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Separable Reduction and Supporting
Properties of Fréchet-Like Normals in
Banach Spaces
Marián Fabian and Boris S. Mordukhovich

Abstract. We develop a method of separable reduction for Fréchet-like normals and ε-normals to arbitrary
sets in general Banach spaces. This method allows us to reduce certain problems involving such normals in
nonseparable spaces to the separable case. It is particularly helpful in Asplund spaces where every separable
subspace admits a Fréchet smooth renorm. As an applicaton of the separable reduction method in Asplund
spaces, we provide a new direct proof of a nonconvex extension of the celebrated Bishop-Phelps density theo-
rem. Moreover, in this way we establish new characterizations of Asplund spaces in terms of ε-normals.

1 Introduction

Let (X, ‖ · ‖) be a Banach space with dual X∗, Ω ⊂ X a nonempty set, x ∈ Ω, and ε ≥ 0.

Using the notation u
Ω
→ x : u→ x with u ∈ Ω, we define the set of ε-normals

N̂ε(x;Ω) =

{
ξ ∈ X∗ : lim sup

u
Ω
→x

〈ξ, u− x〉

‖u− x‖
≤ ε

}
(1.1)

to Ω at x [KM]. When ε = 0, the set N̂0(x;Ω) in (1.1) is a cone called the Fréchet normal
cone to Ω at x. For ε > 0, we also consider the set

Ñε(x;Ω) = {ξ ∈ X∗ : ∃ ν > 0 with 〈ξ, u− x〉 ≤ ε‖u− x‖ if u ∈ Ω and ‖u− x‖ < ν}

called the local ε-support of Ω at x [EL]. One can easily observe the relationships

N̂ε(x;Ω) =
⋂
γ>0

Ñε+γ(x;Ω) and N̂ε(x;Ω) ⊃ N̂0(x;Ω) + εBX∗(1.2)

for any ε ≥ 0. Moreover, if Ω is convex, the inclusion in (1.2) becomes the equality since

N̂ε(x;Ω) = {ξ ∈ X∗ : 〈ξ, u− x〉 ≤ ε‖u− x‖ for all u ∈ Ω}.(1.3)
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tials, supporting properties, Asplund spaces.
c©Canadian Mathematical Society 1999.

26

https://doi.org/10.4153/CJM-1999-003-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-003-7
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It is well known that the sets N̂ε(x;Ω) and Ñε(x;Ω) are closely related to the correspond-
ing subdifferential sets

∂̂ε f (x) =

{
ξ ∈ X∗ : lim inf

u→x

f (u)− f (x)− 〈ξ, u− x〉

‖u− x‖
≥ −ε

}
,

∂̃ε f (x) = {ξ ∈ X∗ : ∃ ν > 0 with f (u) − f (x) ≥ 〈ξ, u − x〉 − ε‖u − x‖ if u ∈ X
and ‖u − x‖ < ν} defined for any extended-real-valued function f : X → (−∞,∞] with
f (x) <∞. Indeed,

N̂ε(x;Ω) = ∂̂εδ(x;Ω) and Ñε(x;Ω) = ∂̃εδ(x;Ω)(1.4)

where δ( · ;Ω) is the indicator function of the set Ω:

δ(u;Ω) = 0 if u ∈ Ω and δ(u;Ω) =∞ otherwise.

Note that, in contrast to the hat-constructions N̂ε and ∂̂ε, the tilde-constructions Ñε and
∂̃ε carry little information when ε = 0, even in finite dimensional spaces. For example,
∂̃0 f (x) = ∅ everywhere for quite a nice function f (x) = −x2 on R, while ∂̂0 f (x) =
{ f ′(x)} for any function f : X → R Fréchet differentiable at x ∈ X on a Banach space X. We
refer the reader to [BS], [L], [MS2] and their bibliographies for various useful properties of
the Fréchet subdifferential ∂̂0 f (x). In what follows we consider the hat-constructions for
all ε ≥ 0 and the tilde-constructions only for ε > 0.

It is shown in [FZ] that the construction of ∂̃ε f is separably determined in the following
sense: Given a separable subspace Y0 ⊂ X and any f : X → (−∞,∞] locally bounded from
below, there exists a separable subspace Y ⊂ X such that Y0 ⊂ Y and

∂̃ε f (x) 6= ∅ whenever x ∈ Y and ∂̃ε( f|Y )(x) 6= ∅(1.5)

where f|Y denotes the restriction of f to the subspace Y . If X is Asplund (that is, every
convex continuous function on X is generically Fréchet differentiable), this fact made it
possible [FZ] to establish that, for any ε > 0, the set

{x ∈ X : ∂̃ε f (x) 6= ∅}(1.6)

is dense in dom f = {x ∈ X : f (x) <∞} for each lower semicontinuous function f : X →
(−∞,∞]. Indeed, the separable reduction (1.5) allows to reduce the density result to the
case of spaces admitting a Fréchet smooth renorm. In the latter case the density of (1.6) was
earlier proved in [EL] with the help of Ekeland’s variational principle. Moreover, it follows
from [EL] that the density of (1.6) for every such f and every ε > 0 implies the Asplund
property of X.

