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On Cauchy–Liouville–Mirimanoff
Polynomials

Dedicated to the memory of John Isbell, 1930–2005

Pavlos Tzermias

Abstract. Let p be a prime greater than or equal to 17 and congruent to 2 modulo 3. We use results of

Beukers and Helou on Cauchy–Liouville–Mirimanoff polynomials to show that the intersection of the

Fermat curve of degree p with the line X + Y = Z in the projective plane contains no algebraic points

of degree d with 3 ≤ d ≤ 11. We prove a result on the roots of these polynomials and show that,

experimentally, they seem to satisfy the conditions of a mild extension of an irreducibility theorem of

Pólya and Szegö. These conditions are conjecturally also necessary for irreducibility.

1 Introduction

Let Q be the field of rational numbers. For an integer n ≥ 2, consider the polynomial

Pn(X) = (X + 1)n − Xn − 1 . The following identity is due to Cauchy and Liouville

[4], [17, p. 46]:

(1.1) Pn(X) = X(X + 1)a(X2 + X + 1)bEn(X),

where En(X) ∈ Z[X] and a, b are defined as follows: if is n even, then a = b = 0, while

if n is odd, then a = 1 and b = 0, 1, 2 according to whether n ≡ 0, 2, 1 (mod 3),

respectively. The polynomials En(X) are called Cauchy–Liouville–Mirimanoff poly-

nomials (in the literature, they are also referred to as Cauchy–Mirimanoff polynomi-

als). For n prime, Mirimanoff [13] conjectured the irreducibility of En(X) over Q . It

is not unlikely that En(X) is in fact irreducible for all integers n. By a clever argument

of Filaseta (described by Helou [9]), it is known that E2p(X) is irreducible over Q for

all primes p. Analogous results for general n seem to be out of reach at the moment.

Terjanian [19] has suggested an interesting generalization of Mirimanoff ’s original

conjecture and Helou [8] has established an interesting connection with Wendt’s bi-

nomial circulant determinant. The purpose of this paper is to prove the following

result:

Theorem 1.1 Let p be a prime such that p ≡ 2 (mod 3) and p ≥ 17.

(i) Every irreducible factor of Ep(X) over Q is of degree d ≥ 12.

(ii) For p ≥ 23, Ep(X) has an irreducible factor of degree d ≥ 18.
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Part (i) of the above theorem strengthens a result of C. Robinson who, using a

different method, showed the statement to be true for approximately 80% of such

primes p. It can be restated in terms of low-degree points on Fermat curves (see

also [5–7, 10–12, 16, 20–22].

Corollary 1.2 Let p be a prime such that p ≥ 17 and p ≡ 2 (mod 3). If an algebraic

point of degree d ≥ 3 over Q belongs to the support of the intersection divisor of the

Fermat curve Xp + Y p
= Z p with the line X + Y = Z in P2, then d ≥ 12.

It appears that the polynomials Ep(X) do not satisfy the conditions of most stan-

dard irreducibility criteria. In Section 3, we show that, experimentally, they seem to

satisfy the conditions of a mild extension of an irreducibility theorem of Pólya and

Szegö [15]. It is interesting to note that, at least for p ≡ 2 (mod 3), the sufficient

conditions for irreducibility of Ep(X) provided by this theorem are conjecturally nec-

essary conditions as well.

2 Low-Degree Factors

In this section, we prove Theorem1.1 by combining results of Helou [9] and Beuk-

ers [1]. Let n be odd such that n ≥ 9. Helou [9] showed that the set of roots of En(X)

is partitioned into orbits of cardinality 6 under a natural action of S3 and that the

rational function

(2.1) J(X) =

(X2 + X + 1)3

(X2 + X)2

is invariant under the same action. Therefore, there exists a polynomial Tn(X) ∈
Q[X] of degree rn = (n − 3 − 2b)/6 such that

(2.2) En(X) = n(X2 + X)2rn Tn( J(X)).

If n = p is prime, it follows from Helou’s work [9] that Tp(X) is a monic polyno-

mial with coefficients in Z whose roots are all real and simple and that Ep(X) and

Tp(X) have the same number of irreducible factors over Q . In particular, the degree

d mentioned in Theorem 1.1 and Corollary 1.2 is always a multiple of 6. Now define

(2.3) u = (X2 + X + 1)3, v = (X2 + X)2.

It follows from (2.1), (2.2) and (2.3) that

(2.4) En(X) = Rn(u, v),

where Rn ∈ Z[u, v] is a homogeneous polynomial in u, v of degree rn. Also note that

setting T = J(X) we have

(2.5) Tn(T) =

1

n
Rn(T, 1).

