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Weighted Distribution of Low-lying Zeros of
GL(2) L-functions

Andrew Knightly and Caroline Reno

Abstract. 'We show that if the zeros of an automorphic L-function are weighted by the central value
of the L-function or a quadratic imaginary base change, then for certain families of holomorphic
GL(2) newforms, it has the effect of changing the distribution type of low-lying zeros from orthog-
onal to symplectic, for test functions whose Fourier transforms have sufficiently restricted support.
However, if the L-value is twisted by a nontrivial quadratic character, the distribution type remains
orthogonal. The proofs involve two vertical equidistribution results for Hecke eigenvalues weighted
by central twisted L-values. One of these is due to Feigon and Whitehouse, and the other is new
and involves an asymmetric probability measure that has not appeared in previous equidistribution
results for GL(2).

1 Introduction

According to the density conjecture of Katz and Sarnak, for any suitable family of
L-functions, the zeros lying close to the real axis are equidistributed according to one
of a handful of possible symmetry types coming from compact classical groups ( [KSI,
KS2]). More precisely, given an L-function L(s, f), denote its nontrivial zeros by ps =
3 +iys, and define the 1-level density
_ yslog Qs
D(f,¢) = stb( )
!

where Qy is the analytic conductor of f, and ¢ is a test function. The conjecture
predicts that for any suitable family F = (JJ,, of automorphic forms, with each F,
finite, there exists a family G of classical compact groups (being one of O, SO(even),
SO(odd), Sp, or U) such that for any even Schwartz function ¢ with compactly sup-
ported Fourier transform @,

. Zfe?n D(f’¢) _

Jim ST = [ (e Wolx)dx

Here, Wi (x) is the limiting distribution of the 1-level density attached to the eigen-

values of random matrices in G as the rank tends to co. Of particular relevance to us

here are
1 sin(2mx
Wo(x) =1+ an(x) and Wsp(x):l—%,
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where Jy is the Dirac distribution at 0. As a distribution, Ws,(x) coincides with 1 -

180(x) when, as will always be the case for us here, ¢ is supported in (~1,1). This is
a consequence of the Plancherel formula ( [ILS, (1.34)]).

Averages involving automorphic forms are naturally studied using the trace for-
mula. Many variants of the trace formula involve weighting factors, such as the har-
monic weight |a(1)]*/| f||* that arises in the Petersson formula. In some cases, in-
cluding that of GL(2) newforms, the presence of this weight is innocuous in the sense
that it does not affect the distribution of low-lying zeros [Mi]. However, in the case
of zeros of GSp(4) spinor L-functions, Kowalski, Saha, and Tsimmerman found that
the analogous harmonic weight leads to a symplectic distribution, despite a heuristic
suggesting that the unweighted distribution is orthogonal [KST]. They gave a striking
interpretation of this as evidence for Bocherer’s conjecture, according to which the
Fourier coefficient arising in the weight contains arithmetic information in the form
of central L-values.

The question thus arises: in the simplest case of holomorphic GL(2) cusp forms, if
we weight the low-lying zeros by central L-values, does it likewise change the distri-
bution from orthogonal to symplectic? The answer depends on the type of L-function
used in the weight, as we illustrate below using several families with suitably restricted
test functions. We do not use the Petersson formula, but rather the relative trace for-
mulas developed in [FW,]JK], in which central L-values appear directly.

In Theorem 1.1, we consider the effect of weighting by the central L-value and a
Fourier coefficient. We show for two different families of holomorphic newforms
that the weighted distribution of low-lying zeros is symplectic when ¢ is supported
in (-3,3). However, if the L-value is twisted by a nontrivial quadratic character,
the weighted distribution is orthogonal. In Theorem 1.3, we show that the zeros of
L-functions attached to newforms of prime level N — oo, when weighted by an imag-
inary quadratic base change central L-value, have symplectic distribution for ¢ sup-
ported in (-1,1). We do not assume any version of the Generalized Riemann Hypoth-
esis, though it motivates the definition of one-level density, and its use can enable one
to extend the allowable range of support of ?ﬂ( [BBDDM], [ILS]). Of course, it would
be of interest to widen the range of support beyond (-1,1), because the nature of the
measure Ws, changes there.

Theorem 1.1  Let x be a primitive real Dirichlet character of modulus D > 1. Let r > 0

be an integer relatively prime to D. For a holomorphic newform f(z) =3 af(n)eZm'nz’
define the weight

AL, 2
(11) Wy = (5o fx Xag(r)]

ik

for the completed L-function A(s, f x x) defined in (2.3) below. Let ¢ be any even
Schwartz function whose Fourier transform ¢(y) = [ ¢(x)e >"*Vdx is supported
inside (-, 3). Then

i e, D(fp)ws {fo; ¢(x)Wsp(x) dx, trivial,

lim —————— =773
nroo Y fer, Wf o o(x)Wo(x)dx, x nontrivial,
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in each of the following situations:

en = kand F, = Fi(1) is the set of newforms of level 1 with the weight k
ranging over even numbers satisfying 7(x)* # —i*D for the Gauss sum 1(x) =
23:1 X(m)ezmm/D'

o Fy = Fr(N)™Y (with N+ k — oo as n — co) is the set of newforms of prime level
N + rD, and even weight k > 2 chosen so that 1(x)* = —i*D, or equivalently,

x(-1) = —i*.

Remarks 1.2 (i) Iwaniec, Luo, and Sarnak showed that in the unweighted case,
the distribution is orthogonal [ILS].

(ii) We prove Theorem L.11in Section 4. It is shown there that in the second case, if
k is fixed and N — oo, the allowable support of ¢ can be widened to [-a, «] for any
O<a<l- %

(iii) The weights w ; are nonnegative by Guo's theorem, [Gu]. In Section 4, we also
show that the statement of Theorem 1.1 remains true if we instead use the weight

A3 f x x)ag(r)
112 ’

which may be negative. (Hypotheses on J,, imply that as(r) is real here, though
elsewhere in this paper it may be complex.)

(iv) The conditions involving 7( x) come from the functional equation (2.4) when
N = 1. Since y = ¥, the condition (i*7(y)?)/D = -1 forces the L-function to vanish
at s = 3. In the first case above (where N = 1), the given condition keeps this from
happening and guarantees that the sum of the weights is nonzero when k is sufficiently
large. In the second case, where N is prime, the given condition is desirable, since it
causes the weights attached to the oldforms to vanish, leaving us with an expression
involving only newforms.

Wf:

Theorem 1.3  Fix a quadratic discriminant —D < 0, and let y = y_p be the associated
primitive quadratic Dirichlet character of conductor D. Let Fy = Fy(N)"V be the set
of holomorphic newforms of prime level N and fixed even weight k > 2. For f € Ty,
define the weight

L AG X 0AGS)
! 1£12 ‘

Then for any even Schwartz function ¢ with ¢ supported inside (-1,1), we have

iy 2feon DU )wr

N—-oo ZfE?N Wf

f: ¢ (x) Wep (x) dx.

Here, N ranges over prime values for which y(-N) = L.
Remark 1.4 'The forms f can in fact be taken to range over the family F3; of new-

forms with epsilon factor &/ = 1, since A(3, f) = 0 when &7 = —1. The family F7; has
symmetry type SO(even) ( [ILS]).
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The proof is given in Section 6. It uses a special case of the relative trace formula
of Ramakrishnan and Rogawski as extended in [FW] by Feigon and Whitehouse. The
most general version of their formula (along with the recent improvement [FMP] by
File, Martin, and Pitale) could presumably be used to extend the scope of the above
theorem.

