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GERMS ASSOCIATED TO REGULAR UNIPOTENT CLASSES IN 
p-adic SL(n) 

BY 

JOE REPKA 

Dedicated to the memory of Robert Arnold Smith 

ABSTRACT. For an elliptic torus in SL(«), explicit formulae are given 
for the germs which are associated to the regular unipotent conjugacy 
classes. Using them, a formula is found for the germ associated to the 
"subregular" class, the class whose Jordan canonical form contains a 
1 x 1 and an (n - 1) x (n - 1) block. 

0. Introduction. The extra ingredient in calculations on SL(n) as opposed to 
GL(n) is the distinction between conjugacy and stable conjugacy. In this light it is 
reasonable to expect that germs on SL(n) will be related to germs on GL(n) but will 
distinguish between stably conjugate tori which are not conjugate. 

Indeed if T is an elliptic torus and t E T, it is relatively easy to see that some of the 
regular germs will vanish at t and others will be multiples of the "stable" germ, i.e. the 
regular germ for GL(«). The difficulty is that as t varies in T it may be that different 
germs are the non-zero ones. 

A formula is given in Theorem 6.3 which completely describes this behaviour. In 
Section 8 it is shown that when n is odd the situation is as simple as possible — some 
regular germs are multiples of the stable germ and the others vanish identically on T. 
Examples are presented to show that when n is even things are more complicated. 

I wish to thank Jim Arthur, Helaman Ferguson, Paul Gérardin, Robert Langlands, 
Jon Rogawski and Paul Sally for their help and encouragement. 

1. Notation. Let F be a p-adic field, with ring of integers 0 = 0F, let p be the 
maximal ideal ofO and q = qF = card (0//?). Let G = SL(n, F), K = SL(n, 0) and 
Km = {k E K:k = id, mod pm}. Let G - GL{n,F),K = GL(AZ,0), Km = 
{kEK:k = id, mod/T}. Let 
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ForaE F\ let d(a) = diag(a _ 1 ,1 ,1 , . . . , 1) G G. Then u(a) = d(a)-]u(\)d(a). 
Let T be an elliptic torus in G, and let T — Zc(T) be its centralizer in G. Then 

T = Ex for some extension field E/F with [E:F] = n. 

2. Unipotent conjugacy classes. Any regular unipotent conjugacy class in G con­
tains an element of the form u(a) for some a E Fx (cf. 1.1)). Clearly u(a) and u(b) 
are conjugate by a diagonal element of G if and only if a/b E (Fx)n. More is true: 

PROPOSITION 2.1. The regular unipotent conjugacy classes of G are represented by 
{u(a)}, where a ranges over a set of representatives for Fx / {Fx)n. 

PROOF. It is necessary to show that if u(a) and u(b) are G-conjugate then a/b E 
(Fx)n. Now u(a) is conjugate to u(b) by d(b/a). If they were also conjugate by g E 
G, then d(b/a)g~l would be in the centralizer in GL(n) of u(a). The determinant of 
any such matrix is an nth power. But det (d(b/a)g~l) = a/b. • 

Similar considerations permit the classification of the other unipotent conjugacy 
classes. Let n = n{ + . . . + nr and consider unipotent classes whose Jordan canonical 
form contains blocks of sizes nu . . . , nr. Start with "the" Jordan canonical form, that 
is with diagonal entries all equal to 1, superdiagonal entries equal to 1 or 0, and zeroes 
elsewhere. Construct a matrix v(a) by replacing the topmost 1 on the superdiagonal 
by a. 

PROPOSITION 2.2. The unipotent conjugacy classes with block sizes n\,.. . ,nr are 
represented by the matrices {v(a)} described above, as a varies over a set of represen­
tatives ofFx/(Fx)m, where m = g.c.d. (nx,. . . ,nr). 

PROOF. The result is an easy consequence of the fact that ( F T 1 " (F*)"2 ' • • • * (F*)* 
= (Fx)m. • 

Next we set up subsets of G which discriminate between the regular unipotent 
classes. 