An analogue of the separable reduction result (1.5) for the case of ∂̂0 f (actually for ∂̂ε f
with any ε ≥ 0) is obtained in [F]. This made it possible to characterize Asplund spaces in
terms of the density of the set

{
(
x, f (x)

)
∈ X × R : x ∈ dom f , ∂̂0 f (x) 6= ∅}
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in the graph of f , for every lower semicontinuous function f : X → (−∞,∞]. The latter
fact is proved in [F] by a separable reduction to the case of spaces admitting a Fréchet
smooth renorm which was previously resolved in [BP] on the base of the Borwein-Preiss
smooth variational principle.

It is well known that if X is not Asplund, the condition ∂̂0 f (x) 6= ∅ may be violated at
each x ∈ dom f even for concave continuous functions. However, in the case of indicator
functions f = δ( · ;Ω) we have

∂̂0δ(x;Ω) = N̂0(x;Ω) 6= ∅ ∀x ∈ Ω

(the cone N̂0 always contains ξ = 0) for every set Ω ⊂ X in any Banach space. Therefore,
in this case the above separable reduction result for ∂̂0 f does not carry any information. It
follows from (1.2) and (1.4) that

εBX∗ ⊂ ∂̃εδ(x;Ω) = Ñε(x;Ω) ⊂ N̂ε(x;Ω)

i.e., for ε > 0 the separable reduction (1.5) also provides, even to a greater extent, an empty
statement when f = δ(· ;Ω).

The primary goal of this paper is to obtain valuable separable reduction results for the
constructions Ñε and N̂ε to cover, first of all, the most important case of N̂0. To achieve
this, we are going to further elaborate the separable reduction results from [FZ] and [F] so
that they can be nontrivially applied for the set indicator functions f = δ( · ;Ω). A natural
framework for such an improvement of (1.5) is to provide a separable reduction in the form

∂̃ε f (x) \MBX∗ 6= ∅ whenever x ∈ Y and ∂̃ε( f|Y )(x) \MBY∗ 6= ∅

where M is any fixed number greater than ε and Y is an appropriate separable subspace of
the Banach space X. Having a separable reduction of ∂̃ε f (x) in this form, we can apply it
for the case of f = δ( · ;Ω) and get

Ñε(x;Ω) \MBX∗ 6= ∅ whenever x ∈ Y and Ñε(x;Ω ∩ Y ) \MBY∗ 6= ∅(1.7)

which is a valuable separable reduction for Ñε. Indeed, (1.7) allows us to find elements
of Ñε(x;Ω) with the norm as large as sup{‖ξ‖ : ξ ∈ Ñε(x;Ω ∩ Y )}. A similar separable
reduction result for the case of N̂0 makes it possible to justify that the condition N̂0(x;Ω) 6=
{0} is separably determined in any Banach space. Note that to get separable reduction
results in the required new form for both tilde- and hat-constructions, we need to overcome
essential technical difficulties in comparison with [FZ] and [F].

The separable reduction results obtained in this vein are notably efficient in Asplund
spaces, where every separable subspace is Asplund and thus admits a Fréchet smooth re-
norm; see [D], [P]. Based on (1.7) and involving Ekeland’s variational principle in the
separable case, we can show that, in any Asplund space X, the set

{x ∈ bd Ω : Ñε(x;Ω) \MBX∗ 6= ∅}

and its N̂ε-counterpart are dense in the boundary bdΩ of Ω for every closed set Ω ⊂ X,
where ε > 0 is as small as we wish and M > ε is as large as we wish. Moreover, we are going
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to justify that the validity of these properties (even the nonemptiness of the corresponding
sets) for every ε > 0, every M > ε, and every closed set Ω ⊂ X of a special nature is also
necessary for X to be Asplund.

In the case of ε = 0 we get characterizations of Asplund spaces through the existence of
x ∈ bd Ω satisfying

N̂0(x;Ω) 6= {0}(1.8)

for any closed sets Ω ⊂ X, as well as through the density of such points in the boundary
of Ω. If Ω is convex, (1.8) means that x is a support point of Ω, in the classical sense, due
to representation (1.3) as ε = 0. Thus the density of points x ∈ bdΩ satisfying (1.8) is a
natural extension of the celebrated Bishop-Phelps theorem [P, Theorem 3.18] to the case
of nonconvex sets in Asplund spaces. This result was first proved in [MS1] with the help
of Ekeland’s variational principle and “fuzzy calculus” for Fréchet subdifferentials. (See
also [MS2, Section 3] for another proof based on the same ideas.) The new proof given
below is more direct and allows us to avoid “fuzzy calculus”. This proof is based on the
separable reduction of (1.8) to the case of spaces having a Fréchet smooth renorm and
admitting the usage of the Borwein-Preiss smooth variational principle. The reverse result
that the existence (and density) of points satisfying (1.8) for any closed set Ω ⊂ X implies
the Asplund property of X was proved in [FM]. This also ensues from the corresponding
fact for Ñε and N̂ε, ε > 0, established in the present paper.

The rest of the paper is organized as follows. In Section 2 we provide the basic separable
reduction for the tilde-constructions ∂̃ε and Ñε with ε > 0. (As we mentioned above,
the tilde-constructions for ε = 0 do not make much sense.) The methods and results
developed for the tilde-case are of some independent interest and also prepare the reader to
the handling of more complicated hat-constructions. Section 3 is devoted to the separable
reduction for the hat-constructions ∂̂ε and N̂ε with ε ≥ 0 which are considered as a limiting
case of the tilde-constructions as ε′ ↓ ε. Section 4 contains applications of the separable
reductions results and characterizations of Asplund spaces via supporting properties of
Fréchet-like normals and ε-normals to nonconvex closed sets.