Theorems 1.1 and 1.3 are derived from weighted equidistribution results for Hecke
eigenvalues at a fixed prime p, described in more detail below. In each case, the rele-
vant measure is dependent on the value y(p) = +1. This dependence plays an inter-
esting role in the proof of the above theorems. From the explicit formula, we need to
consider the sum over p of the weighted average of the p-th Hecke eigenvalue. Be-
cause of the nature of the relevant measure, the contribution of the primes satisfying
x(p) = 1 differs from that of the primes satisifying y(p) = —1. We then apply the
prime number theorem for arithmetic progressions to get the results.

In general, the Satake parameters of holomorphic modular forms are known to
satisfy many equidistribution laws. Foremost is the celebrated Sato-Tate conjecture
(proven in [BLGHT]), which asserts that for a fixed non-CM cusp form f € Sx(N),
the sequence of normalized Hecke eigenvalues at the unramified primes p (in their
natural ordering) is equidistributed in [-2, 2] relative to the Sato-Tate measure

1/ 2 .
d‘uoo(x):{” 1—"7dx if —2<x<2,
0

otherwise.

In a different direction, one can fix the prime p and allow the cusp form to vary
within a family, possibly with weights. In this setting there are strikingly many differ-
ent equidistribution results for GL(2) in the literature.” We summarize many of these
in Table 1, giving references for the precise statements in each case.

The last of these examples is new. Theorem 3.3 is a generalized and quantitative
version of the following. Notation is defined precisely in Section 2.

Theorem 1.5 Let y be a primitive real Dirichlet character of conductor D > 1 coprime
to N, let p + DN be a fixed prime, and let Ty . be an orthogonal basis for the space
Sk(N) of cusp forms, consisting of eigenfunctions of the Hecke operator Ty, with first
Fourier coefficient 1. Then assuming N > 1 and k > 2, the Hecke eigenvalues A¢(p) €
[-2,2] for f € Fn k, when weighted by the central twisted L-values

A fx x)
(71—

become equidistributed in -2, 2] with respect to the probability measure

WfI

x) = P x
W) = ) —xtp o )

as N+ k — oo.

2Some of these have been extended to groups of higher rank, e.g., [Z,BBR,ST], [MT]. There are also
some hybrid results for GL(2) with both p and the conductor tending to oo, [Na], [W].
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Family span Weights Measure References
Sk(N) 1 Plancherel: [Se, CDF, Li2]
+1
L3(SL,(Z)\H) |1 Plancherel [Sa]
A] < Tz, T - oo
Sk(N) '“mz' Sato-Tate (/o) [Lil], [KL2]
N+k—> oo
w (NDPR(A
L2(To(N)\H) % Sato-Tate [KL4]
N — oo ’
2 |au : (r)‘Z
L§(SLy(Z)\H) W Sato-Tate [Br], [BBR], [BrM]
Aj < T2, T - o0 !
new AG x)AGSS) Ly (3:%X)Lp(5,%)
Sk(N) T Ty e | [RRILEW],
N — o0 for y quadratic [SuT], and Cor. 5.2
(Also [Su], [T] for
Maass forms of
increasing level)
Sk(N) regular matrix | (1- "72 ) oo [GMR]
N - o summation
. . 1
involving i
2
Sk(N) laf(r)l“f# Lp(5,%, X)thoo Theorem 3.3 below
N+k— oo

Table 1: Various fixed- p equidistribution results for Hecke eigenvalues on GL(2). (See
(2.5) for the definition of L, (s, x, x).)

We emphasize that y is allowed to be trivial. In the generalized version (Theo-
rem 3.3), x need not be real, and we do not specialize the L-value in wy to s = 3.

There is a natural interpretation of the measure appearing in the above theorem.
See Remark 3.4. Interestingly, the measure is not symmetric, though as expected it
converges to the Sato-Tate measure as p — oo. It is plotted in Figure 1 in the case
p =5when x(5) =1.If y(p) = -1, there is an analogous negative bias.

We give another result of this nature in Corollary 5.2, namely that for newforms
f € Sk(N) with N prime, the A;(p), when weighted as in Theorem 1.3, become
equidistributed in the limit as N — oo relative to the measure ’72 given in the sixth
row of Table 1. This is essentially the main result of [RR1]. We obtain a more general
statement by keeping track of the dependence on k in their calculations. The measure
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Figure 1

nt » depends on . It exhibits a similar positive bias precisely when x(p) = 1. When
x(p) = -1, it coincides with the Plancherel measure, which is even.

2 Preliminaries on Modular Forms

Fix a Dirichlet character ¢ modulo N, and let S; (N, v) be the space of holomorphic
cusp forms f on the complex upper half-plane H that transform under the action of
To(N) ={(2Y) eSLy(Z)| c € NZ} according to

az+b

(22 = wld)(ez+ ) (2).

We normalize the Petersson inner product on S (N, y) by

1= 55 L 7@

cz+d

|2 kdxdy

where
V(N) = [SL2(Z) : To(N)].

For us, a Hecke eigenform is a simultaneous eigenfunction of the Hecke operators

ORI W WIOT A ey

ad=n, b=0
a>0

for (n, N) =1, normalized to have first Fourier coefficient 1. Given a Hecke eigenform
f()=3 ag(m)q"  (q=¢""),
n>0

1/2

for a prime p + N we fix a complex square root ¥(p)"/? and define the normalized

p-power Hecke eigenvalue
as(p°)
w(p)t2ptD/2

By Deligne’s theorem, A(p) € [-2,2], and our interest is in the distribution of these
numbers as f varies. For any integer € > 0,

A (p%) = Xe(As(p)),

21) Ae(pt) = (£20).
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sin((€+1)6)
sin 6

where X, is the Chebyshev polynomial of degree £ defined by X, (2 cos 0) =
(see, e.g., [KL1, Prop. 29.8], where w’ corresponds to y ). Equivalently,

(2.2) as(p%) = w(p)*p** VX (A f(p)).

Fix an integer D with (D,N) = 1, and let y be a primitive Dirichlet character
modulo D. The y-twisted L-function of f is given for Re(s) > 1by the Dirichlet series

The completed L-function

(2.3) A(s, fxx) = (er)_s_%l"(s + %)L(s,f x x)
has an analytic continuation to the complex plane and satisfies a functional equation
relating s to 1 — s, which takes the form

i* 1(x)? _
D25—1 g A(I—S,fXX)

when N = 1. Here, 7(y) = Y0 _, x(m)e?™™/P is the Gauss sum attached to y.

Given x € [-2,2]and p + DN, there is a unique unramified unitary representation
7ix,p of GL,(Q,) with Satake parameters a,, 8, satisfying a, + B, = xy(p)/? and
apfp = y(p). We denote its twisted L-factor by

-s —2s) 1
(2.5) Lp(s,,x) = (1= xy(p) 2 x(p)p™ + w(P)x(p)*p ™)
With this notation, the local L-factor of L(s, f x ) is

Ly(s, fxx) = Lp(s:Ag(p) X)-

(2.4) A(s, fxy) =

3 Weighted Equidistribution of Hecke Eigenvalues |

Fix a weight k > 2 and alevel N > 1, and let
?:?N,k ZfTrk(N,l//)

be an orthogonal basis for Sx (N, y) consisting of Hecke eigenforms. Fix D and y as
above, and fix an integer r relatively prime to D. In this section, we do not assume
that y* = 1 unless explicitly stated. For each f € F, define the (complex) weight

ap(r)A(s, f % x)
1f1?

Then forall s = o +i7in the strip 1- ? <0< % and all integers  relatively prime to

DN, by [JK, Theorem 1.1] (which is a twisted version of the main theorem of [KL3]),
we have

(3.1) Wf =

5 wpag(n) = 2 E iy Sy
V(N) feF r (k—Z)! 2 d|(n,r) 4 @

(3.2)

nrn)k_lD%“’go(D) ) '

(4
+O| ged(n, r -
(g (m1) N5 (k- 2)!

https://doi.org/10.4153/CJM-2018-013-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-013-8

160 A. Knightly and C. Reno

(We have adjusted for the fact that in [JK] the L-function is normalized to have central
point & whereas here the central point is %.) The implied constant is explicit in [JK],
and depends only on s.