Fix a positive integer k so that 1 + pk C (Fx)n. Let 5(1) = u(\)-Kk = {g E 
K\g = w(l), modp*}. For each a E Fx, let 5(a) = d{a~x)S{\)d{a), so 5(a) contains 
u(a). Similarly let 5(1) = u(l)Kk, S (a) = d{a)~xS{\)d{a). 

Suppose g E 5(1). By conjugating by triangular unipotent matrices it is possible to 
clear the nth column of g above the superdiagonal, then the (n — l)th, etc., until all 
entries above the superdiagonal are zero and then to clear the rows to the left of the 
superdiagonal so that in the first n - 1 rows the diagonal entries are all 1, the super-
diagonal entries are all in 1 + pk and the other entries are zero (cf. Section 2 of [2]). 
Because of the choice of k it is then possible to conjugate by a diagonal matrix in G 
to make the superdiagonal entries all equal to 1. 

In other words, every element of 5(1) is G-conjugate to a (unique) matrix of the form 
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0 

1 
1 + a„_i J 

Note that each a, will be in pk. 

PROPOSITION 2.4. The G-conjugacy class of u(a) meets S(b) if and only if a/b E 
(Fxy. 

PROOF. The "if part is obvious. Conjugating by d(b~l) we can assume b = 1. 
Suppose an element of 5(1) is G-conjugate to u(a). Then u(a) is G-conjugate to an 
element g of the form (2.3). Since g is unipotent, we must have a0 = a, = • • • = 
an-i = 0. The proposition follows from Proposition 2.1. • 

PROPOSITION 2.5. Let T be an elliptic torus, with T = Ex. Suppose t E T is 
G-conjugate to an element of S (a). Then t is G-conjugate to an element ofS(b) if and 
onlyifa/bENE/F(Ex). 

PROOF. Assume a - 1, so t is G-conjugate to a uniquely determined matrix of the 
form (2.3), say th = g, with h E G. 

Suppose th' E S(b), for some b! E G. Then (th')d(b~]) E 5(1), so (th')d{b~l) is 
G-conjugate to g, say th'd{b~X)h" = g. So h'd(b-l)h"h-1 E Zà{t) = f, so b E det 

(f) = Afe/F(E*). 
Conversely, suppose b - det f0, for some t0 E T. If t8 E S(\), with g E G, then 

S(6) contains f*'*̂  = r ' » * ^ , and det (r0-g-J(^?)) = fr-l-fc"1 = 1. D 

3. Elliptic Conjugacy Classes. Fix an elliptic torus T in G, with T = Zc(T) = £ \ 
Fix a regular element t E T', so B = {\,t,t2,..., tn~1} is a basis for E/F. Assume 
id 4- ris of the form (2.3). 

Suppose £ E T is regular and id + £ E G. Construct A E GL(n,F) by letting the 
/th row of A consist of the coefficients of £'_l in terms of the basis B. Note that 

r i 
t 

t2 

L f "~ ' -

= 
•2 

Using the basis B, identify E with F", written as horizontal n-tuples. As an element 
of E, t acts on E by multiplication, and the corresponding action on Fn is right 
multiplication by the matrix t (which is the matrix (2.3) minus id), i.e. v -> vt, for 
v E Fn. The same is then true for the action on Fn by each power of t and hence for 
every element of T = Ex. 

Since A is a "change-of-basis" matrix, we see that £ = A~lgA, where id + g is a 
matrix of the form (2.3) (but with the entries in its last row different from those in the 

(2.3) 

1 1 0 
0 1 1 

a0 ai a2 

https://doi.org/10.4153/CMB-1985-031-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1985-031-x


260 J. REPKA [September 

last row of t). 
Suppose CTI, a2 , . . . , a„ are the distinct embeddings of E over F. Write tt — fl, £,- = 

£a'. From (3.1) we see that 

1 
t\ 

t\ 

1 
tl 

t\ 

1 1 1 

> n — 1 w? 

1 

v« — l 

So det A = 8(£)/8(f), where, for any Ç E E, 8(£) refers to the "semi-discriminant", 
the determinant of the Van der Monde matrix on the right side of the above equation. 

Note that det A is independent of the order of the embeddings a,. 
Since 8(£ ~f 1) = 8(C), we can replace t, £ with 1 + t, 1 + £ for the next result. 