Everywhere we use standard notation except special symbols introduced where they are
defined. Recall that S denotes the closure of a set S, and that sp(S) means the span of S, i.e.,
the collection of all linear combinations of elements of S.

2 Separable Reduction for the Tilde-Constructions

The purpose of this section is to conduct an appropriate separable reduction for the con-
struction ∂̃ε which allows us to cover the case of Ñε as in (1.7) with ε > 0. According to the
discussion in Section 1, we need to provide a separable reduction of the assertion

∂̃ε f (x) \MBX∗ 6= ∅(2.1)

for any given number M > ε. Note that this assertion involves elements of the dual space
X∗, while the method of separable reduction requires working only with elements of the
initial Banach space X. So our first step is to translate assertion (2.1) equivalently into the
language of the space X. To furnish this, we apply a certain convexification procedure, based
on the definition of ∂̃ε, and then the classical separation theorem for convex sets; cf. [FZ].
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Given a proper function f : X → (−∞,∞], a point x ∈ dom f , and positive numbers
δ and ε, we define a function ϕ f ,x,δ,ε : X → [−∞,∞] by

ϕ f ,x,δ,ε(h) = inf
{ m∑

i=1

αi

[
f (x + hi) + ε‖hi‖

]
: m ∈ N, hi ∈ X,

‖hi‖ < δ, αi ≥ 0, i = 1, . . . ,m,
m∑

i=1

αi = 1,
m∑

i=1

αihi = h
}(2.2)

if ‖h‖ < δ and ϕ f ,x,δ,ε(h) =∞ otherwise. Note that ϕ f ,x,δ,ε is convex if ϕ f ,x,δ,ε > −∞, and
that ϕ f ,x,δ,ε(0) ≤ f (x). We can easily check that if ∂̃ε f (x) 6= ∅, then ϕ f ,x,δ,ε is proper and
one has

ϕ f ,x,δ,ε(0) = f (x) and ∅ 6= ∂ϕ f ,x,δ,ε(0) ⊂ ∂̃ε f (x)

for all δ > 0 small enough, where ∂ϕ denotes the subdifferential of convex analysis. On the
other hand, if ∂ϕ f ,x,δ,ε(0) 6= ∅ for some δ > 0 and ϕ f ,x,δ,ε(0) = f (x), then ∂ϕ f ,x,δ,ε(0) ⊂
∂̃ε f (x) as well.

The following lemma provides an equivalent translation of (2.1) into the language of the
initial space X.

Lemma 2.1 Let f : X → (−∞,∞] be a function on a Banach space X, x ∈ dom f , ε > 0,
and M > ε. Then one has (2.1) if and only if there are numbers δ > 0, γ > 0, c ≥ 0, and a
nonempty open set U ⊂ X such that

(i) ϕ f ,x,δ,ε(h) ≥ f (x)− c‖h‖ whenever h ∈ X, and
(ii) ϕ f ,x,δ,ε(th) ≥ f (x) + (M + γ)t‖h‖ whenever h ∈ U and t ∈ (0, 1].

Proof First let us prove the necessity. Take ξ ∈ ∂̃ε f (x) \MBX∗ and find δ > 0 from the
definition of ∂̃ε f (x). Then (i) is clearly satisfied with c = ‖ξ‖. To establish (ii), we choose
γ > 0 with ‖ξ‖ > M +γ and find a nonempty open set U ⊂ X so that 〈ξ, h〉 > (M +γ)‖h‖
for every h ∈ U . Then (ii) is satisfied, and we get the necessity.

Let us prove the sufficiency. In what follows we replace ϕ f ,x,δ,ε by ϕ for simplicity. As-
suming (i) and (ii), we take c, γ, and U satisfying these conditions. Fix 0 6= h ∈ U and
find by (ii) a nonempty open convex set 0 /∈ U0 ⊂ U , containing h, and a nonempty open
convex set 0 /∈ U1 ⊂ R such that

M < τ/‖u‖ < M + γ whenever (u, τ ) ∈ U0 ×U1.

Since ϕ is convex and ϕ(0) ≤ f (x), we get from (ii)

ϕ′+(0)(u) ≥ (M + γ)‖u‖ whenever u ∈ U0

for the right-hand directional derivative of ϕ at 0. Now let us consider the two nonempty
convex sets

C1 = {(u, t) ∈ X × R : ϕ(u) ≤ t} and C2 :=
⋃
λ>0

λ(U0 ×U1)

https://doi.org/10.4153/CJM-1999-003-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-003-7
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and observe that C1 ∩C2 = ∅. Indeed, if λ(u, τ ) ∈ C1 ∩C2 for some λ > 0, then

λτ ≥ ϕ(λu) ≥ ϕ′+(0)(λu) = λϕ′+(0)u ≥ (M + γ)λ‖u‖ > λτ

due to the choice of τ < (M + γ)u, i.e., we get a contradiction. Since C2 is open, we apply
the classical separation theorem and find (0, 0) 6= (ξ, s) ∈ (X × R)∗ = X∗ × R such that

l := inf〈(ξ, s),C1〉 ≥ sup〈(ξ, s),C2〉 =: r.

