in V' by Birkhoff’s Theorem
for the variety V', whence (S, ) is in V by the definition of V'. Conversely, if (S, -)
isin V then (S, -,') isin V' (that is, satisfies B), for every inverse unary operation '
on (S, -), which proves (ii).

(i1) = (i). Assume (ii) and put

(B = {(S,-,') € RUS: (S, -, ') satisfies B},

the RUS variety determined by B. From the first equation in condition (ii) we have
(B)y € V', and from the second equation in condition {ii) we have that V' C (B),.
Thus B is a basis of V' = (B),, as required. 1

We say that an e-variety V is strongly determined by a set of identities B if B
is a basis of Id (V'). We say that a regular semigroup (S, -) satisfies a set ¢ of RUS
identities if (5, ., ') satisfies C for every inverse unary operation ' on (S5, .). Note
that from Theorem 2.2, a basis B of Id(V'), for V an e-variety of regular semigroups,
has the property that, for each regular semigroup (S, -), (S, -, ') satisfies B for some
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inverse unary operation ' on (S, ) if and only if (5, -, ') satisfies B for every inverse
unary operation ' on (S, ).
For each set C of RUS identities, we call the class

E(C) = {(S, ) € RS: (S,-) satisfies C}

an equational class. By Theorem 2.2, each existence variety is an equational class.
Example 2.4 below shows that not every equational class is an existence variety. We
say that an e-variety V is weakly determined by a set of identities C if £(C) =V: we
will see many examples in Section 4 where we can find a set C of simpler identities
than those in each basis found for Id (V'). Of course, by Theorem 2.2, each e-variety of
regular semigroups is weakly, as well as strongly, determined by each basis of 1d(V').

Example 2.3. Of course (RS) = RUS, and a basis for Id(RUS) is (zy)z = z(yz),
zz'z = =, and z'zz’ = z'. Not every subvariety of RUS is of the form V' for
some e-variety V. In fact RZ, the e-variety of right zero semigroups (those satisfying
the identity zy = y), has only two e-subvarieties (itself and the trivial variety), but
the corresponding variety (RZ)' has infinitely many subvarieties: if (¥ = z and
(M = (:c("‘”)', for n = 1,2,3,..., then (RZ) has a subvariety determined by
(™ = z(m+") for each pair (m, n) of non-negative integers. For each non-negative
integer k, there is also a subvariety determined by z(¥) = y(*). These varieties are all
the subvarieties of (RZ)', which are of course essentially the known varieties of algebras

with one operation only, a unary operation.

Example 2.4. The equational class £((zy)' = z'y') contains all right zero semigroups
and all left zero semigroups (those satisfying zy = z), but it does not contain the
direct product S x U of a left zero semigroup S = {s, t} and a right zero semigroup
U = {u, v}: any function ' from § x U to S x U is an inverse unary operation, and
for many choices of ', (§ x U, -, ') will not satisfy (zy)' = z'y’. Hence £((zy)' = z'y')

is not closed under P, and so is not an e-variety.

3. THE LATTICE OF e-VARIETIES

Since the map V — V' is one-to-one, from the class L.,{RS) of e-varieties of
regular semigroups into the set £,(RUS) of varieties of regular unary semigroups, the
class £.,(RS) is actually a set. Moreover, since the intersection of any set of e-varieties
is again an e-variety, we have that the set £,,(RS) is a (complete) lattice under class

containment C, and for any set {V;: 7 € I} of e-varieties, we have
AVvi=v:

i€l iel
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and

V Vi =[HV € Leo(RS): (Vi € D(V: CV)},
i€l
the least e-variety containing {J V;.
icl ’
Clearly the map ': £.o(RS) — L(RUS), V — V', is order-preserving: we will see
that it is A-preserving but not V-preserving.

LEMMA 3.1. The map ': L.,(RS) — L,(RUS),V — V', is A-preserving.

ProOOF: For any set {V;: ¢ € I'} of e-varieties, we have

(n vi) ={(S, ") € RUS: (S, )€ ﬂ Vi}
i€l i€l
={(S, ') € RUS: (Vi e I)((S, ) € i)}
=[(S, ") e RUS: (S, ) € Vi}
i€l
= ﬂ Vi, as required.
i€l

0

Remark 3.2. All that we have done so far holds equally for universal algebras. For a
fixed type T of algebra, let

ui(:ﬂla---,xmy ylv"',yn) =’0i($1,--~,$m, yla"'ayn)’ foriel,

be a set of identities, and let £ be the class of all algebras A = (4, FR) of type T
(where A is the underlying set of A and F® is the list of operations of A) such that
for any elements a;,...,am € A there exist elements by,...,b, € A such that

1) (@1, .y @m,y b1y b)) = vi{@ry .-y @my B1y.. 00 0,), forie L.