Now fixa prime p + rND. Taking n = p¢ and substituting (2.2), the above becomes

(3.3) 9] ;foé’(/\f(P)) = F;p + E,
where
Zkfl 2 %75‘
(3.9 Fe= (w(p)Px(p)p~) T (7;2 ol X p (4 iy,

and E, is an error term satisfying

«wen (47r)* D79 (D)
Nt (k-2)!

(3.5) Ep<p

Proposition 3.1 Forany€>0and0< o <],

e(k

T (47nrDe)*/?
N k3! )

X ey WiXe(As(p))
2 pee(Noy) WF

(3.6) = [w(2)”x(p)p~]“+0(

where the implied constant depends only on r,s, D.

Remarks 3.2 (i) When N > 1,itis shown in [JK, §9] that the sum of the weights
is nonzero when N + k is sufficiently large. When N = 1, this can only be verified
under certain extra conditions mentioned in Theorem 3.3 below.

(ii) By taking n = rp® in (3.2) rather than n = p‘, and using as(rp’) =
ag(r)as(p*), one obtains (3.3) with the different weight

Al S x Dlar(n)P
! KB

In (3.4) we then have to replace (277) by (277%), and x(r) by X4, dzsl//(g))((‘%); in
(3.5), r* replaces r, and one additional factor of r is needed due to gcd(n,7) = r. As
long as the above sum over d is nonzero (for example, if y* and y are trivial and s is
real), (3.6) holds with the alternative weight upon replacing r by r* in the error term.

Proof of Proposition 3.1 In the notation of (3.3), the left-hand side of (3.6) is

Fo+E, _&+E€_%E0
Fy +Eg _FO Fy + Eg ’

This will immediately give (3.6) once we show that the second term on the right-
hand side has the desired rate of decay. If we denote the right-hand side of (3.5) by
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ptD2Cy, then
F, s £(k-1) o
Ee-5Fo _Ee-y(p)x(p)'p B0 _ (p- = +p )G

F0+E() F()+E0 F0+E0
£(k-1) C
p‘z CO e(k-1) ng
L —/—m/m/ = 2 — -
F() + EO 1+ =0
Fo

In [JK, §9] (taking n = 1), it is shown that
Co (4nrDe)*/?

Eq <
F, <« F, N(k-1)/2]k/2-1°

where the implied constant depends on r, s, D. The proposition follows. ]

Define a measure
(3.7) Bhpe(¥) = 1 [v(0)x(p)p*] “Xe(x) dptoo(x),
=0

where, as before, yo. is the Sato-Tate measure on R with support [-2, 2], and X, is the
Chebyshev polynomial. The infinite series is absolutely convergent provided |x| < 2
and Re(s) > 0. Indeed, if |x| < 2 and |#| < 1, we have the well-known identity

>, 1

3.8 ' Xp(x) = ———.
(3.8) ;) e(x) i1 12
Therefore

1
L-xy(p)2x(p)p~ + y(p)x(p)*p~
As pointed out to us by Fan Zhou, this gives (in the notation of (2.5))
(3.9) dptp,s,x(x) = Lp(s, %, x)dpoo(x).

The above is a complex-valued probability measure, since, by (3.7) and the orthonor-
mality of the X¢(x) relative to fioo, | Xo(x)dpip,s, = 1. We note that when s = 1, y
is trivial, y(p)"/?

dpp,s x(x) = S dpeo ().

is chosen to be 1, and y is real;

X) = p X
o= G ey =)

is the measure given in Theorem 1.5.

Theorem 3.3  Fix s in the critical strip 0 < Re(s) < 1, let N > 1 be coprime to rD, let
k > 2, let y be a Dirichlet character whose conductor divides N, fix a prime p + rND,
and a choice of square root y(p)'/2. Define weights wy as in (3.1) and Hecke eigenvalues
As(p) as in (2.1). Then the As(p) for f € Fr(N,y) become ws-equidistributed in
(-2, 2] relative to the measure y, s,y as N + k — oo. In other words, for any continuous
function ¢ on R,

< weg(A
(3.10) lim 2 ferony) Wrd(Ar(p)) _ /(Pd,up,s,x-
N+k—oo zfﬁffk(N,ll/) Wf R
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Moreover, if ¢ is a polynomial of degree d, then

2 feFe(Ny) wed(As(p)) B /' od . O( p@@m’De)k/z
Sy JrD P N'T k5
where || st is the norm of ¢ in L*(R, oo ).
When N = 1, the equidistribution assertion (3.10) still holds, provided y* =1, s = 3
and i*7(x)?/D # -1.
Lastly, if x is quadratic, y is trivial, and s is real, then all of the above statements

hold if instead we use the nonnegative weights given in (1.1) and we replace r by r* in
the error term of (3.11).

(3.11) I$ls7),

Remark 3.4 The measure y, ; , appearing here is natural for the following rea-
son. The weight w; depends directly on A(p) via the local L-factor L, (s, f x x) =
Ly(s,As(p), x) (in the notation of (2.5)). Assuming the remaining L-factors do not
affect the distribution of the A ¢(p), on the left-hand side of (3.10) we have something
resembling a Petersson-weighted average of the function L, (s, x, y) ¢(x) at the points
A#(p), which, in view of the equidistribution result [Lil], tends to the integral of this
function against the Sato—Tate measure. By (3.9), this is exactly what appears on the
right-hand side of (3.10).

Proof Firsttake N > 1. By the fact that the Chebyshev polynomials are orthonormal
relative to the Sato-Tate measure po,, we see from (3.7) that (3.6) gives (3.10) with
¢ = X for € > 0. By linearity it holds if ¢ is any polynomial, so by Weierstrass
approximation, (3.10) holds for all continuous functions.

Since | X, | st = 1for all £, Proposition 3.1 gives (3.11) when ¢ = X,. For an arbitrary
polynomial ¢ of degree d, we can write ¢ = $4_; (¢, X;) X, so denoting the left-hand
side of (3.11) by £(¢), we have

BOREZTE z (@ Xe) (£Xe) - [ Xedupay)|-

Applying (3.7), (3.6), and the Schwarz inequality | (¢, Xo)| < | @] s7, the above is
(4nrDe)k/? @

Y,

1k
N7Tkz! ;5

< |$]sr

and (3.11) follows.
Now suppose N =1, y* = 1,and s = % Then there is an extra main term in [JK,
Theorem 1.1], so that in place of (3.4), we have

k-1 r 51 r 2
Ff:(X(P)P_WVMF(E)[Hi"%]'

(k-2)! 2

(The extra main term contains the factor x(rp¢), so we we have imposed y* = 1to
make this equal to y(p)¢x(r).) The rest of the argument then goes through as above,
provided the bracketed expression is nonzero.

Finally, if the alternative nonnegative weights (1.1) are used, then in view of Re-
mark 3.2(ii), everything goes through as above. ]
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4 Low-lying Zeros |

In this section we derive Theorem 1.1 from the results of the previous section by stan-
dard methods (see, for example, [Ko, §9]). We will use Proposition 3.1, together with
the following consequence of the explicit formula for the L-function of a holomorphic
newform f € F(N)"*" with analytic conductor Qs = k*N:

= 1 ~ As(p)logp— logp
(4.1) D(f,¢) =¢(0) + 5(,5(0) ZP;‘] p/?log Qg ( log Qf)

P )Lf(pz)logp,\( 210gp) N O( loglog3N)
pin  PlogQy log Qf log Qs

This holds for any even Schwartz function ¢ on R whose Fourier transform has com-
pact support, [ILS, Lemma 4.1].

