
Adv. Appl. Prob. 45, 1182–1197 (2013)
Printed in Northern Ireland

© Applied Probability Trust 2013

THE ROLE OF DISPERSAL IN INTERACTING
PATCHES SUBJECT TO AN ALLEE EFFECT

N. LANCHIER,∗ Arizona State University

Abstract

This article is concerned with a stochastic multipatch model in which each local population
is subject to a strong Allee effect. The model is obtained by using the framework of
interacting particle systems to extend a stochastic two-patch model that was recently
introduced by Kang and the author. The main objective is to understand the effect of the
geometry of the network of interactions, which represents potential migrations between
patches, on the long-term behavior of the metapopulation. In the limit as the number
of patches tends to ∞, there is a critical value for the Allee threshold below which
the metapopulation expands and above which the metapopulation goes extinct. Spatial
simulations on large regular graphs suggest that this critical value strongly depends on
the initial distribution when the degree of the network is large, whereas the critical value
does not depend on the initial distribution when the degree is small. Looking at the
system starting with a single occupied patch on the complete graph and on the ring, we
prove analytical results that support this conjecture. From an ecological perspective,
these results indicate that, upon arrival of an alien species subject to a strong Allee effect
to a new area, though dispersal is necessary for its expansion, fast long-range dispersal
drives the population toward extinction.
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1. Introduction

In population dynamics, the term Allee effect refers to a certain process that leads to
decreasing net population growth with decreasing density. If, in addition, the growth rate
becomes negative at low density, this monotone relationship results in the existence of a so-called
Allee threshold below which populations are at high risk of being driven toward extinction, a
phenomenon which is referred to as the strong Allee effect and may be due to various ecological
factors: failure to locate mates, inbreeding depression, failure to satiate predators, lack of
cooperative feeding, etc. The research on the causes and consequences of the presence of an
Allee effect ranges from biological experiments to mathematical analyses of deterministic and
stochastic models and is too copious to be reviewed in this paper. We refer the reader to [2] for
a general overview of the literature on the Allee effect and also mention more particularly the
recent work of Borrello [1], who, similarly to this paper, focused on a stochastic process based
on the framework of interacting particle systems. His model is derived from a model proposed
by Schinazi [7], [8] in which each site of the infinite regular lattice represents a patch that can
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The role of dispersal in interacting patches subject to an Allee effect 1183

host a local population not exceeding a certain number of individuals, which can be thought
of as a carrying capacity. In patches hosting a local population below the carrying capacity,
individuals give birth at a fixed rate to offspring which stay in the parent’s patch, whereas in
patches at the carrying capacity, individuals give birth at another fixed rate to offspring which
are sent to randomly chosen adjacent patches. The fact that offspring are placed preferentially
in their parent’s patch rather than adjacent patches models spatial aggregation, and the common
value of the carrying capacity of the patches across the lattice can be seen as a measure of how
much individuals aggregate. The analysis in [7] and [8] shows that, for appropriate values of
the birth rates and in the presence of catastrophic events modeled by the death of each local
population independently at rate 1, the metapopulation survives if and only if the maximum
number of individuals per patch is smaller than some critical value. In contrast, in the absence
of catastrophic events, which is modeled by the death of each individual independently at rate 1,
the metapopulation survives if and only if the maximum number of individuals per patch is
large enough. From an ecological perspective, these results suggest that, for species suffering
local catastrophic events, spatial aggregation leads to extinction, whereas, for species suffering
a strong Allee effect, spatial aggregation is necessary for survival. The model proposed by
Borrello [1] is closely related to the previous model with individual deaths, but also includes
an Allee threshold: there is a varying individual death rate that takes a larger value for local
populations below the threshold, and a smaller value for local populations above the threshold
and below the carrying capacity. The model allows, in addition, for the migration of flocks
of individuals from local populations near the carrying capacity to adjacent patches, provided
enough space is available. It is proved that, when only small flocks of individuals can migrate,
the population goes extinct in the presence of a strong enough Allee effect, whereas, regardless
of the strength of the Allee effect, survival is possible if large enough flocks can migrate, a
phenomenon called the rescue effect in the context of metapopulations. The intuition behind
this result is that small flocks of individuals moving to an empty patch are doomed to extinction,
whereas the division of a local population into two subpopulations above the Allee threshold
results in the successful invasion of an empty patch.

The main objective of this paper is to look more closely at the role of dispersal in populations
subject to a strong Allee effect. To understand this aspect, Kang and the author recently
introduced deterministic and stochastic two-patch models [6]. Here, we continue our analysis
and use the framework of interacting particle systems to extend the stochastic two-patch model
to a more general multipatch model. Thinking of the set of patches as the vertex set of a
graph in which each edge indicates potential dyadic interactions, we study how the geometry
of the network affects the survival probability of the metapopulation. In particular, instead of
comparing models with different microscopic rules evolving on the same spatial structure as in
the papers cited above, we compare models with the same microscopic rules but evolving on
different spatial structures.