By an e-variety of algebras from £ we mean any subclass V of £ closed under
H,S. and P, the operations of taking all homomorphic images, subalgebras that are
also in £, and products, respectively.

To each algebra A in £ we can adjoin m-ary operations f, f}, ..., f obtaining
(A, FA R L, f,f\) , as follows: for each m-tuple (ay, @2, ..., am) of elements of
A, choose by, ..., b, € A such that equations (1) hold, and define f?(al yeeer @m) =bj,
for 7 = 1,2,...,n. For each subclass C of £ we define C' to consist of algebras
(A, FR, R £, ..., fR) such that A = (4, FR) belongs to C and by, ..., b, are
chosen in all the ways that make equations (1) valid in A.
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Then just as in Theorem 2.1, for each e-variety V, the class V' is a variety; V is
determined by each basis B of the identities 1d(V') as in Theorem 2.2, and the map
V — V' is order preserving and A-preserving from L.,(€), the lattice of e-varieties
contained in £, to the lattice £,(£') of subvarieties of £', as in Lemma 3.1.

Example 3.3. For LZ and RZ, the e-varieties of left zero and right zero semigroups
respectively, we have that LZ vV RZ = RB, the e-variety of all rectangular bands: we
show that (LZ) Vv (RZ)' # (RB)'. Now each member of (LZ)' and of (R2)', and
hence also each member of (LZ)' V (RZ)', satisfies the identity (zy)' = z'y’. But if
(S, -) is a rectangular band, then (S, -, ') € (RB)' for any function ' from S to S, and
as claimed in Example 2.4, it is easy to find S and ' not satisfying (zy)' = z'y’.

We define a (forgetful) function F: RUS — RS by (S, -, ')F = (S, -), for each
regular unary semigroup (5, -, '). For each class W C RUS, we define WF = {(S, -) €
RS: (S5, ') e W}

Example 3.4. Here we find a variety W € £L,(RUS) such that WF is not an e-variety.
Let S be the combinatorial completely 0-simple semigroup M°((1); 3, 2; P) where

01 1
P =
(1 0 1)
Denote by @ and & the two non-idempotent elements of .5, and define ' on § by o' = b,
b = a and €' = e for each idempotent e€ S.

Then for each s € §, the one-generator unary subsemigroup (s) (= ({s, s'}))
generated by s is an inverse unary subsemigroup. It is clear that the class (IUS )!
of all regular unary semigroups whose one-generator unary subsemigroups are inverse
(unary) semigroups, is a subvariety of RUS .

0 1
Now T = M° ((1); 2, 2; (1 1)) is a subsemigroup of (S, -), so T is in the
e-variety generated by (S, ), while T ¢ (ZUS)'F (also T ¢ (S, -, "})oF ), whence
(ZUS)'F and {(S, -,'))»F are not closed under S, and so are not e-varieties. (By
((S, -, "))y we mean the RUS variety generated by (S, -,').)

Example 3.5. This is another example of a variety W € L, (RUS) such that WF is
not an e-variety: here WZF is not closed under taking morphic images, and not closed
under taking regular subsemigroups. Let W be the variety determined by the identity

z" = z (so in particular, the unary operation is one-to-one and onto). The semigroup

S = MO((1); 4, 2; P), where
P (1 1 0 0) ’
00 1 1
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is in W, while the semigroup T = M%((1); 3, 2; Q), where

100
e= (0 1 1) ’
is not in W, though T is a morphic image (and a regular subsemigroup) of S.

We have seen examples of e-varieties &, V such that U'VY' # (U V V) . A natural
question to ask is whether (U'VV')F =U VYV for all e-varieties & and V.

Example 3.68. (joint with K.G. Johnston). Here we produce e-varieties ¥ and V for
which (U' VVYF £UV Y. Infact (U' VV')F is not an e-variety, though U' VV' isa
more complicated RUS variety than those in Examples 3.4 and 3.5.

Let U be the e-variety generated by the combinatorial Brandt semigroups: then
U' = ((Bz, -, 7'))v, the inverse semigroup variety of [12, Section XIL.4] (therein de-
noted by B), which is generated by the five element comnbinatorial Brandt semigroup
(B2, - ‘1). Put V = RZ, the e-variety of right zero semigroups. Both U’ and V'
(and also the variety of all inverse semigroups) satisfy the identities (zy)" = ="y" and
(zyz) = z'y'z', so U' V'V’ satisfies these identities also.