PROPOSITION 3.2. Suppose t ET is G-conjugate to an element of S(a). Then any 
£ E T sufficiently close to id is G-conjugate to an element of S(b) if and only if 
h(t)/H&-a/bENE/F(Ex). 

PROOF. Assume a = 1 and t E S(l). We have just seen that A^A"1 E S(l), so £ is 
conjugate by A~]d(b) to an element of S(b). It will also be conjugate to an element of 
S(b) by an element of G if and only if there is an element of T, the centralizer of £, 
whose determinant equals det (A~ld(b)) = 8(0/8(£)'&_ 1 . • 

4. Normalizations of Measures. We shall compute orbital integrals in G = SL(n) 
by comparing them with known orbital integrals in G = GL(n). As above, T is an 
elliptic torus in G, T = ZQ(J). 

Let 91 and Sf be sets of representatives for Fx/(Fx)n and Fx /NE/F(EX), respectively. 
We can assume that q~n < \r\ ^ 1 for each r E 91, and that for each s E £f, 1 ^ 
|s| > max {|JC| : JC E NE/F(EX), \x\ < 1}. 

Then G = Use9> T- G-d(s~l) = U r G^Z-G -d(r - 1 ) , where Z = F* is the centre of 
G. If dr, dg and dz are Haar measures on T, G and Z, respectively, it is easily checked 
that one gets Haar measures on G by the following formulae (for/ E C™(G), say) 

(4.1) 

(4.2) 

S f f f(rg-d{s-l))dg dt 

S f f / ( z - g - d ^ M d g dz 
rE9l •'Z JG 

We normalize df and dz by identifying T = Ex and Z = FX and insisting that the 
measure in T of 0^ equal 1 - \/qE and that the measure in Z of 0* be 1 - \/q. 

In order to compare the measures in (4.1) and (4.2), we compute the measure of K 
for each. Because of our assumptions on 91 and if, z- g-d(r~l) E K if and only if 
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|det z\ — 1 = |r| and g E K. If T Pi K = 0X
E (as we can assume after conjugating by 

an element of G), then t- g- d(s~]) E AT if and only if |det t\ = 1 = |,s| and g E K. So 
the measure of K using (4.1) is meas (0£) • meas (K) • [0r : A ^ / F ^ ) ] , and the measure 
of AT using (4.2) is meas (0r) • meas (K) • [0* : (O*)"]. Henceforth we fix Haar measure 
on G to be the measure in (4.2), which also equals the measure in (4.1) divided by the 
constant 

(4.3) c = (1 - l/qE)/(l - l/qHNE/F(0x
E):(0xyrl. 

5. Orbital Integrals. Choice of measures on G and T defines a measure on T\G; 
for/ E C ( G ) and t E T we have 

(5.1) f f(g-ltg)dg = c-1 1 \ f(d(s)g-ltgd(s-]))dg. 
JT\G self JG 

In particular if/ = chzrs{\),f(d(s)*d(s~])) = char5(5)(«), so 

(5.2) f f(g-ltg)dg = c-1 I f c h a r ^ O T ^ d s . 

Note that by Proposition 2.5 at most one term on the right side of (5.2) is non-zero. 
Moreover, for t sufficiently close to id, the left side is known by the result of [1]. 

In order to calculate integrals over unipotent orbits we need to specify the measures 
on the centralizers. Now Z(w(l)) = ZG(w(l)) is a finite group {nth roots of unity) times 
the group of all upper triangular unipotent matrices which are constant along diagonal 
lines (i.e. bjj = bi+\J+], for all i,j). We let the finite group have total mass 1 and on 
the unipotent group take the product of the standard F+-measure on each coordinate 
(i.e. db]2dbi3-.. .*d&in). The centralizer of w(l) in G is then Z-Z(«(l)), and the 
product of the measures on Z and Z(«(l)) agrees with the natural measure on Zc(u(l)) 
given in [1]. 

Since u(a) = d(a~l)u(\)d(a), we see that Z(u(a)) = ZG(u(a)) = d(a~])> 
ZG(w(l))*d(a), and we use this relation and the above measure on Z{u{\)) to define 
the measure on Z(u(a)). 