To define our multipatch model, we let G = (V , E) be a graph representing the network of
interactions. The system is a continuous-time Markov chain whose state at time t is a function

ηt : V → [0, 1] with ηt (x) := population density at vertex x.

Having an Allee threshold θ ∈ (0, 1) and a migration factor μ ∈ (0, 1
2 ], the evolution consists

of the following two elementary events occurring in continuous time.

• Mixing events. Each edge becomes active at rate 1, which results in a fraction μ of the
population at each of the two interacting vertices to move to the other vertex.
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• Local events. Each vertex becomes active at rate 1, which results in the population density
at that vertex to jump to state 0 if it is below the Allee threshold and to jump to 1 if it is
above the Allee threshold. In case the density is exactly equal to the Allee threshold at
the time of a local event, there is a jump to either state 0 or state 1 with probability 1

2 .

The inclusion of mixing events indicates that individuals can move from patch to patch through
the edges of the graph. The strength of dispersal is thus modeled by the mean degree distribution
of the network of interactions. Local events model the presence of a strong Allee effect in each
patch: local populations below the Allee threshold are driven toward extinction whereas local
populations above the Allee threshold expand, and we think of state 1 as the normalized density
of a local population at the carrying capacity. In particular, our model includes the same
two components as the model introduced in [1]: an Allee threshold and migrations between
patches. Note however that migrations in our model are unconditional in the sense that there
is no parameter that controls the size of the flocks moving between patches. This implies
that, in contrast with [1], a mixing event may either increase or decrease the number of local
populations above the Allee threshold and, therefore, be either beneficial or detrimental for the
metapopulation. In particular, whether dispersal promotes survival or leads to extinction does
not depend on the choice of the parameters but on the choice of the spatial structure. Our verbal
description of the model in terms of local and mixing events can be expressed more formally
through the Markov generator

Lηf (η) =
∑

(x,y)∈E

[f (σx,yη) − f (η)]

+
∑
x∈V

(
1{η(x) > θ} + 1

2
1{η(x) = θ}

)
[f (σ+

x η) − f (η)]

+
∑
x∈V

(
1{η(x) < θ} + 1

2
1{η(x) = θ}

)
[f (σ−

x η) − f (η)], (1)

where (σ+
x η)(x) = 1 and (σ−

x η)(x) = 0, and

(σx,yη)(z1) = η(z1) + μ(η(z2) − η(z1)) whenever {z1, z2} = {x, y},
while the state at all other vertices is unchanged. The stochastic two-patch model we introduced
and studied in [6] is simply the process (1) when the network of interactions consists of two
vertices connected by a single edge. The main objective there was to answer the following
question: starting with one empty patch and one patch at the carrying capacity, does the
inclusion of mixing events lead to a global extinction, i.e. both patches in state 0 eventually,
or to a global expansion, i.e. both patches in state 1 eventually? Theorem 8 of [6] gave the
following answer: when the migration factor is small, the probabilities of global extinction
and global expansion are close to 1 when the Allee threshold is larger than 1

2 and, respectively,
smaller than 1

2 . As the migration factor increases, the limit becomes less predictable. This result
suggests that 1

2 is a critical value for the Allee threshold. However, we literally interpreted this
1
2 as one patch initially in state 1 divided by two patches, and also conjectured that, for systems
in which all the patches are connected, i.e. the network of interactions is a complete graph, the
critical value for the Allee threshold must be equal to the initial fraction of patches in state 1
in the limit as the size of the system tends to ∞. This conjecture is supported by the bottom-
right-hand picture of Figure 1 which shows numerical results for the stochastic process (1)
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Figure 1: Simulation results for the process on the torus Z/200Z in which each vertex is connected to
its d nearest neighbors. Each picture shows the density of vertices below/above the Allee threshold after
a large number of updates as a function of the Allee threshold (200 values) and the initial fraction of
vertices in state 1 (200 values). The color for each of the 200 × 200 parameter values is computed from
the average of 100 independent realizations, and the color code is black for all below the Allee threshold

and white for all above. In all the simulations, μ = 0.2.

on four regular graphs with different degrees. In contrast, the top-left-hand picture suggests
that the critical value for the Allee threshold is again equal to 1

2 for the process on the ring
in the limit as the size of the system tends to ∞. This indicates that the critical value for the
Allee threshold strongly depends on the initial configuration in the presence of fast long-range
dispersal, whereas the initial configuration is essentially unimportant in the presence of slow
short-range dispersal. The main objective of this paper is to explain at least qualitatively this
difference between the process on the complete graph, which models fast long-range dispersal,
and the process on the ring, which models slow short-range dispersal.