Note that l ≤ 0 due to (0, 0) ∈ C1 and that r ≥ 0 due to the structure of C2. Thus l = r = 0,
and we have

inf{〈ξ, u〉 + st : (u, t) ∈ X × R, ϕ(u) ≤ ϕ(0) + t}

= sup{λ〈ξ, u〉 + λτ s : (u, τ ) ∈ U0 ×U1, λ > 0} = 0.
(2.3)

Since st = 〈ξ, 0〉 + st ≥ 0 for all t ≥ 0, we get s ≥ 0.
To proceed, we first assume that s > 0. Then, putting t = ϕ(u) in (2.3), we have

−〈ξ, u〉 ≤ sϕ(u) and 〈
−

1

s
ξ, u

〉
≤ ϕ(u) = ϕ(u)− ϕ(0)

if u ∈ dom ϕ. This also obviously holds if ϕ(u) = ∞. Since ϕ(0) = f (x) by (ii), we
conclude that

−
1

s
ξ ∈ ∂ϕ(0) ⊂ ∂̃ε f (x).

On the other hand, from (2.3) for τ ∈ U1 and u = h we have 〈ξ, h〉 + τ s ≤ 0, and hence

∥∥∥∥−1

s
ξ

∥∥∥∥ ≥
〈
−

1

s
ξ,

h

‖h‖

〉
≥
τ

‖h‖
> M

due to the choice of τ > M‖h‖. Thus we obtain

〈
−

1

s
ξ, h

〉
> M‖h‖ and −

1

s
ξ ∈ ∂̃ε f (x) \MBX∗

which justifies (2.1) in the case of s > 0. Note that we have not used (i) so far.
Next let us consider the remaining case of s = 0 in (2.3) and justify (2.1) using (i). If

s = 0, we necessarily have ξ 6= 0 and get from (2.3) the following two conditions:

〈ξ, u〉 ≥ 0 for all u ∈ dom ϕ and 〈ξ, u〉 ≤ 0 for all u ∈ U0.(2.4)

Since ξ 6= 0 and U0 is a neighborhood of h, the second condition in (2.4) yields 〈ξ, h〉 < 0.
Further, let us form a closed convex subset of X × R as follows:

C3 = {(u, t) ∈ X × R : t < −c‖u‖}.
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Then (i) ensures that C1 ∩ C3 = ∅. Employing again the separation theorem, we find
(0, 0) 6= (η, α) ∈ X∗ × R such that

l := inf〈(η, α),C1〉 ≥ sup〈(η, α),C3〉 =: r.

It is easy to check that l = r = 0, and thus

inf{〈η, u〉 + αt : (u, t) ∈ X × R, ϕ(u) ≤ ϕ(0) + t}

= sup{〈η, u〉 + αt : (u, t) ∈ X × R, t < −c‖u‖} = 0.
(2.5)

It follows from (2.5) that α ≥ 0. In fact α > 0, since for α = 0 condition (2.5) yields
〈η, u〉 ≤ 0 whenever u ∈ X, which contradicts (η, α) 6= (0, 0). Thus (2.5) implies − 1

α
η ∈

∂ϕ(0) similarly to the case of (2.3). Now put

ζ := −
1

α
η − Kξ with K > max

{
0,−

M‖h‖ +
〈

1
α
η, h
〉

〈ξ, h〉

}
.(2.6)

Then using the definition of ∂ϕ(0) and the first condition in (2.4), we get

ϕ(u)− ϕ(0) ≥

〈
−

1

α
η, u

〉
≥ 〈ζ, u〉 if u ∈ dom ϕ

and hence ζ ∈ ∂ϕ(0) ⊂ ∂̃ε f (x). Moreover, using (2.6) and 〈ξ, h〉 < 0, we conclude that

〈ζ, h〉 =

〈
−

1

α
η, h

〉
− K〈ξ, h〉 > M‖h‖.(2.7)

Thus (2.7) yields ‖ζ‖ > M, and we finally get ζ ∈ ∂̃ε f (x) \MBX∗ . This justifies (2.1) for
the case of s = 0 in (2.3) and completes the proof of the lemma.

Corollary 2.2 Let Ω be a nonempty set in a Banach space X, x ∈ Ω, ε > 0, and M > ε.
Then

Ñε(x;Ω) \MBX∗ 6= ∅(2.8)

holds if and only if there exist δ > 0, γ > 0, and a nonempty open set U ⊂ X such that

m∑
i=1

αiε‖hi‖ ≥ (M + γ)
∥∥∥ m∑

i=1

αihi

∥∥∥(2.9)

whenever m ∈ N, hi ∈ X, ‖hi‖ < δ, x + hi ∈ Ω, αi ≥ 0, i = 1, . . . ,m,
∑m

i=1 αi = 1, and∑m
i=1 αihi ∈ (0, 1]U .
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Proof To establish this fact, we apply Lemma 2.1 where f is the indicator function of the
set Ω. One can easily see that (2.1) reduces to (2.8) due to (1.4). It also follows from the
definition of ϕ in (2.2) that condition (i) in the lemma automatically holds with c = 0,
while condition (ii) coincides with (2.9) in this case.

Now, based on Lemma 2.1 and Corollary 2.2, we are ready to perform the desired sepa-
rable reduction for the constructions of ∂̃ε and Ñε with ε > 0. The next theorem contains
the main result of this section.

Theorem 2.3 Let Y0 be a separable subspace of an arbitrary Banach space X, let f : X →
(−∞,∞] be a proper function locally bounded from below, and let ε > 0. Then there exists a
separable subspace Y ⊂ X such that Y0 ⊂ Y and one has

∂̃ε f (x) \MBX∗ 6= ∅ whenever x ∈ Y and ∂̃ε( f|Y )(x) \MBY∗ 6= ∅(2.10)

for any M > ε.