For the remainder of this section, y is a real Dirichlet character, and F denotes one
of the following families given in Theorem 1.1:

(a) F = Fx(1), the set of Hecke eigenforms of level N = 1 and even weight k chosen
-k 2

so that % # -1

(b) F = Fr(N)"V, where N + rD is prime. In this case, the even weight k > 4 is
.k 2
chosen so that % =-1
We need to consider the weighted average of D( f, ¢) over . To simplify notation,

given a function A: f = Ay on J, we define the w-weighted average of A by

Amw
£y (a) = SLT A
Zfe&"wf

where, for all f we take w/ to be either the weight defined in (3.1) with s = 1, or the
weight defined in (L.1). In the latter case, Remark 3.2(ii) should be borne in mind for
the remainder of this section.

When N =1and % = —1, or equivalently, y(~1) = i, the functional equation
(2.4) forces A(3, f x x) = 0 since y is real. Hence when N is prime, the conditions
imposed on k and y ensure that w; = 0 for all Hecke eigenforms f of level 1 and weight
k. If we set fy(z) = f(Nz) for such f, we have

_ x(N)
Nk/2

A(3 Sy > X) A5 fxx) =0
as well, so that wy, = 0 for all & in the span of { f, fn }. Therefore,
(4.2) €5(A) = €5, (n)(4)

in this case; i.e., the value is unaffected if we average over an orthogonal basis for the
full space Sx(N), rather than restricting to newforms.
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Since Qf = k>N is constant across F, we denote it by Q in what follows. By (4.1),

we have

Lyes DU9Iwy o0 1 loglog3N

T YW =6(0)+2¢(0) + O(W)

E5(A.(p))logp—~r logp
43 ] F
7 p;\r pY?logQ (logQ)
w 2

(4.4) _ Z E5(A(p ))IOgPA(Zlogp)'

pIN plogQ logQ

Taking s = %, y trivial, and € = 1,2 in (3.6), we have (using (4.2) when N is prime)

' RK
(45) 5D = x(p)p ™+ o Fr)
" ~ B pkfle
(16) 5007 = + O L)

for a positive constant R depending on D and r. It is a consequence of the prime
number theorem that for any real number m > -1,

m+1

S p"logp ~ >

px m+1

as x — oo. If the support of $is contained in [-a, a], the sum in (4.3) is restricted to
p < Q. Therefore, the contribution to (4.3) of the error term in (4.5) is

RK 4 Rk 2N% kokRE 1
< k-1, k Z p%_l logp < Q =1, k1 k-1, k = O( )’
N7 k27! )<ge (%)NTki_l N5 k3 log Q

provided a < % (If k is fixed, we only need a < 1 - %.) The contribution to (4.4) of

the error term in (4.6) is

k k 2D ) a(k-1) pk
«—N > pFPlogp «< QTR N+ k R

<<
NSk g (k-1)N'5k:! N'T k2

a(k-1)
2

>

which may likewise be absorbed into the error term if a < 1.
It remains to treat the contribution of the main terms of (4.5) and (4.6) to (4.3) and
(4.4), respectively. If y is trivial, the former yields

oy Josp gilogpy 5 losp gilogpy o loglog3N
Zp%plogQ(p(logQ)_ Zzp:plogQ¢(10gQ)+O( log Q )

(by (4.19') of [ILS]), which in turn is

loglog 3N)
logQ

by the prime number theorem, using the fact that ¢ is even.

= -9(0) + o

https://doi.org/10.4153/CJM-2018-013-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-013-8

Weighted Distribution of Low-lying Zeros of GL(2) L-functions 165

On the other hand, if y is nontrivial, then the main term of (4.5) contributes

logp — logp logp — logp loglog3N
+2 +O0( ————).
p;X§>:1p10gQ¢(10gQ) p;x%:_lplogQ¢(logQ) ( logQ )

The value of y is 1 on exactly half of the primes. By the prime number theorem for
arithmetic progressions, the above is

= —29(0) + 9(0) + O

loglog 3N) O( loglog3N) .

log Q logQ
Lastly, for any real y, the contribution of the main term of (4.6) is
log p 2logp 1
4.7 2 o ——).
*7) < Z p?logQ (logQ)| (logQ)

Putting everything together, we conclude that when « < 2,

Sper DU 6wy _ [FO) - 1000) + O BEEEY).  yvi

Yperwp $(0) + 1¢(0) + O( 112@1%13\71;)’ y nontrivial,

which proves Theorem L.1.

5 Weighted Equidistribution of Hecke Eigenvalues II

We recall the setup from Theorem 1.3: —D < 0 is the discriminant of a quadratic
field E = Q[v/~D], x = x_p is the associated primitive quadratic character modulo
D given by the Kronecker symbol n ~ (=2), and N is a prime number for which
¥(=N) = 1. The latter condition means that N is inert in E. For k > 2 even, we let
F = FYX be the set of holomorphic newforms of weight k and level N. For f € F, we
define the weight

AL 0AGD G f)
’ 117 177
where fg is the base change of f to E.

Proposition 5.1  With hypotheses as above, for any € > 0, and any prime p + ND,

Y peg wiXe(As(p)) p*k+3)pk
w 4 o fex Wy f
(5.1) F(A.(p")) = > e W _/X drp +O kl/ZNk/Z s)

where

( ) M’%Mm( x) ifx(p)=-
X
Wﬂw(x) if x(p) =1,

and the implied constant depends only on , €, D, and € € (0,1). Furthermore, if N >
peD, then (5.1) holds with no error term:

(5.2) e (A(ph) f Xe dyl.
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Equation (5.1) is essentially the main result of [RR1], but we have divided by the
sum of the weights, and shown the dependence on p and k explicitly in the error term.
The proof is somewhat involved, so we defer it to Section 7.2. Equation (5.2) likewise
follows from a special case of [FW, Theorem 6.1]. Details are provided in Section 71.

Corollary 5.2 Assume the hypotheses above. Then the multiset {A¢(p)| f € T} } of
normalized p-th Hecke eigenvalues, when weighted as above, becomes equidistributed
n [-2,2] with respect to the measure 1’[‘); as N — oo. Thus, for any continuous function

¢)
Lpegrey wr 9(A5(p))
(53) fim =Rk TP f pdr.
N—oo Zfe(f?ve): wg R
Moreover, if ¢ is a polynomial of degree d, then
e wy p(As(p)) p pdk3) pk
G4) Y peF W f¢d +O(H¢”5Tk1/2Nk/2 f)
The error term in (5.4) vanishes if N > p®D
Remarks 5.3 (i) In [RRI1, Theorem A], a much stronger claim is made, namely

that in (5.4), by Weierstrass approximation we can take ¢ to be the characteristic func-
tion of any subinterval of [~2,2], preserving the error term O(N~¥/2*¢). However,
because the error in (5.4) depends in a crucial way on the approximating polynomial
¢, their argument is incomplete. Possibly one could use the method of Murty and
Sinha [MS], but we have not investigated this.

(ii) Because of (5.2), the weight k can vary in any fashion as N — co. However we
cannot obtain the conclusion for fixed N and k — oo, because the factor (p¢D/N)k/?
in the error term of (5.1) will tend to oo rapidly with k when ¢ is large.

(iii) It is not hard to show that

Lp(%’x’ X)LP(%’X)
Ly(L %)

in the notation of (2.5). So the above result can be interpreted in a manner analogous
to the remark after Theorem 3.3.

riﬁ(x) = Poo(x),

Proof of Corollary 5.2 Thelimit (5.3) holds for ¢ = X, by (5.1), and then Weierstrass
approximation gives it for any continuous ¢. The rest of the proof proceeds in just the
same way as that of Theorem 3.3. ]

6 Low-lying Zeros Il

Here we will use Proposition 5.1 to prove Theorem 1.3. First we need to compute the
integrals of the Chebyshev polynomials against the measure nf,f defined in Proposi-
tion 5.1.
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Proposition 6.1 Let r > 0 be an integer. Then if x(p) = —

=112 ifris even,

R
[oo r {0 ifr is odd.