2. Main results

We first assume that the process starts from the product measure in which each vertex is in
state 1 with probability ρ and in state 0 otherwise. Following the terminology of [6], we call
global extinction the event that the process converges to the ‘all 0’ configuration and global
expansion the event that it converges to the ‘all 1’ configuration. Note that, on finite graphs, the
process converges to one of these two absorbing states. In particular, the probability of global
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extinction and the probability of global expansion sum to 1, thus showing that the long-term
behavior is completely characterized by the probability of global expansion

pG(θ, μ, ρ) := P(ηt ≡ 1 for some t),

which depends on the network of interactions, the Allee threshold, the migration factor, and
the initial density of occupied patches. The simulation results of Figure 1 suggest some
monotonicity of the probability of expansion with respect to the Allee threshold and the
initial density of occupied patches, as well as a certain symmetry between the probability
of expansion and the probability of extinction. These results follow directly from standard
coupling arguments for interacting particle systems that we briefly describe without detailed
proof.

Monotonicity with respect to θ . Two processes on the same graph and starting from the same
initial configuration but with different Allee thresholds can be coupled in such a way that the
process with the smaller Allee threshold dominates the other process, which implies that the
probability of global expansion pG(θ, μ, ρ) is nonincreasing with respect to θ .

Monotonicity with respect to ρ. Two processes on the same graph with the same Allee
threshold and with the same migration factor can be coupled in such a way that if one process
dominates the other at time 0 then the domination remains true at all times. This implies that
the probability of global expansion pG(θ, μ, ρ) is nondecreasing with respect to ρ.

Symmetry. The process with Allee threshold θ can be coupled with the process on the same
graph and with the same migration factor but with Allee threshold 1 − θ in such a way that if at
any vertex the initial population density for one process equals 1 minus the initial population
density for the other process then this remains true at all times. This implies that

pG(θ, μ, ρ) = 1 − pG(1 − θ, μ, 1 − ρ),

and explains the symmetry in the four simulation pictures of Figure 1.
The process starting with a single occupied patch. We now return to the main objective of

this paper, which is to understand the effect of the geometry of the network on the invadability
of species subject to a strong Allee effect. This aspect is mathematically more difficult to
understand because two processes on different graphs cannot be coupled in such a way that
one process dominates the other. Our analysis focuses on the extreme cases of the ring and the
complete graph corresponding to the top-left- and bottom-right-hand pictures of Figure 1. Let

p+
N(θ, μ, ρ) := the probability of global expansion for the process

on the complete graph with N vertices, (2a)

p−
N(θ, μ, ρ) := the probability of global expansion for the process

on the ring with N vertices, (2b)

where the ‘+’ and ‘−’ superscripts respectively allude to the facts that the complete graph is the
connected regular graph with the largest degree, while the ring is the connected regular graph
with the smallest degree. Recall that the simulation results of Figure 1 suggest that

lim
N→∞ p+

N(θ, μ, ρ) =
{

0 when θ > ρ,

1 when θ < ρ,
(3)

whereas, for the process on the ring starting with ρ ∈ (0, 1),

lim
N→∞ p−

N(θ, μ, ρ) =
{

0 when θ > 1
2 ,

1 when θ < 1
2 .

(4)
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The role of dispersal in interacting patches subject to an Allee effect 1187

Following Kang and Lanchier [6], whose main objective was to understand whether an alien
species established in one patch can expand in space, we assume from now on that the process
starts with a single patch in state 1 and all the other patches in state 0. In particular, we drop
the parameter ρ in the probabilities given in (2). The following two theorems give qualitative
differences between the system on the complete graph and the system on the ring starting with
a single vertex in state 1, which supports conjectures (3) and (4). More precisely, our first
theorem indicates that, even when the Allee threshold is very small, the system on the complete
graph is driven toward global extinction with high probability when the number of vertices is
large.

Theorem 1. Assume that θ, μ > 0. Then p+
N(θ, μ) → 0 as N → ∞.

In contrast, when theAllee threshold is small enough, the system on the ring expands globally
with a positive probability that does not depend on the number of vertices.

Theorem 2. Assume that θ < μ2 (1 − μ)1140. Then infN p−
N(θ, μ) > 0.

The mysterious assumption in the previous theorem follows from a series of bounds of
certain probabilities that are estimated based on geometric arguments and are not optimal.
Some of these estimates appear in our proof and the others in the calculation of an upper bound
for the critical value of one-dependent oriented site percolation in, e.g. [3]. Even though the
assumption of the theorem is far from being optimal, it gives at least an explicit lower bound
for the critical value of the Allee threshold for the process on the ring. More importantly,
the combination of both theorems shows the following qualitative difference: for some values
of the Allee threshold, the probability of global expansion is bounded from below for the
process on the ring but vanishes to 0 for the process on the complete graph as the number of
vertices increases. This supports at least qualitatively the contrast between (3) and (4). From
an ecological perspective, this indicates that, upon arrival of an alien species to a new area,
though dispersal is necessary for its expansion, the best strategy is to first slowly disperse to
nearby patches, and then progressively increase the strength of its dispersal as the fraction of
patches at the carrying capacity increases. Finally, we point out that, since our model assumes
that mixing events occur at rate 1 along each edge, increasing the degree of the graph increases
not only the range but also the speed of the interactions. An alternative modeling approach
is to assume that mixing events occur along each edge at a rate equal to the reciprocal of the
degree in order to have local and mixing events occurring at the same time scale. In this case,
increasing the degree increases the range but not the speed of the interactions, and it can be
proved that Theorem 2 still holds, at least qualitatively, using the exact same arguments. Our
proof of Theorem 1, however, does not extend to this model and we conjecture that, for the
process on the complete graph, the probability of global expansion is bounded from below
uniformly in the number of patches, just as for the process on the ring. In particular, we believe
that the qualitative difference that appears in the theorems is due to the speed of the interactions
rather than the range of the interactions.