Proof Let A be the countable set of all sequences (αi)∞i=1 with rational nonnegative entries
satisfying αi = 0 for all large i ∈ N and

∑∞
i=1 αi = 1. Given x ∈ X, we take ρ(x) > 0 such

that f is bounded from below on the ball around x with radius ρ(x).

For x ∈ X, for a = (αi) ∈ A, for rational numbers r > 0 and δ ∈
(
0, ρ(x)

)
, and for

k ∈ N we find ui(x, a, r, δ, k) ∈ X, i ∈ N, such that ‖ui(x, a, r, δ, k)‖ < δ for all i ∈ N, that
‖
∑∞

i=1 αiui(x, a, r, δ, k)‖ < r, and that

∞∑
i=1

αi

[
f
(
x + ui(x, a, r, δ, k)

)
+ ε‖ui(x, a, r, δ, k)‖

]
−

1

k

≤ inf
{ ∞∑

i=1

αi

[
f (x + hi) + ε‖hi‖

]
: hi ∈ X, ‖hi‖ < δ, ‖

∞∑
i=1

αihi‖ < r
}
.

Further, for x ∈ X, for a = (αi) ∈ A, for rational numbers r > 0 and δ ∈
(

0, ρ(x)
)
,

for k ∈ N, and for h ∈ X, with ‖h‖ < δ, we find gi(x, h, a, r, δ, k) ∈ X, i ∈ N, such that
‖gi(x, h, a, r, δ, k)‖ < δ for all i ∈ N, that ‖

∑∞
i=1 αigi(x, h, a, r, δ, k)− h‖ < r, and that

∞∑
i=1

αi

[
f
(
x + gi(x, h, a, r, δ, k)

)
+ ε‖gi(x, h, a, r, δ, k)‖

]
−

1

k

≤ inf
{ ∞∑

i=1

αi

[
f (x + hi) + ε‖hi‖

]
: hi ∈ X, ‖hi‖ < δ, ‖

∞∑
i=1

αihi − h‖ < r
}
.

Let us construct a separable subspace Y ⊂ X for which (2.10) holds. To proceed, we start
with the given subspace Y0 ⊂ X and build by induction a sequence of separable subspaces
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Y1,Y2, . . . of X as follows. If a subspace Yn ⊂ X is already constructed for some n ∈ N∪{0},
we take any countable and dense subset Cn of Yn and define Yn+1 by

Yn+1 := sp
(

Cn ∪ {ui(x, a, r, δ, k) : x ∈ Cn, a ∈ A, r > 0, δ ∈
(
0, ρ(x)

)
rational, k, i ∈ N}

∪ {gi(x, h, a, r, δ, k) : x, h ∈ Cn, a ∈ A, ‖h‖ < δ, r > 0,

δ ∈
(
0, ρ(x)

)
rational, k, i ∈ N}

)
.

Finally we put Y =
⋃
{Yn : n ∈ N} and C =

⋃
{Cn : n ∈ N}. It immediately follows from

the presented construction that C = Y and that Y is a separable subspace of X contain-
ing Y0.

Now let us fix an arbitrary number M > ε and prove that (2.10) holds with the separable
subspace Y ⊂ X constructed above. Our goal is to show that for any x ∈ Y with ∂̃ε( f|Y )(x)\
MBY∗ 6= ∅ one has (2.1). To furnish this, we need to verify conditions (i) and (ii) in
Lemma 2.1 providing a complete characterization of (2.1) in terms of the function ϕ f ,x,δ,ε

defined in (2.2). Take ξ ∈ ∂̃ε( f|Y )(x) \MBY∗ and, using the definition of ∂̃ε, find a rational
number δ > 0 so that

f (x + y) + ε‖y‖ ≥ f (x) + 〈ξ, y〉 for all y ∈ Y with ‖y‖ < 2δ.(2.11)

Since x ∈ Y , for every n ∈ N we can find xn ∈ Cn and a rational number γn satisfying
‖x − xn‖ → 0 as n→∞ and

‖x − xn‖ ≤ γn ≤ 2‖x − xn‖, n ∈ N.(2.12)

Further, fix any h ∈ X with ‖h‖ < δ and consider any a = (αi) ∈ A and any hi ∈ X,
‖hi‖ < δ, i ∈ N, such that

∑∞
i=1 αihi = h. Since αi = 0 for all large i ∈ N, we may take

hi = 0 for these i. Then taking an arbitrary rational number r ∈ (‖h‖, δ), one has

‖h‖ + γn < r, ‖hi‖ + γn < δ, and γn + δ < 2δ(2.13)

for all i ∈ N and for all sufficiently large n ∈ N. Thus putting hn
i := hi + x − xn for these

n, i and taking into account (2.11)–(2.13) and the construction of Y , we get

l(h) :=
∞∑
i=1

αi

[
f (x + hi) + ε‖hi‖

]
=

∞∑
i=1

αi

[
f (xn + hn

i ) + ε‖hi‖
]

≥
∞∑
i=1

αi

[
f (xn + hn

i ) + ε‖hn
i ‖
]
− εγn

≥ −
1

n
− εγn +

∞∑
i=1

αi

[
f
(

xn + ui(xn, a, r, δ, n)
)

+ ε‖ui(xn, a, r, δ, n)‖
]