F o r / E C ( G ) , 

(5.3) f f(u(aY)dg=l \ f(u(aYd^)dg 
JZG(u(a))\G re<3l JZ(u(a))\G 

and if / = char5(û), we have 

f f(u(aY)dg=^ f charS(ar)(u(ay)dg 
JZG(u(a))\G rE9l JZ(u(a))\G 

Because of Proposition 2.4, the terms on the right vanish with at most one exception, 
so 

(5.4) f charsia)(u(ay)dg= f char5(a)(W(tf)*)d£ 
JZG(u(a))\G JZ(u(a))\G 
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Moreover this integral is independent of a E F* (since the left side is clearly indepen­
dent of a). 

Now suppose t E T' is G-conjugate to an element of S(r). Equation (5.2) tells us 
that 

(5.5) c'x \ charS(r)(r*)dg= f chars-(1)(r*)dg. 
JG JT\G 

Equation (5.4) and the remark immediately following it tell us 

(5.6) f char5(r)(w(r)*)dg = f char5-(1)(«(l)*)d£ 
JZ(u(r))\G JZG(u(\))\G 

6. The Regular Germs. We recall the notation from Sections 1 and 2 and state the 
main result in Theorem 6.3. In G = SL(n, F), T is an elliptic torus. Its centralizer in 
GL(n,F) is isomorphic to E\ where [E:F] = n. For t E T we defined the 
"semi-discriminant" 5(0 = !!,>, (fl - ta>). We let u(\) be the matrix whose diag­
onal and superdiagonal entries equal 1 and whose other entries are 0, d(a) = 
d i a g ( < T M , . . . , l ) , u(a) = d(a)~l u(\)d(a), S(\) = u(l)Kk9 S (a) = d(a)~l x 
S(\)d(a). Also 2ft and if are sets of representatives of Fx/(Fx)n and FX/NE/F{EX), 
respectively 

If/G C ( G ) , Shalika's theorem ([4], Theorem 2.1.1) says that for t E T sufficiently 
close to the identity, 

(6.i) [ /(**)dg = 2 r;(0 f /(«f)di 
JG i JZ{Ui)\G 

where {«,} is a set of representatives for the unipotent conjugacy classes in G and Tt is 
the "germ" associated to uh Relabelling the regular germs for convenience, for each 
r E Fx we denote by Tr the germ associated to the regular unipotent conjugacy class 
containing u(r). The measures are normalized as in Section 4. 

PROPOSITION 6.2. Any t E T sufficiently close to the identity is G-conjugate to an 
element of S (s) for a unique s G Ï . 

PROOF. Any t ET is conjugate by some h E GL(rc, F) to a matrix (2.3), which will 
be in 5(1) provided t is sufficiently near the identity. Suppose det h = det(T)-s, with 
T E T, s E if. Then i'xhd{s) E G, and t is conjugate by i~xhd(s) to an element of 
S(\)d(s) = S(s). The uniqueness of s is Proposition 2.5. • 

THEOREM 6.3. (i) For t E T sufficiently close to the identity, there is a unique coset 
of Fx/NE/F(Ex) so that Ta(t) -=¥ 0 if and only if a is in this coset. 

(ii) Fix t0 E T sufficiently close to the identityy and choose s§ so that r5o(f0) ^ 0. 
The regular germs Tr are given by the following formulae : 

(c-\DE/F\m'\D(t)\-m, if r-b(t)/(s0Hto))eNE/F(Ex) 

rr(o = 
l 0 , otherwise 

(DE i F is the discriminant ofE/F and c = (1 - l/qE)/(\ ~ l/q)'[NE/F(0x
E):(0x)n]~]). 
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PROOF. We may assume r E 2ft. To calculate Yr(t), le t / = char5(r) E C™(G). By 
Proposition 2.4 and Proposition 1 of [1], the only unipotent class meeting S(r) is that 
of w(r), so the right side of (6.1) has only one non-zero term, and Tr(t) = 
$Gf(tg)dg/ fz(U(r))\Gf(u(r)gdg. By Proposition 6.2, the numerator vanishes unless r 
lies in a certain coset of Fx/NE/F{EX), in which case it doesn't. This proves (i). 