3. Preliminary results

In this section we give some definitions and simple results that will be used repeatedly in the
proof of both theorems. Throughout this paper, we think of process (1) as being constructed
from Harris’ graphical representation [5]. Each edge of the graph is equipped with a Poisson
process with intensity 1 while each vertex is equipped with a Poisson process with intensity 1
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and a sequence of independent Bernoulli random variables with parameter 1
2 . We write

• Tn(x, y) := nth arrival time of the Poisson process attached to edge (x, y) ∈ E,

• Un(x) := nth arrival time of the Poisson process attached to vertex x ∈ V ,

• Bn(x) := nth member of the Bernoulli sequence attached to vertex x ∈ V .

All these Poisson processes and Bernoulli random variables are independent and together form
a percolation structure from which the multipatch model (1) can be constructed.

• Mixing events. At time t := Tn(x, y), we draw a double arrow along the corresponding
edge to indicate the occurrence of the following mixing event:

ηt (x) = (σx,yηt−)(x) and ηt (y) = (σx,yηt−)(y).

• Local events. At time t := Un(x), we put a dot at vertex x to indicate that

ηt (x) = 1{ηt−(x) > θ} + Bn(x) 1{ηt−(x) = θ}.
In the proof of both theorems, we first study the process (ξt ) that includes mixing events but
excludes local events, whose dynamics are therefore described by the Markov generator

Lξf (ξ) =
∑

(x,y)∈E

[f (σx,yξ) − f (ξ)]. (5)

Note that this process can be constructed graphically as previously by using only the Poisson
processes attached to the edges of the graph. Note also that, since the state at each vertex is a
convex combination of the states of the vertices at earlier times,

ξs(x) > θ for all x ∈ V �⇒ ξt (x) > θ for all (x, t) ∈ V × (s, ∞),

with the analogous implication obtained by flipping the inequalities. Following the terminology
introduced in [6], we call the sets

�+ := {ξ : V → [0, 1] such that ξ(x) > θ for all x ∈ V },
�− := {ξ : V → [0, 1] such that ξ(x) < θ for all x ∈ V }

the upper/lower configurations, respectively, and observe that the previous implication means
that, once process (5) hits the set of upper configurations, it stays in this set forever. By the
definition of the Allee threshold, the same holds for the original process (1) from which we
deduce the following lemma.

Lemma 1. For process (1) on a finite graph,

ηt ≡ 1 for some t ⇐⇒ ηs ∈ �+ for some s,

ηt ≡ 0 for some t ⇐⇒ ηs ∈ �− for some s.

Lemma 1 is one of the keys to proving both theorems. According to the lemma, it suffices
to prove that, with the appropriate probability, the process on the complete graph hits a lower
configuration whereas the process on the ring hits an upper configuration.
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4. The process on the complete graph

This section is devoted to the proof of Theorem 1. As previously mentioned, the first step
is to study process (5) that excludes local events but includes mixing events. It is obvious that,
when starting with a single vertex in state 1, this process eventually hits a lower configuration,
provided the number of vertices is sufficiently large. The key to the proof is to show that the
time to hit a lower configuration can be made arbitrarily small, which relies on large deviation
estimates for several random variables that we now define. We call a mixing event that involves
two occupied vertices a collision, i.e. a collision occurs at time t whenever

t = Tn(x, y) and min(ξt−(x), ξt−(y)) 
= 0.

We define the following three random variables.

• Time to dispersion: τD := inf{t : ξt ∈ �−}.
• Time to collision: τC := first time a collision occurs.

• Number of occupied patches: |ξt | := card{x ∈ Z/NZ : ξt (x) 
= 0}.
We will prove that, with a probability close to 1 when N is large,

τD ≤ TN, τC > TN, and |ξTN
| ≤ 4NTN , (6)

for some TN that tends to 0 as N → ∞. The probability of the events in (6) will be estimated
backwards by conditioning, i.e. the probability involving the time to collision is obtained by
conditioning on the number of occupied patches, while the probability involving the time to
dispersion is obtained by conditioning on the time to collision. To complete the proof, we will
return to process (1) and use our estimates for the probability of the first and last events in (6)
to prove that the probability that a local event occurs in any of the occupied patches before the
time to dispersion tends to 0 as the number of vertices N → ∞.