If x(p) =1, then

/ooX,dng = (r+1)p"/2

Proof The first assertion is well known ( [Se, p. 79]). For the second, using (3.8) we
have

p-1
(p1/2 + p—1/2 - x)2

1-1 o

) (1—p—1/2xp+p—1)2 = (1_%)[ Z;) n/ZX (x) ]2

(6.1)

oo m-—1

= (- D[ DX 2% T X)X (2)p 2]
j=0

m=1 n=0

By the Clebsch-Gordon formula (or by induction via X,,41(x) = xX,,(x) - X,,-1(x)),
we have

X (%)X, (x kZXm a2k (%)s (n<m).

So (6.1) becomes

—

m—

Z Xm—n+2k (X)P_(m+")/2] .

1n=0 k=0

Nk

62 (-1 iixz, (x)p~ +2

j=0t=0

(=}
3
il

For the double sum,
(6.3) S Xoe(x)p T = D) Xoe(x) Zp‘(f”) =(1- %)“ > Xor(x)p”*
j=0 t=0 t=0 j=0 t=0

For the triple sum, we observe that the map (m, n, k) » (m-n+2k, m—n, m) defines
a bijection from

{(m,n,k)|m>1,0<n<m-1,0<k<n}

to

{(u’b’m)|u21)1§b§u,bEumOdZ’mz%b}
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with inverse (u, b, m) — (m,m—b, “T’h) Therefore,

>

m=1n

-1

3

Z Xm—n+2k (x)P_(m+n)/2

0

Il
o
~
i

Xu(x) Z Z p—(Zm—b)/Z

M8

u=1 b=u mod 2 m—u+b

1<b<u
Z X (x) Z pb/zp—(u+b)/2(l 1) -1
u=1 b=u mod 2

1<b<u

1 qu(x)p—u/Z Z L
u=1 b=u mod 2
1<b<u

The sum over b has the value 7 if u is even, and ““ if u is odd. Using this and (6.3),
(6.2) becomes

Z Xr(x)p_r/2+2 Z %Xr(x)p_r/z.l,_z Z TTHXr(u)p—r/Z.

r>0 even r>2 even r>1 odd

In the middle sum, we can actually take r > 0 because of the ; coefficient. This proves
that

dn(x) = i( 1)p X, () o ().

The proposition now follows immediately using the orthonormality of the Chebyshev
polynomials relative to d yo. u

With this proposition in hand, we obtain the following two special cases of Propo-
sition 5.1.

Corollary 6.2  In the notation of Proposition 5.1, for any 0 < € <1,

(6.4) Y OL(p)) = 2p7 1+ O(Nk/z 2 ifx(p) =

k+—

0] Nk/2£) ifX(P):_

. . . N
the error terms vanishing if p < 4, and

2k+1

3p7 + O(L7=) ifx(p) =1,
P O(Em)  ifx(p) = -

the error terms vanishing if p* < %. Implied constants depend on k, D, and e.

(65) BL(p)) =

We can now prove Theorem 1.3 following the method in Section 4. Suppose that
Supp(¢) € [-a, a] for some a < 1. Then for all N sufficiently large,

(6.6) Q% = N*k** <
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In the explicit formula, the sum (4.3) involves only primes p < Q%, which by the above
means that (6.4) holds with no error term. Therefore, (4.3) is equal to

2 Y Zlogp(/)(logp) 4y log p A( logp)+o(loglog3N).

siv plogQ " logQ plogQ " \logQ logQ
x(p)=1 x(p)=1

Because y is a nontrivial quadratic character, its value is 1 on exactly half of the primes.
By the prime number theorem for arithmetic progressions, the above is

loglog 3N) .

==9(0)+0( =105

The sum (4.4) involves only primes satisfying p? < Q%. So for sufficiently large
N as above, we may apply (6.5) with no error term. Substituting it into (4.4), one
obtains an expression that can be absorbed into the error term O(loglog3N/logQ),
asin (4.7).

It now follows that if @ < 1 and N satisfies (6.6),

Zfei}" ﬂ(f’ ¢)Wf

loglog 3N)
X feg W

= 5(0) - 56(0) + O og N

for an implied constant depending only on ¢. This proves Theorem 1.3.

We remark that if we instead fix N and allow k — oo, we cannot obtain the analog
of Theorem 1.3 by this method. Indeed, the contribution of the error term in (6.4) to
(4.3) gives an expression involving

> prlogp,
p<Q®

which up to small powers of k grows like k%*. There is not enough decay in the k
aspect in (5.1) to cancel this growth as k — oo for any « > 0.

7 Proof of Proposition 5.1

The papers [RR1, FW] each use the relative trace formula to develop a formula for an
average of L-values, which in the simplest case takes the form

> ”Uj;(”p%

JeT

where: wy = A(3, f x x)A(3, f) /] f]|* for a quadratic character x = y_p, N isa prime
not dividing D, y(-N) =1, k > 2 is even, ﬁ, is the Satake transform of a compactly
supported bi-GL,(Z, )-invariant local test function f,: GL2(Q,) — C, and 7, is
the unramified local representation determined by the cusp form f. (In [RR1] the
notation f,'(a,(¢)) is used, where a,(¢) corresponds to our As(p).)

For our purpose, we need to choose the particular test function f, whose Satake
transform is equal to the Chebyshev polynomial X,. This function is given as follows.
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For K, = GL,(Z,) and Z, the center of GL,(Q,), let

(71) M(pH = U ZPKP(P pj)KP - U ZPKP(pi_jl)KP
i+j=t i+j=¢
i2j20 i2j20

L5]
e-2j
=UZ,(77 ) )Ks.
=0
Define f,: GL2(Q,) - Cby

-tz e

p~ if g e M(p"),

7.2 =

(72) Jr(8) {O otherwise.

Proposition 71  For f, as above, and any newform f € Si(N), let 7, be the unrami-
fied principal series representation of GL,(Q)) determined by f. Then

Fo(mp) = Xe(As(p))-

Proof Denoting the Satake parameters of 77, by {&, a™'}, we have a + a™' = A¢(p).
By definition, f,(7,) is the eigenvalue of the operator 7,( f,) acting on the unique
K, -fixed vector of . For the moment, take f,, to be the characteristic function of the
set M(p®) defined above. It is shown in [KL2, Propositions 4.4-4.5] that, in our cur-
rent notation, p~¢/ zﬁ, () = Xe(Af(p)). Therefore, upon scaling the characteristic

function by p~¢/? we get the desired result. ]

7.1 The Theorem of Feigon and Whitehouse

Equation (5.2) of Proposition 5.1 follows immediately from the special case of [FW,
Theorem 6.1] given in (7.3) below. Following [FW, §6.3], we take F = Q, Q trivial, and
N prime with N > Dp® and y(~N) = 1. Then taking f,, as in (7.2), [FW, Theorem 6.1]

gives
1 oo
(73) i X wXey(p) =alLy) [ Xedr,
v(N) feFnew et
where

2k (%‘1)!2_]{—1 & (E E)

P . S A — ,
“Tan (k-2)!  4n 2’2

for the Beta function B. (Variants of the exact formula (7.3) can also be found in
[MR, FMP, SuT].)

Remarks 7.2 (i) We have adjusted for the fact that we have normalized the com-
pleted L-functions as in (2.3), whereas the normalization in [FW, p. 407] is twice ours.