With t0 and s0 as stated, and / E T close to the identity, let r E 2ft and again consider 
the above expression for Yr(t). By Proposition 3.2, the numerator vanishes unless 
r'b(t)/(s0'b(t0)) E NE/F(EX). When it is not zero, Yr(t) is c times the quotient of the 
left sides of (5.5) and (5.6). The quotient of the right sides of those equations is the 
regular germ for GL(AZ, F), as normalized in [1], which is \DE/F\l/2-\D(t)\~V2. • 

COROLLARY 6.4. Ifr and r' are in the same coset ofFx/NE/F(Ex), then Yr = Yr on 
T. 

COROLLARY 6.5. The sum of all the regular germs is a constant multiple of the stable 
germ (i.e. the regular germ for GL(n, F)). Indeed 

X Yr(t) = c[NE/F(Ex):(Fxry\DE/F\V2'D(t)\-]/2. 

1. The Subregular Germ. Let u = u(0) be the matrix whose diagonal and super-
diagonal entries are all equal to 1 except for the topmost entry of the superdiagonal, the 
(1, 2)-entry, which is 0, as are all remaining entries. Write T(t) for the germ associated 
to the conjugacy class of u, the "subregular" class. 

By Proposition 2.2, the subregular class is "stable" (its conjugacy class in GL(AI) 

contains only one SL(n) conjugacy class), so it is not surprising that Y will be a 
constant multiple of the corresponding germ for GL{n). We sketch below an argument 
which proves this and also evaluates the constant. 

Let S = wKk, f = 2re& chardir-\)Sd{r), which is in C™(G), and let / be the corre­
sponding function on G (replace S with S = u*Kk). Then the orbital integrals of/are 
"stable", i.e. 

f f(t°)dg= f f((thY)dg 

for any t E T, h E GL(«, F), and also 

f f(u(a)°h)dg 
JZ(u{a))\G 

is independent of a E Fx and h E GL(n). 
By Proposition 1 of [2], the only non-zero unipotent orbital integrals of /are the 

regular and subregular ones, so equation (6.1) becomes 

(7.i) f nt*)dg= 2 rr(o f f(u(ry)dg +r (o f f(u<)dg 
JG rGQJi JZ(u(r))\G JZ(u)\G 

By the "stability" of/and (5.1), the left side of (7.1) equals c-[Fx:NE/F(Ex)Yl • 
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ÎT/G f(t8)dg. Moreover, the summation on the right side of (7.1) equals 
2 r 6 ar r(0-/zu(i))NG/(«(l)*)dg which, by Corollary 6.5, is c-[NE/F(Ex):(Fxy]-
\DE/FY/2-\D(t)\-m-JZ{u{l))XG f(u(l)*)dg. This last integral equals [Fx:(FxyTl ' 
Sz-Giuu»\G 7(K(l)*)dg, by (5.3) and the stability off. 

So (7.1) becomes 

(7.2) c-[F*:NE/Fmr f f(t*)dg = c[NE/F(Ex) : ( F T ] ' \DE/F\m 

JT\G 

•|D(f)|""2-[^:(^)"r'- f /(H(l)*)dg+r(f) [ f(ug)dg. 
JZG(u(\))\G JZ(u)\G 

The first term on the right side of (7.2) exactly equals the contribution to the left side 
from the germ associated to the regular unipotent class of GL(n). The remaining term 
on the right side is, in the first place, the difference of two stable terms, hence stable, 
and, in the second place, equal to the only other contribution to the left side, namely 
the term containing the subregular germ for GL(J I ) , which we denote I\ 

In other words, 

(7.3) c-[Fx:NE/F(Ex)Yl f f(ug)dg-T(t) = T(t) f f(u*)dg. 
JZG(u)\G JZ(u)\G 

We normalize the measure on Z(u) in the natural way: Z(u) is the product of a 
compact group (the nth roots of unity), a diagonal group ({diag(al~n,a,a,. . . ,a) : 
a E Fx}), and a unipotent group. We take the measure of total mass 1 on the compact 
group, times the natural Fx measure dxa on the diagonal group (meas(0*) = 1 — l/q), 
times the product of the natural F+-measures (meas(O) = 1) on each non-trivial 
parameter of the unipotent group. 