Mapping to a dynamic graph. To estimate the probability of the events in (6), we first
define a mapping to visualize the evolution of process (5) through a dynamic graph, i.e. a
continuous-time Markov chain whose state at time t is a random oriented graph

Ht := (Vt , Et ), where Vt ⊂ V × N.

The dynamic graph is coupled with process (5) and defined as follows.

• The graph H0 has only one vertex, namely (x0, 0) ∈ V ×N, where x0 is the single vertex
in state 1 initially, and no (oriented) edge.

• We call (x, i) a leaf at time t whenever (x, i) ∈ Vt and (x, i + 1) /∈ Vt .

• Assume that (x, i) ∈ Vt− is a leaf and that t = Tn(x, x′) for some n ≥ 1. Then we define
the new vertex set and the new edge set as

Vt := Vt− ∪ {(x, i + 1), (x′, i + 1)},
Et := Et− ∪ {(x, i) → (x, i + 1), (x, i) → (x′, i + 1)}. (7)

The left-hand diagram of Figure 2 gives a realization of the process with only mixing events,
where xj denotes the j th vertex that becomes occupied and sj denotes the time at which this
occurs, while the right-hand diagram of the figure gives a picture of the corresponding graph.
Note that a vertex has a positive density at time t if and only if it is the first coordinate of a leaf.
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Figure 2: Pictures related to the proof of Theorem 1.

It follows that
|ξt | = number of leaves in Ht (8)

and, using in addition the evolution rule (7), that a collision event results in two pairs of oriented
edges, each pointing to the same two leaves. In particular,

Ht is an oriented binary tree with root (x0, 0) if and only if t < τC. (9)

From properties (7) and (9), it also follows that

(x, i) is a leaf at time t < τC �⇒ ξt (x) ≤ (1 − μ)i. (10)

In fact, if (x, i) is a leaf at time t < τC then there exists a unique oriented path from the root
to this leaf and the density at vertex x can be computed explicitly by looking at the number of
vertical edges in this path, but this property is not needed in the proof of the theorem.

Time to dispersion. The next step is to use (8)–(10) and the dynamic graph representation
of the process to estimate the probability of the three events in (6). Under the assumptions of
the theorem, there exists n such that (1 − μ)n < θ . We then define

TN := n ln(ln N)

N
and KN := 4n ln(ln N) = 4NTN .

The following three lemmas give estimates of the probability of the last event, the second event,
and the first event in (6), respectively, for the deterministic time TN defined above.

Lemma 2. There exists a > 0 such that P(|ξTN
| > KN) ≤ (ln N)−a for all large N .

Proof. The number of leaves is maximal when there is no collision, in which case the number
of leaves jumps from i to i + 1 at rate iN . This together with (8) implies that

E|ξTN
| = E(number of leaves in HTN

) ≤ 2NTN = √
KN.

In particular, large deviation estimates for the Poisson distribution give

P(|ξTN
| > KN) = P(|ξTN

| > 4NTN ) ≤ exp(−a ln(ln N)) = (ln N)−a

for a suitable constant a > 0 and all sufficiently large N .

Lemma 3. For all large N , P(τC ≤ TN) ≤ 2(ln N)−a .
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Proof. Given that the graph Ht has i leaves, the probability of a collision at the next update
of the system is equal to i/N . In particular, the conditional probability of a collision before
TN, given that the number of leaves at that time is smaller than KN, is

P(τC ≤ TN | |ξTN
| ≤ KN) ≤

KN∑
i=1

i

N
≤ KN(KN + 1)

2N
≤ exp(4n ln(ln N))

2N
= (ln N)4n

2N
.

This, together with Lemma 2, implies that

P(τC ≤ TN) ≤ P(τC ≤ TN | |ξTN
| ≤ KN) + P(|ξTN

| > KN)

≤ (ln N)4n

2N
+ (ln N)−a

≤ 2(ln N)−a

for all sufficiently large N .

Lemma 4. Let a > 0 be as in Lemmas 2 and 3. Then, for all large N ,

P(τD > TN) ≤ 2n+1(ln N)−1 + 2(ln N)−a.

Proof. Motivated by (10), we introduce the stopping times

σj := inf{t : for each leaf (x, i) ∈ Vt , we have i ≥ j}.
The first step is to prove that σn ≤ TN with probability arbitrarily close to 1 when the number
of vertices is large. Note that, according to the evolution rules (7), we have

card{x ∈ V : (x, i) ∈ Vt } ≤ 2i for all t ≥ 0. (11)

Moreover, since each vertex has degree N − 1 and is therefore involved in a mixing event at
the arrival times of a Poisson process with intensity N − 1, we have

P(inf{t : (x, i + 1) ∈ Vt } − inf{t : (x, i) ∈ Vt } > T ) = exp(−(N − 1)T ) (12)

for all x ∈ V such that (x, i) ∈ Vt at some time t , i.e. the amount of time a vertex in the dynamic
graph is a leaf is exponential with parameter N − 1. From (11) and (12), we deduce that the
temporal increment σj+1 − σj required to grow one more generation in the dynamic graph
is stochastically smaller than the maximum of 2j independent exponential random variables
with the same parameter N − 1. In particular, having a collection ε1, ε2, ε3, . . . of independent
exponential random variables with parameter N − 1, we deduce that