(ii) We have also adjusted for the fact that the L-value L(1, y) is the Dirichlet series
(not completed by a Gamma factor), whereas in [FW] the completed L-value is used,
normalized by Lo, (1, x) = (27r) " as seen in [FW, p. 407].
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(iii) The lower bound for N of Dp* comes from the definition of J(f,) found
in [FW, p. 386]. Since p + N, we have G(Q,,) = PGL,(Q,), and using (71) it follows
that for our particular test function, |J(f,)| = p*. This matches [MR, Corollary 1].

7.2 The Theorem of Ramakrishnan and Rogawski

As powerful as (7.3) is, it is of interest in some situations to have a formula for the av-
erages in which N is not required to be large in relation to D and p*. In this range, the
error bound given in [FW,MR] is O(N ') in the N-aspect, so the best bound remains
that found in the original paper of Ramakrishnan and Rogawski who obtained (7.3) up
to O(N~*/2+¢)_ By going through their calculations, we will uncover the dependence
of the error on both k and p. The final result is given in Theorem 7.6.

With the choice of test function (7.2), the spectral side of the relative trace formula
in [RR1, Prop. 4.1] becomes

1 oo
3 Wer(Af(p)):ckL(l,X)f Xednk + Ieg
v(N) feTrew —oe

for ¢ as above, where

Ireg = Z I(X),

xeQ-{0,1}
is the sum of the so-called regular terms, where, for a certain test function f whose
local components will be recalled below,

I(x) = ff*XA* f((“bb “f‘))x(a)_ld*a d*b.

Here, we abuse notation and write y for the unitary adelic Hecke character determined
by the Dirichlet character y fixed earlier. The integrals I(x) are computed locally
in [RR1, §2.7] and their sum is bounded in §3 of their paper. We shall reexamine
these proofs in order to determine the dependence on p and k.

The statements of [RR1, Prop. 2.4abcde] each have errors, but this does not affect
the validity of the trace formula given in §5 of their paper. The following is a corrected
version of their proposition.

Proposition 7.3  For x € Q- {0,1} and f, as in [RR1], define the local integrals

L= [ A @) dad s,

Then the following statements hold.
(a) Letv = q be a finite prime not dividing pND. Then
e I,(x)=0ifv(1-x)>0;
e ifv(l-x)=0andv(x) =0, thenI,(x) =1
» generally, if v(1 - x) < 0, then

v(x)* ifv(x) %0,
()] < {1 ifv(x) =0.

(b) Letv = q be a prime dividing D, and write c = v(D) > 1. Then
e L(x)=0ifv(l-x)>¢

https://doi.org/10.4153/CJM-2018-013-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-013-8

172 A. Knightly and C. Reno
s ifv(l-x) <c, then
I, (x)] < 6qc/2(2c +1+v(x)]) < 69/%(2c + D(1+[v(x)]);
(c) Letv =N. ThenI,(x) = 0 unless v(x) > 1 (and hence v(1- x) = 0). In this case,
[In(x)] < v(N)|yw (x)].

(d) Letv = p, and let f, be the test function defined in (7.2). We suppose £ > 0 since
the € = 0 case is covered by (i). Then I,(x) vanishes unless v(1— x) < €, in which
case

1, (x)| < 4p~Pe(e+1+|v(x)]) <4p™2e(e+1)(1+|v(x))).

() Whenv = oo,
|1_x|k/2

[«

oo (x)] <

for an absolute implied constant.

Proof We follow the proof and notation of [RR1]. We begin with part (e), where
foo(g) = di{mr(g)v, v) is the matrix coeflicient of the weight k discrete series repre-
sentation of PGL, (R) with lowest weight unit vector v and formal degree dj. In [RR1,
Prop. 2.4e], I (x) is expressed in terms of a certain quantity I (¢, §, v) which is de-
fined as being independent of x. This seems to be a typo; as is clear from their proof,
I (x) does depend on x. But the proof is flawed for other reasons, so we will not try
to correct the definition of I, (¢, 8, v). For 8, v € {£1}, set

oo oo k/2-13k/2-1
12(5)"):[ f a b . dadb .
o Jo (ax—vb+38i(ab+v))k
(This is I (v, §, v) in the notation of [RR1].) Following the proof in [RR1] (we cau-
tion that the displayed formula there for foo(( ab ax )) is incorrect), we find, upon

observing that (~1)* = 1 since k must be even, that

w0 e ) e
As shown in the proof of [RR1, Lemma 7], we have

75) 1(8,%) = B(, ) (60) 7,

where B(x, y) is the Beta function, and

o akl?"1dq
o (ax+8vi)k2(a + Svi)k/2

Jx =

The proof in [RR1] now rotates the line of integration to a purely imaginary ray, over-
looking the fact that this ray passes through poles of the integrand in many cases.
(Their proof is fixable if one assumes x > 0, but in fact I, (x) need not vanish if x < 0,
despite the assertion to the contrary in [RR1, §3].) The integral ], can presumably be
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computed in terms of special functions even when x < 0, but since ultimately this in-
tegral forms part of an error term, we choose simply to bound it as follows. Observing
that || <1fora >0,

+i

|]|</'°° da <[°° da _i/“x’ du
T Jo axxif2laxi| T Joo Jax+il}2 |x| o |u il

= 5B(5 5 -3l

by [GR, 8.380.3]. By the above, (7.4), (7.5), and noting that for the standard measure
used in [RR1], di = % (¢f. [KL1, Prop. 14.4]), we have

)

for an absolute implied constant. By Stirling’s formula,

2V/m _ 2/m
k kY . 1 k=2) ,_“V7©*
B(z’z) \/sz and B(z’ 1 ) (k—2)172
2
This gives |Ioo (x)| < |1 = x|¥/2|x|™" for an absolute implied constant, which proves
assertion (e).
To prove (a) and (d), let q be a prime, fix an integer r > 0, and let f, be the charac-

teristic function of Z,K,( 7 ) )K,. Then f,((%¢ @¥)) is nonzero if and only if there

exists A € Q; such that (432 4% ) e K, (7" )K,. By the theory of determinantal di-
visors ( [Ne, p. 28]), a matrix g € GL,(Q,) belongs to K, ( 7 . )K, if and only if each
of the following holds:

o detge qu;,

« each entry of g belongs to Z,,

+ some entry of g belongs to Z.

(When r = 0, the third condition is already implied by the first.) So fq(( ab ax )) #0
if and only if there exists A € Qg such that:

1O 2v(A) +v(a)+v(b) +v(l-x) =r,

2) v(A)+v(a)+v(b) 20,

(3) v(A) +v(a)+v(x) 20,

(4) v(A)+v(b) >0,

(5) v(A) =0,
and
(5b) equality occurs in at least one of (2)-(5).

Eliminating v(1), we obtain the following conditions:

|1 _ x|k/2

x|

oo ()] << 25kB( 1, %22) B(

SYE
NTE

>

6) v(a)+v(x)-v(l-x)2>-r (from (2)+(3)-(1)),
(7) v(b) -v(l-x) > -r (from (2)+(4)-(1)),
®) v(x)-v(l-x)>-r (from (3)+(4)-(1)),
9) v(l-x)<r (from (1)-(2)-(5)),
(10) v(a) +v(l-x)<r (from (1)-(4)-(5)),
1) v(b)+v(l-x)—-v(x)<r (from (1)-(3)-(5)),
(12) v(a)+v(b)+v(l-x)<r (from (1)-2(5)),
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(13) v(b) 2v(a)+v(l—-x)-r (from 2(4)—(1)).
This leads to the following condensed set of conditions, the last of which is from (5b)
and was overlooked in the proof of [RR1, Prop. 2.4]:
(i) v(I-x)<r,
(i) v(x)>2v(1l-x)-r,
(iii) v(1-x) —v(x) —-r<v(a) <min{r-v(1-x),r—v(1-x)-v(b)},
(iv) max{v(l-x)—r,v(a) +v(l—-x)—r} <v(b) <v(x) +r—-v(1-x),
(v) atleast one of the following holds:

(va) v(a)+v(b)+v(l-x)=r (if v(1) = 0, using (1)),

(vb) v(a)+v(b) -v(l-x)=-r (if (2)=0, using 2(2)—(1)),
(ve) v(a) —v(b) +2v(x) —v(l-x) =-r (if (3)=0, using 2(3)—(1)),
(vd) v(b) —v(a)-v(l-x)=-r (if (4)=0, using 2(4)—(1)).