(as ‖hn
i ‖ ≤ ‖hi‖ + γn < δ and

∥∥∥ ∞∑
i=1

αih
n
i

∥∥∥ ≤ ‖h‖ + γn < r)
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≥ −
1

n
− 2εγn +

∞∑
i=1

αi

[
f
(
x + xn − x + ui(xn, a, r, δ, n)

)
+ ε‖xn − x + ui(xn, a, r, δ, n)‖

]
≥ −

1

n
− 2εγn +

〈
ξ, xn − x +

∞∑
i=1

αiui(xn, a, r, δ, n)
〉

+ f (x)

(as xn − x + ui(xn, a, r, δ, n) ∈ Y and ‖xn − x + ui(xn, a, r, δ, n)‖ < γn + δ < 2δ)

≥ −
1

n
− 2εγn − ‖ξ‖γn − ‖ξ‖

∥∥∥ ∞∑
i=1

αiui(xn, a, r, δ, n)
∥∥∥ + f (x)

≥ −
1

n
− 2εγn − ‖ξ‖γn − ‖ξ‖r + f (x).

Now passing to the limit as n→∞, one has

l(h) ≥ −‖ξ‖r + f (x).

Letting there r → ‖h‖ and putting c := ‖ξ‖, we get l(h) ≥ −c‖h‖ + f (x). Finally com-
paring the construction of l(h) and the definition of ϕ f ,x,δ,ε(h) in (2.2), we conclude that
condition (i) in Lemma 2.1 is verified.

It remains to verify condition (ii) in the lemma. Take y ∈ Y , ‖y‖ < δ, and γ ∈ (0, 1) so
that

〈ξ, y〉 > (M + 3γ)‖y‖.(2.14)

Take a rational number ζ satisfying

0 < ζ < min{δ − ‖y‖, γ‖y‖/(3‖ξ‖), γ‖y‖/(M + 1)}(2.15)

and put U = {h ∈ X : ‖h − y‖ < ζ}. Now fix any h ∈ U and any rational number
t ∈ (0, 1]. Then ‖th‖ ≤ ‖h‖ < δ. Find h0 ∈ C so that ‖th− h0‖ < tζ .

Consider any a = (αi) ∈ A, hi ∈ X, ‖hi‖ < δ, i ∈ N, such that
∑∞

i=1 αihi = th. As
before, we may take hi = 0 for all large i ∈ N. Taking γn satisfying (2.12), we observe
that (2.13) holds for all n ∈ N sufficiently large. Note also that h0 ∈ Cn for all large n. Thus
putting hn

i := hi + x− xn, i, n ∈ N, and taking into account relationships (2.11)–(2.15) and
the construction of Y (since x ∈ Y ), we get the following chain of inequalities holding for
all large n ∈ N:

l(th) :=
∞∑
i=1

αi

[
f (x + hi) + ε‖hi‖

]
=

∞∑
i=1

αi

[
f (xn + hn

i ) + ε‖hi‖
]

≥
∞∑
i=1

αi

[
f (xn + hn

i ) + ε‖hn
i ‖
]
− εγn
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≥ −
1

n
− εγn +

∞∑
i=1

αi

[
f (xn + gi(xn, h0, a, tζ + γn, δ, n)

+ ε‖gi(xn, h0, a, tζ + γn, δ, n)‖
]

(as ‖hn
i ‖ < δ,

∥∥∥ ∞∑
i=1

αih
n
i − h0

∥∥∥ ≤ ‖th− h0‖ + ‖xn − x‖ < tζ + γn)

≥ −
1

n
− 2εγn +

∞∑
i=1

αi

[
f
(
x + xn − x + gi(xn, h0, a, tζ + γn, δ, n)

)
+ ε‖xn − x + gi(xn, h0, a, tζ + γn, δ, n)‖

]
≥ −

1

n
− 2εγn +

〈
ξ, xn − x +

∞∑
i=1

αigi(xn, h0, a, tζ + γn, δ, n)
〉

+ f (x)

(as xn − x + gi(· · · ) ∈ Y and ‖xn − x + gi(· · · )‖ < γn + δ < 2δ)

≥ −
1

n
− 2εγn + 〈ξ, h0〉 − ‖ξ‖

(
γn +
∥∥∥ ∞∑

i=1

αigi(xn, h0, a, tζ + γn, δ, n)− h0

∥∥∥) + f (x)

> −
1

n
− 2εγn + 〈ξ, t y〉 − 2‖ξ‖tζ − ‖ξ‖

(
γn + (tζ + γn)

)
+ f (x)

> −
1

n
− 2εγn + (M + 3γ)t‖y‖ − 3‖ξ‖tζ − 2‖ξ‖γn + f (x).

The latter yields, by passing to the limit as n→∞, that

l(th)− f (x) ≥ (M + 3γ)t‖y‖ − 3‖ξ‖tζ ≥ (M + 2γ)t‖y‖

≥ (M + γ)(t‖h‖ − tζ) + γt‖y‖ > (M + γ)t‖h‖

by (2.15). Hence l(th) ≥ f (x) + (M + γ)t‖h‖ for all h ∈ U and all rational numbers
t ∈ (0, 1]. If t ∈ (0, 1] is irrational, then we change γn a little so that tζ + γn is rational.
This implies condition (ii) in Lemma 2.1 due to (2.2) and the above definition of l(th).
Thus we have (2.1) and complete the proof of the theorem.