The semigroup M = M°({f); 2, 3; P), where

Fo
p=|o f
0 f

(and where (f) denotes a trivial group with element f), is easily seen to be a morphic
image of By x (RZ),, where (RZ), is a two element right zero semigroup (so M € UV
V). Put T = M"({e); 3, 3; AA), the ten element combinatorial Brandt semigroup (where
(e) is also a one element group), put T* = T'\ {0}, and define a partial homomorphism
[2, Section 3.2] ¢: T* — M as follows: (e;2,7) — (f;4,7), (&;3,7) — (f;2,7), for
i=1,2and j=1,2,3. Let §=T*UM be the semigroup [2, Theorem 4.19] which
is the ideal extension of M by T determined by ¢.

It is easy to see that S is isomorphic to the subsemigroup {({,t¢) € T x M :t €
T*}u({0} x M) of T x M (thisis a special case of [11, Theorem 4.1]), andso S € UVV.
Finally we show that S ¢ (U’ v V')F by showing there is no inverse unary operation
' on S satisfying the identity (zyz) = z'y'z'. Suppose, to the contrary, that there is
such an operation ' on §. Thenin (S5, -,’) we have

(€5 3,1)(f; 2,1)'(e; 3, 1)
= (&3, 1)¢(£; 2,1)'(e; 3, 1)¢
=(f; 2,1)(£ 2,1)'(f; 2,1) =(f; 2,1).
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Thus

(fi 2,1) = (& 3, 1)(f; 2,1) (es 3, 1))’
= (e 3,1)(f; 2,1)"(es 3, 1)’
=(e; 1, 3)(f; 2,1)(e; 1, 3)
(by uniqueness of inverses of
(e; 3,1),(f; 1, 2) and (£; 1, 3))
= (& 1,3)8(f; 2, 1)(e; 1, 3)¢
=(f; 1,3)(f; 2, 1)(f; 1, 3)
=(f; 1, 3).

Similarly we can prove that (f; 2,1)' = (f; 1, 2), whence (f; 1,2) = (f; 1, 3), a
contradiction. Thus S ¢ (U' vV V')F,so (U' vV V')F is not an e-variety, and in particular
U VV')YF £UVYV. We remark that

(1) a similar proof shows that for every inverse unary operation on (S, -),
(S, -,') does not satisfy (zy)" = z"y"; and
(2) a similar example can be obtained by replacing T in the construction by

the 0-direct union of two copies of By = M°((1); 2, 2; A).

4. IDENTITIES FOR e-VARIETIES

Here we give identities [strongly] determining many of the known existence varieties

of regular semigroups.

4.1. COMPLETELY REGULAR SEMIGROUPS

By a completely regular (or CR ) semigroup, (S, -), we mean a semigroup whichis a
union of groups, while by a completely regular unary (or (C’R,)_1 ) semigroup (S, o ’1)

we mean a completely regular semigroup (5, -) together with the unary operation ~!

! in the maximal subgroup containing

which assigns to each element z its inverse z~
z. It is well-known that any regular subsemigroup of a CR semigroup is also a CR
semigroup (a corollary to [6, Result 2(iii)]; and also to Lemma 4.1.1 below). It follows
that CR is an e-variety, and that each e-subvariety of CR consists of CR semigroups.

Just as for the e-variety CR of all completely regular semigroups, each e-subvariety
VY of CR can be altered to a variety of (CR)_] semigroups by simply adjoining to each

~1; we denote this variety by V1.

semigroup S in V the unary operation
Conversely, each variety W of completely regular unary semigroups becomes an
e-variety WF by simply dropping the unary operation ~! from each semigroup. Meets

are the same, and joins are the same, in £.,(CR), the lattice of e-varieties of completely
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regular semigroups, as in L,,[(C’R)'l] , the lattice of varieties of completely regular unary
semigroups. Thus we see that £.,(CR) = C,[(CR)™'].

However, the identities determining a (C'R)"l variety W are not always appro-
priate to determine the CR e-variety WF: for example the identity zz~?
true in any (CR)™! semigroup, when translated to zz' = z'z, weakly determines the
e-variety of all semilattices of groups (since now, by § satisfies zz' = z'z, we mean

= a:"‘z,

that zz' = z'z for every inverse ' of  in §).
We find an identity that determines CR and we show how to translate identities

for (C'R,)—1 varieties to identities for CR e-varieties.
LEMMA 4.1.1. For any element z in any (CR)™" semigroup (S, Y,

z—l - 12m[:l:m+"+1]':l:n,

for any positive integers m, n and for any inverse [x™t"*1]" of g™+l
PrOOF: We have

zm[xm+n+l]lzn — z—n—lzm+n+l {zm+n+lllmm+n+lz—m—l

— w—n—lwm—f-n—f—lz—m—l — x—l-

0

THEOREM 4.1.2. The e-variety CR is strongly determined within RS by the
identity

(2) zz 'z =z,

1
where z~1 = z(zs) T.