We may now prove part (a). Suppose ¢ + pND. Then f, is the characteristic
function of K; and we can take r = 0 in the above discussion. The first part of (a)
follows from (i). If r = v(x) = v(1 - x) = 0, we see from (iii) and (iv) that v(a) =
v(b) = 0, and since y, is unramified and meas(Z; ) = 1, it follows that I, (x) = 1. Now
suppose v(1 - x) < 0. Then v(x) = v(1 - x), and (iii) and (iv) become

0<v(a) <-v(x), v(x) <v(b) <0.
Using the fact that y, is unramified and meas(Z; ) = 1, we find

—-v(x) 0

L)< > > 1

m=0 n=vy(x)
and the last assertion of (a) follows in this case. Likewise, if v(1-x) = 0, thenv(x) > 0,
and (iii) and (iv) become
-v(x) <v(a) <0, 0<v(b) <v(x),
and the assertion holds in this case as well. This proves (a).
Before proving (d), we make some observations about the above conditions for

general r > 0. If v(1 - x) < r, we see from (v) that once v(a) is fixed, there are at most
four possibilities for v(b). Setting m = v(a) and n = v(b), we immediately see that

r—v(1-x)
|1, (x)] < > > 1:4(2r—2v(1—x)+v(x)+1).

m=v(1-x)-r—v(x) ne{4 values}

Observing that if v(1 - x) > 0 (resp. v(1 - x) = 0, resp. v(1 — x) < 0), then v(x) = 0
(resp. v(x) > 0, resp. v(x) = v(1— x)); it follows easily that in all cases,

(7.6) L (x)] <4(2r +1+|v(x)]) <8(r+1+v(x)]).

Now suppose g = p and f, is the test function defined in (7.2). Then by the above,
I,(x) vanishes if v(1 - x) > €. When v(1 - x) < ¢, by (7.1), (72), and (7.6), we have

14
()| < p~2 3 8(e-2j+ 1+ |v(x)]) < p~2 (e + 1+ |v(x)]).
j=0

This proves (d).
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Next, consider v = N. Then for
Ko(N)n={(2%) € GLy(Zy)|c € NZy},

f is the characteristic function of ZyKo(N) . scaled by v(N). So fy(( % ¥ )) £0
if and only if there exists A € Qj}, such that (ﬁ“bb ij ) € Ko(N)y. The lower right

entry must be a unit, which means that in fact we may take A = 1. Therefore,
(abb alx) € KO(N)Ns

which means:

1") v(a) +v(b)+v(l-x) =0,

(") v(a) +v(b) =0,

(3") v(a) +v(x) 20,

4" v(b) > 1L

As a result, the integrand vanishes unless:

+ v(l1-x)=0,
s v(a)=-v(b) <1,
s v(x) 21

It follows that Iy (x) = 0 unless v(x) > 1, in which case
-1
IIn(x)[< > v(N),
m=—v(x)
which proves (c).

Lastly, take v = g to be a prime divisor of D, and set ¢ = v(D) > 1. There are some
oversights in the definition of the local test function f; at such a place in [RR1, p. 706]:
the notation y1,, is not defined, x, does not define a character of the additive group
X, and it is asserted that the integral g(x,) defined there, which clearly has absolute
value at most 1, coincides with the classical Gauss sum, which has absolute value g°/2.
A detailed treatment of the local test function with the desired spectral properties
(and giving the same main term on the geometric side in [RR1]) is given in [JK, (3.11)-
(3.12)]. For our purpose, it is enough to know that

supp(f) = U (o V") 24Ky
m mod DZ,
atm
and f; = ., fm,q> Where f,, 4 is supported on the coset indexed by m and has absolute
value g~/? there.

To match the notation in [RR1], let z = m/D (so v(z) = —c) and write f;,, for fy 4.

Then f;,,(( % %*)) # 0 if and only if there exists A € Q; such that

()L ) (1 z) (ab ax) B (Ab(a +z) Max+ z)) <K
AJlo 1J\b 1) Ab A T
Thus,

(1) 2v(A) +v(a) +v(b) +v(1-x) =0,
2") v(A) +v(a+z)+v(b) 20,
(3") v(A) +v(ax+z) >0,
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4") v(A)+v(b) >0,
(5") v(A) 20,
(5'b) equality holds in at least one of (2")-(5).
As before, we eliminate v(1) to get the following:

6) via+z)+v(ax+z)-v(a)-v(l-x)>0 (from (2")+(3")-(1")),
(7" v(b)+v(a+z)-v(a) >2v(l-x) (from (2/)+(4")-(1")),
(8" v(iax+z)-v(a)-v(l-x)20 (from (3")+(4")-(1")),
) v(l-x)<v(a+z)-v(a) (from (1)-(2")-(5")),
(10") v(a)+v(1-x)<0 (from (1")-(4")-(5")),
1) v(a) +v(b)+v(l-x)-v(ax+2z) <0 (from (1")-(3")-(5")),
(12") v(a)+v(b)+v(1-x)<0 (from (1")-2(5")),
(13") v(b) 2v(a) +v(1-x) (from 2(4")-(1").

(Only (11") differs from the list in [RR1], whose (11') seems to be an unmodified paste
from (11).) We claim that the above implies the following set of conditions:
(x) v(1-x)<c,
(y) v(l-x)—c<v(b) <v(x)+c-v(1-x),
(z) atleast one of the following holds:
(zi) v(a) =-v(1-x)—v(b) (if v(1) = 0, using (1)),
(zii) v(a) +v(1-x)-2v(a+z)-v(b)=0 (if (2")=0, using (1")-2(2")),
(ziii) v(a) +v(b) +v(1-x) —2v(ax+z) =0 (if (3')=0, using (1')-2(3")),
(ziv) v(a) - v(b) +v(1-x) =0 (if (4")=0, using (1')-2(4")).
It suffices to prove (x) and (y), since (z) follows from (5'b). To prove (x), if v(a) # v(z),
then v(a + z) = min{v(a),v(z)}, so v(a + z) — v(a) < 0, which, by (9'), gives
v(1-x) <0 < c. On the other hand, if v(a) = v(z) = —c, then by (10"), v(1 - x) < ¢,
as needed.

For (y), note that if v(a) = v(z) = —c, then (13') gives v(1 - x) — ¢ < v(b) in
that case. If v(a) # v(z), then as before v(a + z) — v(a) < 0, and (7') then gives
v(1-x) - ¢ <v(1-x) < v(b). This proves the lower bound in (y). For the upper
bound, suppose first that v(ax) # v(z). Then v(ax + z) = min{v(ax),v(z)}, so
v(ax +z) <v(a) +v(x). (11') then gives v(b) < v(x) — v(1 - x), which is stronger
than the desired upper bound. If v(ax) = v(z), then (11') is not helpful, because
v(ax + z) = oo is possible. However, in this case, v(ax) = v(a) + v(x) = —¢, so (12')
gives v(b) < v(x) + ¢ — v(1 - x), as needed.