P(σn > TN) ≤
n−1∑
j=0

P

(
σj+1 − σj >

TN

n

)

≤
n−1∑
j=0

P

(
max{εi : i ≤ 2j } >

TN

n

)

≤
n−1∑
j=0

P

(
εi >

TN

n
for some i ≤ 2j

)

≤
n−1∑
j=0

2j exp

(
− (N − 1) ln(ln N)

N

)

≤ 2n+1(ln N)−1 for all large N . (13)
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In other respects, using (10) and recalling the definition of n,

σn ≤ TN < τC �⇒ ξTN
(x) ≤ (1 − μ)n < θ for each leaf (x, i) ∈ VTN

�⇒ τD ≤ TN .
(14)

Combining (13) and (14), and using Lemma 3, we conclude that

P(τD > TN) ≤ P(σn > TN) + P(τC ≤ TN) ≤ 2n+1(ln N)−1 + 2(ln N)−a,

which completes the proof.

To conclude the proof of Theorem 1, we return to process (1). The proof is based on the
simple observation that processes (1) and (5) are equal as long as no local event occurs in any
of the vertices not in state 0. The bound on the number of occupied patches and the bound
on the time to dispersion respectively given by Lemmas 2 and 4 show that, with probability
close to 1 when N is large, no local event occurs in any of the occupied patches before the time
to dispersion (for the process that includes local events), so the result follows from Lemma 1.
This argument is made rigorous in the following lemma.

Lemma 5. For all sufficiently large N , we have

p+
N(θ, μ) ≤ 2n+1(ln N)−1 + 3(ln N)−a + n(ln N)2n+1

N
. (15)

Proof. The two processes (1) and (5) being constructed from the same graphical represen-
tation are equal as long as no local event occurs in any of the vertices not in state 0. Since
local events occur at each vertex at rate 1, having a collection ζ1, ζ2, ζ3, . . . of independent
exponential random variables with parameter 1, we deduce that

P(ηt 
≡ ξt for some t ≤ TN | |ξTN
| ≤ KN) ≤ P(min{ζi : i ≤ KN } < TN)

= 1 − P(min{ζi : i ≤ KN } ≥ TN)

≤ 1 − exp(−KNTN)

≤ 1 − exp

(
−n(ln N)2n ln(ln N)

N

)

≤ n(ln N)2n+1

N
(16)

for all large N . From Lemmas 2 and 4, and (16), we obtain

P(ηTN
/∈ �−) ≤ P(ξTN

/∈ �−) + P(ηt 
≡ ξt for some t ≤ TN)

≤ P(τD > TN) + P(ηt 
≡ ξt for some t ≤ TN | |ξTN
| ≤ KN)

+ P(|ξTN
| > KN)

≤ 2n+1(ln N)−1 + 3(ln N)−a + n(ln N)2n+1

N

for all large N . Since according to Lemma 1 we have

p+
N(θ, μ) = P(ηt ∈ �+ for some t) = P(ηt /∈ �− for all t) ≤ P(ηTN

/∈ �−),

the proof is complete.

The theorem directly follows from Lemma 5 by observing that the right-hand side of (15)
tends to 0 as the number of vertices N goes to ∞.
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5. The process on the ring

This section is devoted to the proof of Theorem 2. To understand the process on the ring,
the first step is to study its counterpart on the infinite one-dimensional lattice using a so-called
block construction. The idea is to couple a certain collection of good events related to the
infinite system with the set of open sites of a one-dependent oriented site percolation process
on

H := {(x, n) ∈ Z × Z+ : x + n is even}.
For a precise definition and a review of oriented site percolation in two dimensions, we refer the
reader to [3]. This coupling together with results from [4] implies that, starting with a single
occupied patch, there exists, with positive probability, a linearly expanding region that contains
a positive density of patches above the Allee threshold. The second key step is to prove that
in fact all the patches in this space–time region are above the Allee threshold, from which it
follows that, with the same positive probability, the process on the finite ring starting with a
single occupied patch hits an upper configuration before it hits a lower configuration. To prove
linear expansion in space of the set of patches that exceed the Allee threshold, we observe that,
under the assumptions of the theorem, there exists a constant a fixed from now on such that

a < (1 − μ)4T and aμ2(1 − μ)8T > θ, where T := 95.

To define our collection of good events, we also introduce random variables that keep track of
the number of mixing events and local events in certain space–time regions of the graphical
representation. More precisely, we introduce the number of mixing events

Xj := card{n : Tn(j, j + 1) ∈ (0, T )} for j = −1, −2,

Xj := card{n : Tn(j − 1, j) ∈ (0, T )} for j = +1, +2,

Yj := card{n : Tn(j − 1, j) ∈ (T , 2T )}
+ card{n : Tn(j, j + 1) ∈ (T , 2T )} for j = −1, +1,

as well as the number of local events

Zj := card{n : Un(j) ∈ (T , 2T )} for j = −1, +1.