1z = z. Conversely,

PrRoOOF: From Lemma 4.1.1, any CR semigroup satisfies zz~
take any regular semigroup (5, -) such that for some inverse unary operation ' on (S, -),
(S, -, ') satisfies zz~'z = z, that is, satisfies z = zz(:c3)':c2. Then, for all =z € 5,
H, < H,: < H, (that is, R, < R,z < R, and L, € L,» € L;), whence H,: = H,

and H, is a group, so (S, -} is a union of groups. This proves the theorem. 1]

For any (CR)™" semigroup word u = u(zy, ¥z, ..., €,) we define the translation
uT of u inductively, as follows: for each variable z, zT = z and (;c“)T = z(:c3)':z:;

for each word w, (w‘l)T = 1UT[(wT)3]"lvT; for any words v, w, (vw)T = vTwT. An

T = oT for a CR e-variety.

identity w = v for a (CR)™! variety then translates to u
It is clear that if a set of identities (u; = v;);c,; determines a (CR)™! variety W then

(uT = v,-T)iE[, together with zz~'z = z, strongly determine the e-variety W . Since

i =
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uT will often be much longer than u, in practice one would not translate (u; = vi)ie I
to (uf = ”tT)ieI but would retain the identities (u; = v;);c, regarding each w™! as
meaning wT[(wT)s]'wT. One would thus still regard (u; = v;),c; as strongly deter-
mining WZF within the e-variety CR.

We note that each variety V of bands is determined (within the variety of all
bands) by some single (semigroup) identity u = v, as in [1, 3 or 5]. Clearly 2? = z,
u = v determine V as an e-variety of regular semigroups (and as a variety of (CR)™"

semigroups, once the unary operation ~! has been adjoined).

4.2. INVERSE SEMIGROUPS

Since a unary semigroup (S’, Y _1) is an inverse semigroup [12, Theorem X11.1.1] if

g =g, (z‘l)—l =z, (zy) ' =

y~ 'z, (zz7)(z7'z) = (z7'z) (zx '), we see that the existence variety Z of inverse

and only it satisfies the identities z(yz) = (zy)z, sz~

semigroups is strongly determined within RS by z" = x, (zy)' = v'z' and (zz')(z'z) =
(z'z)(zz'). Note that by Remark 4.3.4 below, T is strongly determined within RS by
the single identity

le(=*) 2lly (v*) o) = (") e (=*) =).

If we merely regard ! as an alternative notation to z' when dealing with e-
varieties of inverse semigroups, then any e-variety V of inverse semigroups is strongly
deterinined within 7 by each set of identities that determines V' withing I', and
of course V' is an inverse semigroup variety in the earlier sense (see, for example,
[12, Chapter XII}). Clearly L.,(I), the lattice of e-varieties of inverse semigroups, is

isomorphic to £,(Z'), the lattice of varieties of inverse unary semigroups.

LEMMA 4.2.1.

(a) The identity (zy)' = y'z' weakly determines T within RS.
(b) The identity zz'z'z = z'zazx’ weakly determines T within RS.

PROOF: (a) Take any regular semigroup (S, -) such that (S, -, ') satisfies (zy) =
y'z' for every inverse unary operation ' on (S, .). Take any R-related idempotents e, f
in S and define ¢' = e, f' = f, and choose =’ € V{(x) arbitrarily for = € §\ {e, f}.
Then (ef) = f'¢' gives f = e, so each R-class, and similarly each L-class, of (S, -)
contains exactly one idempotent, whence (5, -) is an inverse semigroup [9, Theorem
V.1.2]. Conversely if (S, -) is an inverse semigroup, then (S, -, ') satisfies (zy) = y''
for any (in fact, the unique) inverse unary operation ' on (S, -).

(b) Take any regular semigroup (.5, -) such that (5, -, ') satisfies zz'z'a = z'zza’
for every inverse unary operation ' on (5, -). Take any R-related idempotents e, f in
S, and define ¢ = f, f' = e, and choose z' € V(z) arbitrarily for ¢ € S\ {e, f}.
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Then ee'e’'e = e'ece’ becomes e = f. Again, each R-class, and similarly each L-class,
of S contains exactly one idempotent, so (5, -) is an inverse semigroup. The converse

implication is again trivial. 0

Remark 4.2.2. The lattices £,(Z') and £, ((C'R,)_l) (of varieties of inverse and com-
pletely regular semigroups, respectively) are of course also sublattices of L,(RUS). In
[13], Petrich and Reilly determined the joins in £,(RUS) of the varieties of rectangu-
lar bands and the varieties of strict inverse semigroups (that is, subdirect products of
Brandt semigroups and groups). In L.,(RS), the corresponding (quite different) joins
can be simply described, as we shall see in a further paper. For example RB V I, the
join of the e-varieties of rectangular bands and inverse semigroups is the e-variety of
generalised inverse semigroups, and more generally, the join RBV V), for each e-variety
V of inverse semigroups, is just the class of generalised inverse semigroups S such that
S/y € V, where v is the least inverse semigroup congruence on S.