We have the following lemma.
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Lemma 2.1 For odd n ≥ 9, the polynomials Rn satisfy the following recursive relation:

Rn+18(u, v) = (2u + 3v)Rn+12(u, v) + (6uv − u2 − 3v2)Rn+6(u, v) + v3Rn(u, v).

Proof Observe that

(2.6) ((X + 1)6 + X6)(Pn+6(X) + 1) = Pn+12(X) + 1 + v3(Pn(X) + 1).

Since (X + 1)6 + X6
= 2u + 3v − 1, the recursion follows from a straightforward

calculation using (2.6) and the definitions of En(X) and Rn(u, v).

We now discuss the roots of the polynomials Tn. As mentioned before, Helou has

shown that all the roots of Tn are real and simple. We now prove that they are all

negative:

Lemma 2.2 For odd n ≥ 9, all the roots of the polynomial Tn are negative. In partic-

ular, since Tn is monic, all its coefficients are positive.

Proof By (2.5), it suffices to show that Rn(T, 1) > 0 if T ≥ 0. The first few polyno-

mials Tn(T) are listed below:

T9(T) = T +
1

3
T15(T) = T2 +

10

3
T +

1

5
T21(T) = T3 +

28

3
T2 + 7T +

1

7

T11(T) = T + 1 T17(T) = T2 + 5T + 1 T23(T) = T3 + 12T2 + 14T + 1

T13(T) = T + 2 T19(T) = T2 + 7T + 3 T25(T) = T3 + 15T2 +
126

5
T + 4.

We distinguish two cases:

Case 1 Suppose T > 6. It clearly suffices to show that

(2.7) Rn+6(T, 1) > TRn(T, 1) > 0

for all odd n ≥ 9. It is straightforward to show that (2.7) is true for n in {9, 11, 13, 15,
17, 19}. Assume that (2.7) holds for all n such that 9 ≤ n ≤ 13 + 6k, where k ≥ 1.

Let c = 9, 11, 13. Then by Lemma 2.1, our assumption on T and the induction

hypothesis, we get

Rc+6k+12(T, 1) − TRc+6k+6(T, 1)

= (T + 3)Rc+6k+6(T, 1) + (6T − T2 − 3)Rc+6k(T, 1) + Rc+6k−6(T, 1)

> (T2 + 3T)Rc+6k(T, 1) + (6T − T2 − 3)Rc+6k(T, 1) + Rc+6k−6(T, 1)

= (9T − 3)Rc+6k(T, 1) + Rc+6k−6(T, 1) > 0,

so (2.7) also holds for n = c + 6(k + 1).
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Case 2 Suppose 0 ≤ T ≤ 6. Since R9(T, 1), R11(T, 1), R13(T, 1) > 0, it suffices to

show that

(2.8) Rn+12(T, 1) − Rn+6(T, 1) ≥ Rn+6(T, 1) − Rn(T, 1) ≥ 0,

for all odd n ≥ 9. It is straightforward to show that (2.8) holds for n ∈ {9, 11, 13}.

Let c = 9, 11, 13. Suppose that (2.8) holds for n = c + 6k, where k ≥ 0. Then by

Lemma 2.1, our assumption on T and the induction hypothesis, we get

Rc+6k+18(T, 1) − 2Rc+6k+12(T, 1) + Rc+6k+6(T, 1)

= (2T + 1)Rc+6k+12(T, 1) + (6T − T2 − 2)Rc+6k+6(T, 1) + Rc+6k(T, 1)

= Rc+6k+12(T, 1) − 2Rc+6k+6(T, 1) + Rc+6k(T, 1)

+ 2TRc+6k+12(T, 1) + T(6 − T)Rc+6k+6(T, 1)

≥ Rc+6k+12(T, 1) − 2Rc+6k+6(T, 1) + Rc+6k(T, 1) ≥ 0,

so (2.8) holds for n = c + 6(k + 1).

Proof of Theorem 1.1 As mentioned before, the work of Helou [9] implies that an

irreducible factor of Ep(X) over Q necessarily has degree d divisible by 6 and cor-

responds to an irreducible factor of Tp(T) of degree d/6. So the proof of Theorem

1.1 reduces to the study of linear and quadratic factors of Tp(T). By Lemma 2.1, the

constant coefficient an of Tn(T) satisfies the recursion

(2.9) (n + 18)an+18 = 3(n + 12)an+12 − 3(n + 6)an+6 + nan.

Now for n ≡ −1 (mod 6), the initial conditions are a11 = a17 = a23 = 1. An easy

inductive argument now shows that an = 1 for all n ≡ −1 (mod 6). If, in addition, n

is prime, then Tn(T) is a monic polynomial with coefficients in Z. Therefore, the only

possible Q-rational roots are 1 and −1. The former case is impossible by Lemma 2.2.