From these random variables, we define the good event

� := {min(X−1, X1, Z−1, Z1) 
= 0} ∩ {max(X−2, X2) ≤ 2T } ∩ {max(Y−1, Y1) ≤ 4T },
as depicted in Figure 3. For every (x, n) ∈ H , we define the good event �(x, n) similarly but
from the graphical representation of the process in the space–time region

R(x, n) := (x − 2, x + 2) × (2nT , 2nT + 2T ).

The motivation for introducing these events is that, conditioned on �(x, n), if the population
density at patch x at time 2nT exceeds a then the same holds for the two adjacent patches 2T

units of time later. By translation invariance of the evolution rules of the process in space and
time, it suffices to prove the result for x = n = 0, which is done in the following lemma.

Lemma 6. We have {η0(0) > a} ∩ �(0, 0) ⊂ {min(η2T (−1), η2T (1)) > a}.
Proof. The first step is to prove that the event on the left-hand side is included in the event

that the population density at −1 and 1 exceed the Allee threshold at time 2T for process (5)
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1 201−2−0
2X T−2 ≤ X−1 � 0� X1 � 0� 2X T2 ≤

4Y T−1 ≤ 4Y T1 ≤

2T

T

s1

s
−s 1

Z−1 � 0� Z1 � 0�

Figure 3: Picture of the good event � = �(0, 0).

that includes mixing events but excludes local events. Assume that

s−1 := T1(−1, 0) < T1(0, 1) =: s1 < T.

Note that the last inequality s1 < T follows from X1 
= 0. To study the process up until time s1,
we introduce the number of mixing events

M := card{n : Tn(−2, −1) ∈ (s−1, s1)},
and in the case M 
= 0, the time of the first mixing event

s := inf({Tn(−2, −1) : n ≥ 1} ∩ (s−1, s1)).

Since the population densities at patch −1 and at patch 0 between time s−1 and time s are
convex combinations of their counterpart at time s−1, we have

min(ξt (−1), ξt (0)) ≥ min(ξs−1(−1), ξs−1(0)) > min(aμ, a(1 − μ)) = aμ

for all t ∈ (s−1, s). In particular,

min(ξs(−1), ξs(0)) > aμ(1 − μ).

Since M ≤ X−2 ≤ 2T , we deduce from a simple induction that

min(ξt (−1), ξt (0)) > aμ(1 − μ)M ≥ aμ(1 − μ)2T > θ (17)

for all t ∈ (s−1, s1), and, by the definition of s1,

ξs1(1) = μξs1−(0) + (1 − μ)ξs1−(1) ≥ μξs1−(0) > aμ2(1 − μ)M.

In particular, again using our inductive reasoning and the fact that

card{n : Tn(−2, −1) ∈ (s1, T )} + card{n : Tn(1, 2) ∈ (s1, T )} ≤ X−2 + X2 − M

≤ 4T − M,
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we deduce that

min(ξt (−1), ξt (0), ξt (1)) ≥ (1 − μ)4T −M min(ξs1(−1), ξs1(0), ξs1(1))

> (1 − μ)4T −Maμ2(1 − μ)M

= aμ2(1 − μ)4T

> θ (18)

for all t ∈ (s1, T ). Finally, since Y−1 ≤ 4T and Y1 ≤ 4T ,

min(ξt (−1), ξt (1)) ≥ (1 − μ)4T min(ξT (−1), ξT (1))

> (1 − μ)4T aμ2(1 − μ)4T

= aμ2(1 − μ)8T

> θ (19)

for all t ∈ (T , 2T ). Returning to the system with local events, since

ξt (0) > θ for all t ∈ (0, T ) and ξt (±1) > θ for all t ∈ (s±1, 2T )

according to (17)–(19), these inequalities remain true for the original process (1). In particular,
the populations at patches −1 and 1 exceed θ between times T and 2T ; therefore,

ηt (−1) = 1 for some t ∈ (T , 2T ) and ηt (1) = 1 for some t ∈ (T , 2T )

since Z−1 
= 0 and Z1 
= 0. Again using Y−1, Y1 ≤ 4T , we conclude that

η2T (−1) ≥ (1 − μ)4T > a and η2T (1) ≥ (1 − μ)4T > a,

which completes the proof of the lemma.

To deduce from Lemma 6 the existence of a linearly expanding region with a positive density
of patches above the Allee threshold, we now prove that the common probability of all our good
events exceeds the critical value pc of one-dependent oriented site percolation.

Lemma 7. For T = 95, we have P(�(x, n)) ≥ 1 − 3−36 > pc.

Proof. The key is simply to observe that

• X−2, X−1, X1, and X2 are Poisson random variables with parameter T ,

• Y−1 and Y1 are Poisson random variables with parameter 2T , and

• Z−1 and Z1 are Poisson random variables with parameter T .