Finally, we claim that once v(b) is fixed, there are at most six possible values of v(a)
for which (z) is satisfied. It suffices to show that there are at most two possibilities for
v(a) if (zii) (resp. (ziii)) is satisfied. Suppose a and a have different valuations and
each satisfy (zii). We claim that v(@) = 2v(z) - v(a). Write & = q'ua for u € Z; and
some integer t # 0. Then

v(a)-2v(a+z)=v(a)-2v(a+z),
which gives
v(q'ua+z)=v(a+z)+ 4%

By Lemma 7.4 below, we get t = 2v(z) — 2v(a), as claimed. For (ziii), by the same
argument, we get
v(q'uax +z) =v(ax +z) + £,
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so t is again determined by Lemma 7.4: ¢ = 2v(z) — 2v(ax).
By the above discussion, summing over z (i.e., over m € (Z,/DZ,)*), and using
|fo.v (£)] = ¢~¢? if nonzero, when v(1 - x) < ¢ we have

v(x)+c—v(l-x)

|15 ()] <q¢(q) > > lgqc/26(v(x)+2c—2v(1—x)+1)

n=v(l-x)—c {6 values}

<69 (2c +1+v(x)]),
where the latter inequality is obtained by considering the cases v(1 - x) being greater
than, equal to, or less than 0. This proves part (b) of the proposition. ]
Lemma 74  Let a,z € Qj with a + z # 0, and suppose there exist u € Z; and t a
nonzero integer such that
(7.7) v(qlua+z)=v(a+z)+ 1,
where v = vy. Then t = 2v(z) - 2v(a).
Proof First suppose v(z) = 0. We need to show that t = —2v(a). If v(a) = 0 too,

then v(a + z) > 0, and (7.7) leads to a contradiction if either ¢ > 0 or ¢ < 0. Suppose
v(a) >0, so that v(a +z) = 0. If t > —v(a), then (7.7) becomes

0=v(q'ua+z) =%,
a contradiction. If t = —v(a), then (7.7) becomes
0<v(qua+z)=14
which is also a contradiction. If t < —v(a), then (7.7) becomes
t+v(a)=v(q'ua+z) =%,

which gives t = —2v(a). A similar analysis gives the same conclusion if v(a) < 0.
In the general case, write z = ¢“w for w € Z7. Factoring out q°, (7.7) becomes

v(q’u% +w)= v(% +w) + %

The special case discussed above then gives t = —2v(a/q°) = 2v(z)-2v(a), as needed.
|

Proposition 7.5  With local components f, as in Proposition 7.3, the sum of the regular
terms is

for any 0 < & < 1, where the implied constant depends only on ¢, D, and «.

Proof We closely follow [RRI, §3]. Let M = Dp®. Suppose I(x) # 0. Then by

Proposition 7.3, v (1-x) < v4(M) for all primes g. This means that n := % € Z. The
map x — ﬁ is a bijection from Q - {0,1} to itself. Therefore, # is not equal to 0 or

M. Since N + M and vy(1 - x) = 0 by Proposition 7.3c, we have

vw(n-M)= VN(M(ﬁ -1)) =wn( ﬁ) =vy(x) 21,
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where the latter inequality is again from Proposition 7.3(c). Thus, N|(n — M). Note
that x = % So

n-M
Lieo = I .
e nEIV;NZ, ( n )
n+0,M

Since N + M, the condition n # 0 is superfluous. As mentioned earlier, the assertion
in [RR1, §3] that I (x) = 0 if x < 0 is incorrect. Now by Proposition 7.3,

(7.8) [(2M) « p PVDy(N)| Lo (M) TT  Bo(=2),
qln(n-M)
where
1 ifvg(=4) =0and q  pDN,
B,(2=M) vq(ﬁ/l)2 ?qu(”;M)JEOanqurpDN,
" V(%57 ifg=N,

(1+[vg (5D if qlM(= p*D),

and the implied constant in (7.8) depends only on € and D.

For the archimedean part, by Proposition 7.3(v) we have

Mk/2
[nfkr2p -

-M -M k/2 -M -1 _
oo (555 < L= 2555 |25 =
Observe that for fixed M, |1 - %| is as small as possible when n = M + 1, since n # M.

Hence, |1 - 4| > - So for an absolute implied constant,
n M+1

k/2+1

|}’l|k/2 '

(7.9) Too (2220)] «<

n

To treat the product in (7.8), as shown in the proof of [RR1, Lemma 8], for any € > 0
there exists a constant C depending only on ¢ such that

[T (55N Clafn - Mf*
qln(n-M)

for all n # M. This in turn is
« |nlf|nM|* < |n|*M?,

where not all epsilons are the same, but each may be made arbitrarily small. It follows
similarly that

(7.10) H Bq(%) <« |n|*M*
q|n(n—M)
for any € > 0.
Using (7.9) and (7.10) and recalling that M = peD, (7.8) gives
1

|I( n—M)| Kpore p—§p€(§+l+s)Dk/2v(N) .
n 4 BRES
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So
e k/2 1
(711) Tiew < pe( T +p v(N) —_—
ronst ez IV NPT
) pe(%H)Dk/zv(N) 1
NFk/2—¢ e |m + %‘k/Z—s'

Noting that % ¢ Z and k > 4, the sum is convergent when & < 1. We will show that
this sum is O (M*/27¢).
Generally, for a > 1 and a noninteger u > 0 with u = [uJ +{u},

D) % e ) S e 8
<{uy™+ (- {u})” *2217

We will apply this with u = 2. If N < M, then writing M = gN + r, we see that
(¥ =1>-L. L1kew1se 1- {%} anso {H e - (M <2 -1)”
IfM <N, then {8} = X, and the first term in (712) comes from m = 0, which is
excluded in (711). For the second term, (1-{%})™* < (1- 52 )™% = (M +1)“. Taking
a= % —¢&, the third term in (712) is 2((% —¢) <2{(2—¢). It follows that for any prime
N+ M,

1 k/2-¢
—_— KM
;olnﬁ%l"/“ )

as claimed. With M = p®D, (711) now yields

k v(N)

Nk/2-¢* u

e(k+1
Lieg <Dt P (k+3)p

By what we have shown, along with the computation of the main term and measure
in [RR1], upon dividing through by v(N) we obtain the following theorem.

Theorem 7.6  Let k > 2 be an even integet, y = x—_p be as in Theorem 1.3, N a prime
not dividing D with x(-N) = -1, and p a prime not dividing ND. Then for all € > 0

and0<e<],
1 AGHAGfxx) _
V(N) féen 117 Xe(A(p)) =

s e(k+1) nk
P ID
CkL(l,X) [oo ngl’]g+0(w),

where ¢ = %= 12"B(§, %), and the implied constant depends only on €, D, and e.

Remarks 7.7 (i) In [RRI1], the formula for the formal degree of the weight k
discrete series of PGL,(R) is given as dy = % This should be corrected to dj = %1,
which corresponds to the Haar measure on SL,(R) = H x SO(2) determined by the
(2) of total length 1.
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(ii) For p fixed as above, if] X, dryg + 0, we see from (5.2) that the sum on the
left-hand side in Theorem 7.6 is nonzero when N > p®D. This is stronger than what
can be deduced from the above using (7.13) below.

We can now prove (5.1), and so complete the proof of Proposition 5.1. By Theo-
rem 7.6, we have

oy 2 rXeC () = Fex Be

where F, is the main term and E, < pe(’”%)Co, where Cy =
Proposition 3.1,

% res wiXe(As(p)) ety B
Xpdnt + O pttk+a) _Fo_)
Y feF W f S (p 1+ L )

By the proof of

Nk/Z e

(Note that Fy # 0, since [ Xod n;f =1 as shown in Proposition 6.1.) As noted earlier,

2kB(2 5 2\\/[5 so that
k=1 knik & | K
713 =—2"B(5,5) ~ —.
( ) Ck A (2 2) o7
Now
E, G Dk Dk

Fo <« Fo  ciL(l, y)Nk/2-¢ <« Kl/2Nk/2—¢’
and (5.1) follows.
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