To show that the latter case is also impossible, note that if −1 were a root of Tn(T),

then T11(T) would divide Tn(T), which implies that En(X) is divisible by E11(X). This

is a contradiction, since, as Beukers shows in [1], the polynomials En(X) are pairwise

relatively prime. This proves part (i) of Theorem 1.1.

To prove part (ii), we need to show that there exists an irreducible factor of Tp(T)

of degree ≥ 3. Suppose this is not the case. Since Tp(T) is a monic polynomial in

Z[T] with constant term 1, it follows from Lemma 2.2 that Tp(T) is the product of

polynomials of the form T + 1 and T2 + cT + 1, with c a positive integer. In particular,

Rp(T, 1) is a reciprocal polynomial. We show that this is impossible, unless p = 11

or 17. To do this, we use Lemma 2.1 to compare the coefficients of Trp−1 and T in

Rn(T, 1). Let cn and dn be the coefficients of Trn−1 and T in Rn(T, 1), respectively (for

n ≡ −1 (mod 6)). By Lemma 2.1 and the fact that the leading coefficient of Rn(T, 1)

equals n, we get

(2.10) cn+18 = 3n + 36 + 2cn+12 + 6n + 36 − cn+6
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with initial conditions c11 = 11, c17 = 85 and c23 = 276. By induction, we get

(2.11) cn =

n(n − 5)(n − 7)

24
.

To obtain a formula for dn, we use Lemma 2.1 and differentiation at T = 0, taking

into account that the constant term in Rn(T, 1) equals n:

(2.12) dn+18 = 2n + 24 + 3dn+12 + 6n + 36 − 3dn+6 + dn

with initial conditions d11 = 11, d17 = 85 and d23 = 322. By induction, we get

(2.13) dn =

n(n + 1)(n − 2)(n − 5)

648
.

Using (2.11) and (2.13), it is now easy to check that cn = dn if and only if n = 11 or

17, and this completes the proof of Theorem 1.1.

3 An Irreducibility Criterion

We need the following mild extension of a classical theorem of Pólya and Szegö [15,

vol. 2, VIII, 127]. We claim no novelty for the result whose proof is virtually identi-

cal to the proof of Pólya and Szegö’s original theorem given in a paper by Brillhart,

Filaseta and Odlyzko [3]:

Theorem 3.1 If f (X) is a polynomial in Z[X] of degree n with roots α1, . . . , αn and

there exists a rational number r
s

such that sn f ( r
s
) is prime, f ( r

s
− 1) 6= 0 and Re(αi) <

r
s
− 1

2
for all i ∈ {1, . . . , n}, then f (X) is irreducible in Z[X].

Proposition 3.2 Let p be a prime such that p ≥ 11. Let r
s

be a rational number such

that r
s
≥ 1

2
. Suppose that srp Tp( r

s
) is a product of d primes (not necessarily distinct).

Then Tp(T) (and also Ep(X)) has at most d irreducible factors over Q .

Proof By Lemma 2.2 and the fact that Tp(T) ∈ Z[T] is monic, any rational root of

Tp(T) must be a negative integer. So if Tp( r
s
− 1) = 0, then r

s
≤ 0, a contradiction.

Also, by Lemma 2.2, the inequality Re(αi) < r
s
− 1

2
is satisfied for every root αi of

Tp(T). Now by the proof of Theorem 3.1, for any irreducible factor g(T) of Tp(T) of

degree k, we have |skg( r
s
)| ≥ 2. Therefore, the number of irreducible factors of Tp(T)

cannot exceed the number of (not necessarily distinct) prime divisors of srp Tp( r
s
).

A few remarks are in order:

(1) By Proposition 3.2, the existence of a rational number r
s
≥ 1

2
such that srp Tp( r

s
)

is prime implies that Ep(X) is irreducible over Q . Computationally, the existence of
r
s

seems to be a frequent occurence. Table 1 lists such a rational r
s
≤ 1 for each prime

p < 1000. We should note that we list only one of several r
s

that our crude MAPLE

program found for each prime p. Specifically, we list the first such rational number

with respect to the lexicographic ordering of r, s. Each entry in the table is a triple

(p, r, s).
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(11,1,1)

(13,1,1)

(17,1,1)

(19,1,1)

(23,1,2)

(29,2,3)

(31,1,1)

(37,7,10)

(41,11,14)

(43,4,7)

(47,1,2)

(53,12,13)

(59,8,11)

(61,19,30)

(67,5,6)

(71,13,22)

(73,17,26)

(79,12,13)

(83,1,1)

(89,11,15)

(97,21,23)

(101,7,11)

(103,7,9)

(107,11,18)

(109,17,28)

(113,16,21)