Remark 4.2.3. In [7], the author, jointly with T. Imaoka, showed that the e-variety
of generalised inverse semigroups has the amalgamation property. In the further paper
mentioned in Remark 4.2.2, we will show that this is the largest e-variety in £L.,(RS)
with the amalgamation property.

4.3. REGULAR SEMIGROUPS WITH CORES IN AN e-VARIETY V
By the core of a semigroup S, we mean the subsemigroup Core(S) = (E(5))
generated by the set E = E(S) of all idempotents of §.

For each class C of regular semigroups define
€' = {S € RS : Core(S) € C},
the class of those regular semigroups whose core is in C.

LEMMA 4.3.1. For each existence variety V, the class V¥ is also an existence
variety.

PROOF: For any set {S;: ¢ € I} of semigroups, we have Core[[] ;] C [] Core (5:).

i€l i€l

(For I finite, equality holds, and for I infinite, examples show that equality does not
always hold.) For any semigroup S and any subsemigroup T', we have Core(T) C
Core(S). And for any regular semigroups S and T' and any morphism ¢: 5 — T
of S onto T, we have, from Lallement’s Lemma {9, Lemma 11.4.6], that Core(T) =
Core (S5)¢. The lemma now follows.

Remark 4.3.2. By [8, Theorem 3|, a regular semigroup S is E-solid if and only
if Core(S5) is a union of groups. Thus the class of all E-solid regular semigroups is
precisely CR*¥, and is an e-variety.

Given a set of identities for V, a set for V* can be obtained as follows.
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THEOREM 4.3.3. Let [u.-(:cl, ceny :!:k'.) = v;(a:,, ceey :l!k‘)],'e] be a set of RUS
identities that weakly [strongly] determine an e-variety V. Then V9 is weakly [strongly]
determined within RS by the identities

ui['wl,n(l)7 o 7wk;,n(k;)] = vi[tvl,n(l)y sy wk;,n(k;)],

for all i € I, forall n(1),...,n(k;) € Z7,

where, for j =1,2,... (orfor j=1,2,..., ma}xk,- ifma.lxk,- exists),
i€ i€

2 2
Win(i) = W53 Yia] - - i) [W53) ] Vinii))
(a product of n(j) idempotents).

PROOF: The theorem can be proved routinely from the observations, for any
(S, ') € RUS, that (i) :c(:vz)':c is an idempotent, for any = € S, (ii) if e is any
idempotent in S, then e = e(ez)’e, and (iii) Core(S) is closed under ', by FitzGer-
ald’s Lemma ([4], or [9, Exercise II.15]). 0

Remark 4.3.4. In particular, since Z = (S£)*, where SC is the e-variety of semilat-
tices, we have that the e-variety I of inverse semigroups is strongly determined within
RS by the identity

[2(=?) =1y (¥*) 'y = Iy (v*) Yll=(=*) <],

since SL is strongly determined by z? = z, zy = yz. Hence the variety of inverse

(unary) semigroups is determined by the identities

(zy)z = z(yz), zz 'z =z, 2 ez~ = 277,

(=72) (W) ) = (46 ) (== 7).

4.4. ORTHODOX SEMIGROUPS

For any RUS word v, by u € E we mean the identity «v* = u (as in [12] for

inverse semigroups).

THEOREM 4.4.1. The e-variety O of all orthodox semigroups is strongly deter-
mined within RS by the three identities

3) (z2')(z'z), (2'z)(2"), (z2'2'z)(yy'y'y) € E;
and also by the identity

3") x(zz)':cy(yz)'y € E.
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And O is weakly determined within RS by each one of the following four identities:
1
(4) zz'yy' € E, zx'z'z € E, (:c (zz)'z) € E, zyy'z'zy = zy.

PROOF: (i) Take any orthodox semigroup (S, -) and any regular unary operation
"on (S, -). Clearly (S, -,') satisfies the identities (3) and (3') (since :c(:cz)'z is an
idempotent, for each =z € S), and the first two identities in (4). From [9, Theorem
VI.1.1}], we see that (5, -, ') satisfies the last two identities in (4).

(ii) Conversely, take any regular semigroup (S, -) such that for some inverse unary
operation ' on (S, ), the identities (3) are satisfied by (S, -,’). We show that (S, -)
is orthodox. Take any idempotents e, f € §. By (3), €' = e'ee’ = (¢'e)(e€’) € E and
hence e = ee'e = (ee')(e'e). Likewise f = (ff')(f'f) and then from (3) again ef is
idempotent, whence (S, -) is orthodox.