Using, in addition, the fact that these random variables are independent, we deduce that

P(�(x, n)) = P(�)

≥ 1 − 4P(X1 = 0) − 2P(X2 > 2T ) − 2P(Y1 > 4T )

= 1 − 4e−T − 2
∑

n>2T

T n

n! e−T − 2
∑

n>4T

(2T )n

n! e−2T

> 1 − 3−36

when T = 95. The second inequality pc < 1 − 3−36 in the statement follows from the contour
argument described in, e.g. [3, Section 10]. This completes the proof of the lemma.
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Lemmas 6 and 7 and the fact that

R(x, n) ∩ R(x′, n′) = ∅ whenever |x − x′| > 1 or n 
= n′

are the assumptions of Theorem 4.3 of [4] with M = 1 and γ = 3−36, from which it follows
that, for the infinite system starting with a single occupied patch at the origin,

W̄n := {x ∈ Z : (x, n) ∈ H and η2nT (x) > a}
dominates stochastically the set of wet sites Wn at level n of a one-dependent oriented site
percolation process with parameter 1 − γ and initial condition W0 = W̄0. Since 1 − γ > pc,

we deduce that, with positive probability at least equal to the percolation probability, the set
of patches that exceed the constant a expands linearly. This proves only persistence of the
metapopulation of the infinite lattice, which is not sufficient to deduce global expansion of the
system on the ring. The last step is to show that all patches in the expanding region exceed the
Allee threshold. More precisely, on the event that percolation occurs, i.e. Wn 
= ∅ for all n, we
have

lim
n→∞ ln := lim

n→∞ min Wn = −∞ and lim
n→∞ rn := lim

n→∞ max Wn = +∞, (20)

and thinking of the infinite system as being coupled with one-dependent oriented site percolation
in such a way that Wn ⊂ W̄n for all n, we have the following lemma.

Lemma 8. Assume that Wn 
= ∅ for all n. Then, for all x ∈ Z,

ηt (x) > θ for all sufficiently large times t .

Proof. Recall from the proof of Theorem 4.3 of [4] that the processes are coupled in such
a way that the set of open sites for the percolation process is included in the set of good sites,
where site (x, n) is said to be good whenever the good event �(x, n) occurs. This, together
with the definition of the right edge, implies that there is a good path from site (0, 0) to site
(rn, n), i.e. a sequence of integers x0 = 0, x1, . . . , xn = rn such that

(xm, m) is good for m = 0, 1, . . . , n and |xm − xm−1| = 1 for m = 1, 2, . . . , n.

Since η0(0) > a, it follows from (17)–(19) in the proof of Lemma 6 that, for m = 0, 1, . . . , n,

ηt (xm) > θ for all t ∈ [2mT, 2mT + T ),

ηt (xm + 1) > θ for all t ∈ [2mT + T , 2mT + 2T ).
(21)

Similarly, there is a path (x0, 0) → (x−1, 1) → · · · → (x−n, n) = (ln, n) such that

ηt (x−m) > θ for all t ∈ [2mT, 2mT + T ),

ηt (x−m − 1) > θ for all t ∈ [2mT + T , 2mT + 2T ),
(22)

for m = 0, 1, . . . , n, and we may assume that x−m ≤ xm for all m. We claim that all patches
in the space–time region delimited by (21) and (22) are above the Allee threshold θ , i.e.

ηt (x) > θ for all (x, t) ∈ [x−m, xm] × [2mT, 2mT + T ),

ηt (x) > θ for all (x, t) ∈ [x−m − 1, xm + 1] × [2mT + T , 2mT + 2T ),
(23)
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which we prove by induction. Assume that (23) holds for some m < n. The fact that this again
holds at time t = 2mT + 2T simply follows from the fact that

[x−m−1, xm+1] ⊂ [x−m − 1, xm + 1] since x−m−1 ≥ x−m − 1 and xm+1 ≤ xm + 1.

To prove that this holds at later times, we distinguish three types of event.

• Local events cannot violate the first line of (23) since patches above the Allee threshold
can experience only local expansions to their carrying capacity.

• Mixing events in [x−m−1, xm+1] cannot violate the first line of (23) since the new states
of interacting patches above the Allee threshold are again above the Allee threshold.

• Mixing events along (x−m−1 − 1, x−m−1) or (xm+1, xm+1 + 1) can violate the first line
of (23), but this would contradict either (21) or (22).

This proves the first line of (23) at step m + 1, while the second line follows from the exact
same reasoning. From (23), we deduce that

ηt (x) > θ for all (x, t) ∈ [ln, rn] × [2mT, 2mT + 2T ).

In particular, the lemma follows from (20).

Returning to the process on the ring, we deduce from Lemma 8 that, with positive probability
at least equal to the percolation probability and starting with a single patch in state 1, the system
reaches an upper configuration before it reaches a lower configuration, an event that leads to
global expansion according to Lemma 1. This completes the proof of Theorem 2.
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