(127,23,24)

(131,8,9)

(137,6,11)

(139,8,15)

(149,9,10)

(151,9,14)

(157,29,49)

(163,14,23)

(167,1,2)

(173,19,22)

(179,17,32)

(181,29,35)

(191,11,16)

(193,127,238)

(197,15,22)

(199,34,43)

(211,103,186)

(223,13,15)

(227,17,30)

(229,61,89)

(233,30,49)

(239,11,20)

(241,71,140)

(251,13,21)

(257,9,10)

(263,1,2)

(269,7,8)

(271,31,56)

(277,51,58)

(281,23,38)

(283,7,9)

(293,22,23)

(307,35,47)

(311,6,11)

(313,129,155)

(317,4,5)

(331,46,55)

(337,249,490)

(347,33,62)

(349,67,77)

(353,14,27)

(359,6,11)

(367,9,10)

(373,5,6)

(379,68,105)

(383,5,9)

(389,38,47)

(397,59,90)

(401,38,75)

(409,27,35)

(419,9,14)

(421,71,78)

(431,3,4)

(433,143,180)

(439,29,53)

(443,39,62)

(449,62,101)

(457,197,260)

(461,60,73)

(463,52,101)

(467,22,25)

(479,17,31)

(487,19,30)

(491,37,58)

(499,35,66)

(503,13,18)

(509,13,17)

(521,62,105)

(523,11,21)

(541,109,142)

(547,64,105)

(557,19,22)

(563,8,11)

(569,8,15)

(571,36,71)

(577,413,450)

(587,25,27)

(593,18,23)

(599,34,63)

(601,77,135)

(607,9,16)

(613,77,142)

(617,35,68)

(619,38,41)

(631,232,375)

(641,83,120)

(643,15,29)

(647,31,51)

(653,27,38)

(659,39,70)

(661,149,211)

(673,181,220)

(677,15,26)

(683,23,26)

(691,72,101)

(701,27,38)

(709,7,10)

(719,7,12)

(727,21,29)

(733,77,107)

(739,10,19)

(743,5,8)

(751,69,94)

(757,187,240)

(761,39,49)

(769,245,348)

(773,18,19)

(787,35,68)

(797,39,61)

(809,15,28)

(811,142,205)

(821,23,34)

(823,49,94)

(827,48,73)

(829,53,57)

(839,12,23)

(853,47,88)

(857,2,3)

(859,51,100)

(863,18,29)

(877,61,118)

(881,115,117)

(883,76,147)

(887,16,27)

(907,11,20)

(911,36,67)

(919,92,147)

(929,43,82)

(937,115,171)

(941,13,19)

(947,25,46)

(953,17,18)

(967,151,262)

(971,21,25)

(977,46,51)

(983,7,10)

(991,67,126)

(997,39,70)

Table 1
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(2) Numerical evidence suggests that the largest root of Tp(T) approaches 0 as p

approaches infinity. Consequently, it seems that the condition r
s
≥ 1

2
in Proposition

3.2 cannot be improved.

(3) It is interesting to note that the sufficient condition for irreducibility of Ep(X)

given by Proposition 3.2 is conjecturally a necessary condition as well, at least for

p ≡ 2 (mod 3). To be more specific, assume Tp(T) is irreducible for a prime

p ≡ 2 (mod 3). One of the major unsolved problems in number theory is a fa-

mous conjecture of Bouniakowsky [2], which was rediscovered and generalized to

polynomial systems in a paper of Schinzel and Sierpinski [18]. It asserts that for

an irreducible polynomial f (X) ∈ Z[X] with positive leading coefficient, the set of

values V f = { f (n) : n ∈ Z+} contains infinitely many primes, provided that the

elements of V f have no common prime divisor. We refer the reader to Murty’s pa-

per [14] for a discussion of the connection between prime numbers and irreducible

polynomials as well as function field analogues of this connection. Replacing f (X)

by g(X) = f (X − 1), it is clear that we can replace Z+ by Z+ in the statement of

Bouniakowsky’s conjecture. Now note that Tp(0) = 1, so the elements of VTp
have

no common prime divisor. Therefore, Bouniakowsky’s conjecture implies that Tp(n)

must be prime for infinitely many n ∈ Z+.

Acknowledgment I thank the anonymous referee for suggesting substantial im-

provements on the exposition.
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Mémoires Sci. Math. Phys. 6 (1854-1855), 307–329.

[3] J. Brillhart, M. Filaseta and A. Odlyzko, On an irreducibility theorem of A. Cohn. Canad. J. Math.
33(1981), no. 5, 1055–1059.

[4] A. Cauchy and J. Liouville, Rapport sur un mémoire de M. Lamé relatif au dernier théoréme de
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