Corollary 2.4 Let Y0 be a separable subspace of a Banach space X, let Ω ⊂ X be a nonempty
set, and let ε > 0. Then there exists a separable subspace Y ⊂ X such that Y0 ⊂ Y and one
has

Ñε(x;Ω) \MBX∗ 6= ∅ whenever x ∈ Y and Ñε(x;Ω ∩ Y ) \MBY∗ 6= ∅

for any M > ε.

Proof This follows from Theorem 2.3 applied for the indicator function f = δ( · ;Ω) due
to (1.4). It can also be obtained directly from the separable reduction result of Corollary 2.2
using just the second half of the proof of Theorem 2.3. (Condition (i) in Lemma 2.1 is
trivially fulfilled.)
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Remark 2.5 A careful reading of the proof of Theorem 2.3 yields that we may even assert
that

sup{‖η‖ : η ∈ ∂̃ε f|Y (x)} = sup{‖ξ‖ : ξ ∈ ∂̃ε f (x)}

provided that x ∈ Y and ∂̃ε( f|Y )(x) 6= ∅. A similar remark applies to Corollary 2.4 as well
as to Theorem 3.3 and Corollary 3.4 in the next section.

3 Separable Reduction for the Hat-Constructions

In this section we provide a separable reduction for the subdifferential constructions ∂̂ε,
ε ≥ 0, in the form

∂̂ε f (x) \MBX∗ 6= ∅(3.1)

(with any given number M > ε) which allows us to cover the case of N̂ε as well. It follows
directly from the definitions that

∂̂ε f (x) =
⋂
γ>0

∂̃ε+γ f (x)(3.2)

for any ε ≥ 0, i.e., the hat-constructions may be treated as a limiting case of the tilde-
constructions with bigger ε. In particular, the crucial case of ∂̂0 f in (3.2) corresponds to
∂̃ε f with ε > 0 going to 0. This allows us to use the methods and results of Section 2 to
conduct the required separable reduction for the hat-constructions.

Let ∆ := (δi)∞i=1 be a sequence of positive numbers such that δ1 > δ2 > · · · > 0 and
δi ↓ 0 as i → ∞. Given a proper function f : X → (−∞,∞], x ∈ dom f , and ε ≥ 0, for
h ∈ X we define the function

ϕ f ,x,∆,ε(h) = inf
{ m∑

i=1

αiϕ f ,x,δi ,ε+1/i(hi) : m ∈ N, hi ∈ X,

αi ≥ 0, i = 1, . . . ,m,
m∑

i=1

αi = 1,
m∑

i=1

αihi = h
}(3.3)

where each ϕ f ,x,δi ,ε+1/i , i ∈ N, is constructed in (2.2). Note that ϕ f ,x,∆,ε : X → [−∞,∞],
that ϕ f ,x,∆,ε is convex if ϕ f ,x,∆,ε > −∞, and that ϕ f ,x,∆,ε(0) ≤ f (x). It follows from the

definitions that if ∂̂ε f (x) 6= ∅, then ϕ f ,x,∆,ε(0) = f (x) and ∂̂ε f (x) ⊃ ∂ϕ f ,x,∆,ε(0) 6= ∅ for
some∆. Also

∂ϕ f ,x,∆,ε(0) ⊂ ∂̂ε f (x) for any ε ≥ 0(3.4)

if ∂ϕ f ,x,∆,ε(0) 6= ∅ and ϕ f ,x,∆,ε(0) = f (x) for some∆.
The next statement provides an equivalent translation of the basic assertion (3.1) into

the language of the original space X.

Lemma 3.1 Let f : X → (−∞,∞] be a function on a Banach space X, x ∈ dom f , ε ≥ 0,
and M > ε. Then one has (3.1) if and only if there are numbers γ > 0 and c ≥ 0, a sequence
∆ = (δi)∞i=1 ⊂ (0,∞) with δi ↓ 0, and a nonempty open set U ⊂ X such that
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(i) ϕ f ,x,∆,ε(h) ≥ f (x)− c‖h‖ whenever h ∈ X, and
(ii) ϕ f ,x,∆,ε(th) ≥ f (x) + (M + γ)t‖h‖ whenever h ∈ U and t ∈ (0, 1].

Proof First let us show the necessity, that is, the existence of ξ ∈ ∂̂ε f (x) \MBX∗ implies
both conditions (i) and (ii) in the lemma. Using the definition of ∂̂ε f (x), for any i ∈ N we
find δi > 0 such that δi < min{ 1

i , δi−1} (if i > 1) and

f (x + h)− f (x) ≥ 〈ξ, h〉 −

(
ε +

1

i

)
‖h‖ whenever h ∈ X and ‖h‖ < δi.

This yields by (2.2) that ϕ f ,x,δi ,ε+1/i(h) ≥ 〈ξ, h〉 for all i ∈ N. Now putting ∆ := (δi)∞i=1,
we get ϕ f ,x,∆,ε(h) ≥ 〈ξ, h〉 for all h ∈ X. Hence (i) holds with c := ‖ξ‖. Since ‖ξ‖ > M,
we find γ > 0 and a nonempty open set U ⊂ X so that 〈ξ, h〉 > (M + γ)‖h‖ for every
h ∈ U . This immediately implies (ii) with the sequence∆ chosen above, and thus we get
the necessity part of the lemma.

The sufficiency part is almost identical with the proof of the sufficiency in Lemma 2.1.
Indeed, in this way we find ξ ∈ ∂ϕ f ,x,∆,ε(0) \ MBX∗ , and hence (3.4) finishes the proof.

