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isomorphism relation for a class of compact metrizable structures. This provides a more
direct proof of the theorem above and allows one to view the earlier results of Sabok and of
Clemens, Gao, and Kechris as consequences of it.
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Abstract

Aschenbrenner et al. have studied Vapnik-Chervonenkis density (VC-density) in the
model-theoretic context. We investigate it further by computing it in some common struc-
tures: trees, Shelah—Spencer graphs, and an additive reduct of the field of p-adic numbers.
In the theory of infinite trees we establish an optimal bound on the VC-density function.
This generalizes a result of Simon showing that trees are dp-minimal. In Shelah—Spencer
graphs we provide an upper bound on a formula-by-formula basis and show that there isn’t
a uniform lower bound, forcing the VC-density function to be infinite. In addition we show
that Shelah—Spencer graphs do not have a finite dp-rank, so they are not dp-minimal. There
is a linear bound for the VC-density function in the field of p-adic numbers, but it is not
known to be optimal. We investigate a certain P-minimal additive reduct of the field of p-adic
numbers and use a cell decomposition result of Leenknegt to compute an optimal bound for
that structure. Finally, following the results of Podewski and Ziegler we show that superflat
graphs are dp-minimal.
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Abstract

A jet of order m on a closed set E C R” is an indexed family (fa)aca. Where A =
{(ar.....an) € N" : 377 | a; < m}. In 1934, H. Whitney proved Whitney’s Extension
Theorem, which gives a necessary and sufficient condition on the existence of C"-extensions
of a jet of order m on a closed subset of R”. In the same year, he asked how one can determine
whether a real-valued function on a closed subset of R” is the restriction of a C”'-function on
R" and gave an answer to the case n = 1. Later, the case m = 1 was proved by G. Glaeser using
the concept of “iterated paratangent bundles”. A complete answer to Whitney’s Extension
Problem was provided much later in early 2000s by C. Fefferman.

In the first part of this thesis, we study the above questions in an o-minimal expansion of a
real closed field. We prove a definable version of Whitney’s Extension Theorem. In addition,
we solve the C' case of Whitney’s Extension Problem in o-minimal context.

In the rest of this thesis, we discuss the following question: Suppose R is a real closed
field and U is an open subset of R". If f: U — R is continuous, definable in an o-minimal
expansion of R, and ¢ € R’ is there a definable C”-function g: U — R such that
lg(x) — f(x)| < e forall x € U? We gave a positive answer to this question. This result was
inspired by a series of articles by A. Fischer.
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Abstract

The thesis is about the topology and geometry of metric spaces definable in an o-minimal
expansion R of an ordered field (R. <.+, -). A definable metric space is a pair (X, d)
consisting of a definable set X C R* and a definable (R, +. <)-valued metric. If X C R*
is definable and e is the restriction of the usual euclidean metric on R* to X then (X, e) is
a definable metric space. in this way the geometry of definable sets may be considered as a
special case of the geometry of definable metric spaces. Examples of definable metric spaces
whose geometry is unlike that of any definable set are given by the hyperbolic plane (Rexp-
definable) and certain subriemannian spaces (R,y-definable). The main theorem of the thesis
is the following: Let (X. d) be a definable metric space. Then one of the following holds:

1. There is an infinite definable A C X such that (A.d) is discrete.
2. There is a definable set Z C R', for some I, such that (X. d) is definably homeomorphic
to Z equipped with its induced euclidean topology.

If (R, <.+. -) is the ordered field of real numbers, then a definable set 4 is infinite if and
only if it is uncountable. As a separable metric space cannot contain an uncountable discrete
subset the theorem above shows that a separable metric space definable in an o-minimal
expansion of the real field is definably homeomorphic to a definable set equipped with its
induced euclidean topology. This reduces the topology of separable definable metric spaces
in o-minimal expansions of the real field to the topology of definable sets. Perhaps surpris-
ingly, there are interesting examples of nonseparable metric spaces definable in (R, <.+, - ).
geometric realizations of Cayley graphs of “definable group actions”.

Later in the thesis, the theory of imaginaries in real closed valued fields is used to prove the
following: If X is an (R, <, 4+, - )-definable family of compact metric spaces then the collection
of Gromov—Hausdorff limits of sequences of elements of X forms an (R, <.+, -)-definable
family of metric spaces. This theorem is an analogue of a result proven by van den Dries on
Hausdorff limits of definable families of sets. Its proof gives a connection between the model
theory of valued fields and the geometry of definable metric spaces.
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Abstract

This thesis introduces a well-ordering principle of type two, which we call the Bachmann-
Howard principle. The main result states that the Bachmann-Howard principle is equivalent
to the existence of admissible sets and thus to IT}-comprehension. This solves a conjecture of
Rathjen and Montalban. The equivalence is interesting because it relates “concrete” notions
from ordinal analysis to “abstract” notions from reverse mathematics and set theory.

A type-one well-ordering principle is a map 7 which transforms each well-order X into
another well-order T[X]. If T is particularly uniform then itis called a dilator (due to Girard).
Our Bachmann-Howard principle transforms each dilator T into a well-order BH(T).
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