For (3'), there is a similar, though simpler, proof (since e = e(ez)'e for any
idempotent e € S).

(iii) Take any regular semigroup (S, -).

If (S, -) satisfies the first of the identities (4), then clearly (S, -) is orthodox.

Suppose (S5, -) satisfies zz'z'c € F, and take any two idempotents e, f € S. By
{8, Lemma 1], there exist idempotents g, h such that gh = ef DgDh. Since gDh
there exist # € S and y € V(z) such that zy = g and yz = h. Define ¢’ = y
and choose s' € V(s) arbitrarily for s € S\ {z}. Then ef = gh = zz'z'z € E, so
(S, -) is orthodox. (The result here is equivalent to the result that a regular semigroup
is orthodox if and only if the product of each pair of D-related idempotents is also
idempotent, which follows from [8, Lenuna 1].)

Suppose (S, -) satisfies (.’l! (zz)':c), € E and take any idempotent e € S and any
y € V(e). Define ¢ = y and choose s' € V(s) arbitrarily for s € S\ {e}. Then
y=¢' = (ee'e) = (e(ez)'e)' € E, so by [9, Theorem VI.1.1], (S, -) is orthodox.

Suppose (S, -) satisfies zyy'z'zy = zy, and take any idempotents e, f € §. De-
fine ¢ = e, f' = f, and choose s' € V(s) arbitrarily for s € S\ {e, f}. Then
(ef)? = efef = e(ff'Ne'e)f = (ef)(f'e')ef) = ef, so ef is idempotent and (S5, ) i[s]

orthodox.

Remark 4.4.2. For any RUS words v and v, by « € V(v) we mean the pair of
identities uvu = u and vuv = v. From the theorem, O is (weakly) determined by
y'z' € V(zy).

Recall again that each (semigroup) variety of bands is determined by a single

semigroup identity ([1, 3 and 5]).

THEOREM 4.4.3. If a band variety V is determined by a semigroup identity

https://doi.org/10.1017/5000497270000349X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270000349X

72 T.E. Hall (14)

w(z1, T2y .., n) = v(&1, T2, --., T,) then the existence variety V*9, of all orthodox
semigroups S such that E(S) € V, is strongly determined within RS by the identities
(3) or (3') together with

UW(TITILIT Ly ey T Ty Tn) = V(T1TIT I T1, -« -y BTy TnTn);
and also by (3) or (3') together with
w(21(23) 21,y 2 (22) 2n) = v (21 (23) 21, ., 20 (22) 20 ).
Also V¥ is weakly determined by each one of the identities (4) and the identity
w(T1xy, T2Th, -« -y TuTh) = V(T1TY, T2Tg, -1y TnTy)-

ProOOF: For any idempotents 4, 2, ..., £, in an orthodox semigroup (5, -), we
have
! .
v, = ziziie; and @; =z(2f) 24, 1 =1,2,..., 7,

for any inverse unary operation ' on (5, ). The theorem follows easily from this and
Theorem 4.4.1. 0

4.5. F-SOLID REGULAR SEMIGROUPS

For any elements a, b in a regular semigroup S5, R, > Ry if and only if aa™b =5
for each [some] ¢* € V(a). Let us write a > b (and b < a) to mean R, > R, and
likewise @ 2¢ b (and b < a) to mean L, > L.

For any two RUS words u, v, the notation v <g v (or v 2x u) means the
identity vv'y = v. By uRv we mean the conjunction of v <g v and u 2g v. Of
course u £¢ v, u 2 v and u L v are defined dually, while ©u H v means the conjunction
of uLv and v Rv. Finally, v € G means « M u?, namely that u is in a subgroup (as
in {12] for inverse semigroups).

We recall that the class of all F-solid regular semigroups is the existence variety
CR'* (Remark 4.3.2).

THEOREM 4.5.1. The existence variety CR' of all E-solid regular semigroups is
strongly determined within RS by the twelve identities

(5) (z'z)(z’), (z2')(2'z), (z2'2'z)(yy'y'y) € C;
and also by the four identities

(5') z(2%) zy(y*)'y € G.
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And CR* is weakly determined within RS by each of the following sets of four

identities:

(6) zz'yy € G;
(6') zz'z'z € G;
and

(7) (w(mz)'x). e G.

PROOF: (i) Let (S, :) be any E-solid regular semigroup and let ' be any inverse
unary operation on (5, -). Since the core (E(S)) of S is a union of groups, the identities
(5) and (5') are satisfied by (S, -, ').