This measure is compatible with the measure on ZG(U) given in [2] and the measure 
on Z, so the analogue of (5.3) holds with u in place of u(a). Moreover, u and the 
measure on Z(u) are both invariant under conjugation by d(r _1 ), so the integrals on the 
right side of that equation are all equal. This shows that the integral on the left side of 
(7.3) equals [Fx : (Fx)n] times the integral on the right side. So (7.3) becomes 

c-[NE/F(Ex):(Fxy]-T(t) = r(t). 

We have showed the following. 

THEOREM 7.4. With measures normalized as above, the "subregular" germ, i.e. the 
germ associated to the class ofu, the unipotent class whose Jordan canonical form has 
a 1 X 1 block and an (n — 1) X (n — 1) block, is 

H O = c-[NE/F(Ex):(Fxy~\-T(t), 

where T(t) is the subregular germ for GL(n, F). 

(Recall from [2] that T(t) - -q-2\DE/F\ia' \D(t)\'mq"[r/n\nq - (q - 1) 
(r - n[r/n])) where r is defined by q~r/n = d(t, F) = min{\t - y\ :y E F] , with the 
absolute value on E extending the normalized absolute value on F. The constant c is 
given by (4.3)). 
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8. Complements. 1. In certain cases, the situation can be described more simply. 
If f0 E T is fixed and f E T is arbitrary, the behaviour of the germs is controlled by 
8(f)/8(f0). 

LEMMA 8.1. Let T be an elliptic torus, with T = E\ Then 8(f)2 E NE/F(Ex)for all 
t ET or -Ô(f)2 E NE/F(Ex)for all t E T, or both. • 

PROOF. 8(f)2 = ±N((n - fff2) (fCT| - fa3) (fCT' - fCT")), and the sign is indepen­
dent o f r e r . • 

THEOREM 8.2. Suppose n is odd, T an elliptic torus in SL(/i, F). Suppose Tr(t0) ± 
Ofor some r E Fx, t0 E T sufficiently close to id. Then for any t E T, sufficiently close 
to id, 

f r r ( 0 * 0, if r / r ' E Afe/,(£x) 
IV(f) = 

I 0 otherwise 

PROOF. Lemma 8.1 implies 8(f)/8(f0) *s a n element of order 1 or 2 in Fx/NE/F{EX). 
Since n is odd, it must be of order 1, which says 8(f) and 8(f0) are in the same coset 
of Fx/NE/F(EX), which says that the non-zero germs are the same ones for every f E 

r. • 
2. Suppose n is even, and E/F is cyclic. Then there is exactly one element of 

order 2 in Fx/NE/F(EX), which implies that Tr is non-zero for r in at most two cosets 
of FX/NE/F(EX). 

In particular, if E/F is unramified, then there are two distinct cosets for which the 
corresponding germs are not identically zero on V. Indeed, i f f = l + j c , f / = \ + irjc, 
with KEF, | IT | = \/q, then 8(f') = Trn{n~l)/2h(t). Since n(n-\)/2 is not an integer 
multiple of n, 8(f') is not in the same coset as 8(f) modulo NE/F(EX). 

3. To illustrate that the situation is not always so simple, consider SL(4), suppose 
p i= 2, and suppose E/F is biquadraic, i.e. Gal(£/F) = (Z/2Z) x (Z/2Z). An easy 
computation shows that as f ranges over T', 8(f) meets three of the four cosets of Fx 

modulo NE/F(EX) = (Fx)2. So one class of germs is identically zero for a given T, and 
the three others take turns being non-zero. 

4. Note that the equivalences of Corollary 6.4 depend on T (or at least on the stable 
conjugacy class of T). It is possible to have Tr = Tr , on one torus but Tr =£ IV , on 
another. 

5. The measures on Z(u(r)) could be normalized differently, but the justification for 
this choice is that it makes Corollary 6.5 work. 

6. The results of Section 6 and Section 7, together with Rogawski's result ([3]) give 
all the germs for SL(3, F). 
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