(ii) Conversely, suppose (S, -) is a regular semigroup such that (5, -, ') satisfies
the identities (5), for some inverse unary operation ' on (5, -). Take any idempotents
e, f, g in § such that eL fRg. Then ¢ = e'ee’ = (e'e)(ee') is in a subgroup, by
(5), and since eRee' L&' Re'e L e we have by [2, Theorem 2.17] that (ee')(e'e) € H,
(since Ry, N Lot = H, (2 group) contains an idempotent).

Likewise (gg')(g'g) € Hy, and since e £ f R g we have by [2, Theorem 2.17] again
that (ec'e’'e)(gg'g'g) € ReN Ly, and so R, N L, is a group from (5); that is, there is an
idempotent h such that e Rh £ g, whence S is E-solid, as required.

Now take any regular semigroup (S, -) such that (S, -, ') satisfies (5') for some
inverse unary operation ’ on (S5, -). Then clearly the product of any two idempotents
in (S, ) is in a subgroup, which is equivalent to (S, -) being E-solid.

(iii) The identities (6) [(6')] are equivalent to the product of any two [D-related)
idempotents being in a subgroup, which is equivalent to being E-solid. The identities
(7) are equivalent to each inverse of an idempotent being in a subgroup, which is also
equivalent to being E-solid. 0

4.6. LOCALLY INVERSE, ORTHODOX,...

Let V be any class of regular semigroups and define V' to be the class of all
regular semigroups all of whose local subsemigroups are in V; that is

viee = {(S,-) € RS: (eSe, -) € V for each idempotent e € S}.
The operator V — V¥ was introduced for (CR)™' varieties by the author and P.R.

Jones [8, Section 4], and was denoted by P.
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LEMMA 4.6.1. If V is an existence variety then V'°° is also an existence variety.

PROOF: It is clear that V!¢ is closed under taking regular subsemigroups and
direct products.

Take any regular semigroups S5, T and any morphism ¢: § — T of S onto T'.
Take any idempotent f € T'. By Lallement’s Lemma [9, Lemma 11.4.6] there is an
idempotent e € S such that e¢ = f. It is easily checked that (eSe)¢ = fT'f, so each
local subsemigroup of T is a morphic image of a local subsemigroup of §. Thus V!¢
is closed under morphic images, and hence is an e-variety. 1]

We call V! the existence variety of regular locally-V semigroups. As in [8, Propo-
sition 4.1] for (CR)™" varieties, the operator ¥ — V¢ is a closure operator on the
lattice £.,(RS), and in particular on the lattice of [existence] varieties of inverse semi-
groups.

We now show how to obtain identities for V"¢ from identities for V. For any
idempotent e in any regular semigroup §, and for any element z € eSe, and for any
inverse z' of z in S, checking shows that ez'e is an inverse of z in eSe (in particular
eSe is a regular subsemigroup of 5). Also if e and f are D-related idempotents in
any semigroup 5, then, as is well-known, eSe is isomorphic to fSf (and so eSe € V
would imply fSf eV).

For any RUS word w = w(zy, %2, ..., Tn) in variables z;, 23, ..., T, we define
¢ = yy'ziyy,
i=1,2,...,n; (u')'oc =yy' (u"":)’yy'; and (uv)loc = ul*cv!°® (for any words u, v in

loc o

a word w'® in variables z,, z2, ..., Tn, y, inductively, as follows: z!

Ty, ooy Tn)e

Remark 4.6.2. A slight simplification of the definition of w'*® occurs by defining
loc

z;°° = yz;y' (instead of yy'z;yy') for each variable z;. The theorem below is still

valid, with yz;y' replacing yy'z;yy'.

THEOREM 4.6.3. If a set of RUS identities
(8) u.—(zl, Tgy eeny :c;c‘.) = v,-(:cl, Ty eons :vk'.), foriel,

weakly [strongly] determines an e-variety V of regular semigroups, then V'°¢ is weakly
[strongly] determined by the identities

((8)"’") u:"‘(:c], T2y oeey Thyy y) = vf"c(:cl, T2y -y Thy, y), foriel.

PROOF: Case (a): the identities (8) weakly detemine V.

(i) Take any regular semigroup (.5, -) that satisfies the identities (8)!°¢; we show
that (S, -) € Ve,
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Take any idempotent e € S and take any inverse unary operation ' on (eSe, ),
and extend ' arbitrarily to an inverse unary operation, also denoted by ', on (S, -). In
eSe we have V(e) = ¢, and so ¢ = e. Take any zy, 2, ..., Tn € eSe, and put y =e,

!

whence ¥’ = e = yy'. Now ' is closed on eSe = yy'Syy', and yy'uyy' = u for any
u € eSe, so

wl"c(zl, Tzy ey Tny Y) = w(T1, T2y ...y )

for any word w in n variables. Thus, since (S, -, ') satisfies (8)'°°, we see that (eSe, -, ')
satisfies (8). Since ' was arbitrary on eSe, we have that (eSe, -) satisfies (8), and so
(eSe, -) € V, giving us that (S, -) € V<.

(ii) Take any semigroup (S,-) € V. We show that (S,-) satisfies (8)%c.
So we take any inverse unary operation ' on (S, ), any i € I, and any elements
L1, T2, ..., T, YES.

Define a unary operation * on (yy'Syy', -} by =™ = yy'z'yy’ for each = € yy'Syy';
then * is an inverse unary operation. '

The elements yy'ziyy', ..., y¥'zr,yy’ are in yy'Syy', and (yy'Syy', ) € V,
whence (yy'Syy', -, *) € V', s0

ui(yy'zayy’, .. yekyy') = vi(yy'ziyy, .. vy zewy'),

where each side of the equation is calculated in the regular unary semigroup

(vy'Syy’, -, *). Hence
uioc(zl’ ceey Thy, y) = ,v:oc(x], sy Thyy y)

Thus (S, -, ') satisfies (8)'°¢, and so (S, -) satisfies (8)'°°.

Case {b): the identities (8) strongly determine V.

(i) Take any regular semigroup (S5, -) such that for some inverse unary operation
" on (S, -), the regular unary semigroup (S, -, ') satisfies (8)°: we show that (S,-) €
Vloc'

Take any idempotent y € S. Since yRyy', we have that (ySy, -) = (yy'Syy', )
(the map =z — zyy' is an isomorphism). Again define an inverse unary operation *
on (yy'Syy', ) by z* = yy'z'yy’ (for all z € yy'Syy'). Since (3, -, ') satisfies the
identities (8)°c, we see that (yy'Syy', -, *) satisfies the identities (8) (with * replacing
'}, that is, belongs to V'. Hence (yy'Syy', -) € V and so (ySy, -) € V (since (ySy, -) =
(vy'Syy', -)), which gives us that (S, -) € Ve,

(ii) We showed already in part (a)(ii) of the proof that any semigroup (S5,-) €
V¢ satisfies the identities (8)'° if each semigroup in V satisfies (8). The proof is
complete.
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As for inverse semigroups [12, Definition I1.4.7], let us call a regular semigroup
strict if it is a subdirect product of completely O-simple and completely simple semi-
groups. From Lallement [11, Theorem 4.1], a regular semigroup 5 is strict if and only
if for any elements a, b € S with J, > Jp, for each idempotent e € J, there exists a
unique idempotent f € Jy such that e > f. It is now easy to see also that a regular
semigroup S is strict if and only if it is locally a semilattice of groups (that is, for
each idempotent e € S, the local subsemigroup eSe is a semilattice of groups). Like-
wise, combinatorial, strict, regular semigroups are easily seen to be precisely regular
local semilattices (that is, regular semigroups such that each local subsemigroup is a
semilattice).

For any RUS words u, v, the notation © CW v means the identity uv = vu (that

is, that u commutes with v).

COROLLARY 4.6.4. (i) The e-variety (SL)'*° of regular local semilattices (that
is, combinatorial strict regular semigroups) is strongly determined within RS by the
identities

zzz' € E, zzz' CW zy2'.

(ii) The e-variety (SL£G)"° of regular semigroups that locally are semilattices of
groups (that is, strict regular semigroups) is weakly determined within RS (and is
strongly determined within I'°¢) by the identity

yzy' CW yy'(yey')'vy'.
(iii) The e-variety B'° of regular local bands is strongly determined within RS
by the identity yzy' € E.

(iv) The e-variety O'° of regular, locally orthodox semigroups is strongly deter-
mined within RS by

(5o ((e2?) 525" ) (s0 (Go)") 07 ) € B

and is weakly determined within RS by
! n z ’ ,
(y:v(y (yey )y) wy) €E.

(v) The e-variety T'°¢ of regular, locally inverse semigroups is strongly determined
within RS by the identity

' i
zz2' ((zzz')z) zzz' CW zy2' ((zyz')z) zyz',
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and is weakly determined within RS by the identity
vy (yzy'yzy' CW yay'(yay') vy'.

PrOOF: (iv) The second term is a simplification of the term
1]
(yzy' (yy'(yzy')'yy')zyz:y') , which is an inverse of an arbitrary idempotent in yy'Syy'
if z, y are taken as arbitrary elements in an RUS semigroup (S, -, ').

(v) The first identity is obtained from Remark 4.3.4. The second identity is ob-
tained from z'z CW zz', which weakly determines 7 within RS. 0
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