Corollary 3.2 Let Ω be a nonempty set in a Banach space X, x ∈ Ω, ε ≥ 0, and M > ε.
Then

N̂ε(x;Ω) \MBX∗ 6= ∅

holds if and only if there exist a number γ > 0, a sequence∆ = (δi)∞i=1 ⊂ (0,∞) with δi ↓ 0,
and a nonempty open set U ⊂ X such that

m∑
i=1

αi

m∑
l=1

βil

(
ε +

1

i

)
‖hil‖ ≥ (M + γ)

∥∥∥ m∑
i=1

αi

m∑
l=1

βilhil

∥∥∥
whenever m ∈ N, hil ∈ X, ‖hil‖ < δi , x + hil ∈ Ω, αi ≥ 0, βil ≥ 0, l = 1, . . . ,m,∑m

l=1 βil = 1, i = 1, . . . ,m,
∑m

i=1 αi = 1, and
∑m

i=1 αi
∑m

l=1 βilhil ∈ (0, 1]U .

Proof This follows from Lemma 3.1 for the indicator function f (x) := δ(x;Ω) due to (1.4),
(3.3), and (2.2). Note that condition (i) of the lemma is automatically fulfilled in this case
with c = 0.

Now we establish the main result of this section providing the desired separable reduc-
tion of the hat-contructions for any ε ≥ 0.

Theorem 3.3 Let Y0 be a separable subspace of an arbitrary Banach space X, let f : X →
(−∞,∞] be a function locally bounded from below, and let ε ≥ 0. Then there exists a
separable subspace Y ⊂ X such that Y0 ⊂ Y and one has

∂̂ε f (x) \MBX∗ 6= ∅ whenever x ∈ Y and ∂̂ε( f|Y )(x) \MBY∗ 6= ∅(3.5)

for any M > ε.
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Proof To prove the theorem, we develop the same procedure as in the proof of Theo-
rem 2.3, using Lemma 3.1 instead of Lemma 2.1. We need to construct a separable sub-
space Y ⊂ X ensuring the fulfillment of (3.5) for any M > ε. The construction of such a
subspace presented below is more complicated in comparison with Theorem 2.1 since we
need to take into account an additional sequential process generated by (δi)∞i=1 in (3.3).

Let A be the (countable) set of all sequences (αi)∞i=1 with rational nonnegative entries
satisfying αi = 0 for all large i ∈ N and

∑∞
i=1 αi = 1. Let B be the (countable) set of

all infinite matrices (βil)∞i,l=1 with rational nonnegative entries satisfying βil > 0 for only

finitely many couples (i, l) ∈ N2 and
∑∞

l=1 βil = 1 for all i ∈ N. Let D be the (countable)
set of all sequences (δi)∞i=1 with rational entries satisfying 0 < δ1 ≥ δ2 ≥ · · · ≥ 0 and
δi = 0 for all large i ∈ N. Given x ∈ X, let ρ(x) > 0 be such that f is bounded from below
on the ball around x with radius ρ(x).

For x ∈ X, for a = (αi) ∈ A, for b = (βil) ∈ B, for ∆ = (δi) ∈ D satisfying
δi > 0 whenever αi > 0 and δ1 < ρ(x), for a rational number r > 0, and for k ∈ N
we find uil(x, a, b, r,∆, k) ∈ X, i, l ∈ N, such that ‖uil(x, a, b, r,∆, k)‖ < δi if δi > 0 and
uil(x, a, b, r,∆, k) = 0 otherwise for all l ∈ N, that ‖

∑∞
i=1 αi

∑∞
l=1 βiluil(x, a, b, r,∆, k)‖ <

r, and that

∞∑
i=1

αi

∞∑
l=1

βil

[
f
(
x + uil(x, a, b, r,∆, k)

)
+

(
ε +

1

i

)
‖uil(x, a, b, r,∆, k)‖

]
−

1

k

≤
∞∑
i=1

αi

∞∑
l=1

βil

[
f (x + hil) +

(
ε +

1

i

)
‖hil‖

]

whenever hil ∈ X, ‖hil‖ < δi if δi > 0 and hil = 0 otherwise, and ‖
∑∞

i=1 αi
∑∞

l=1 βilhil‖ <
r.

Further, for all a, b, r,∆, k, x as above, and for all h ∈ X with ‖h‖ < δ1 we find
gil(x, h, a, b, r,∆, k) ∈ X, i, l ∈ N, such that ‖gil(x, h, a, b, r,∆, k)‖ < δi if δi > 0 and
gil(x, h, a, b, r,∆, k) = 0 otherwise for all l ∈ N, that ‖

∑∞
i=1 αi

∑∞
l=1 βilgil(x, h, a, b, r,∆, k)

− h‖ < r, and that

∞∑
i=1

αi

∞∑
l=1

βil

[
f
(
x + gil(x, h, a, b, r,∆, k)

)
+

(
ε +

1

i

)
‖gil(x, h, a, b, r,∆, )‖

]
−

1

k

≤
∞∑
i=1

αi

∞∑
l=1

βil

[
f (x + hil) +

(
ε +

1

i

)
‖hil‖

]

whenever ‖
∑∞

i=1 αi
∑∞

l=1 βilhil − h‖ < r with hil ∈ X satisfying ‖hil‖ < δi if δi > 0 and
hil = 0 otherwise.

Let us construct the desired separable subspace Y ⊂ X by induction. If a separable
subspace Yn ⊂ X is already constructed for some n ∈ N ∪ {0} (Y0 is given), let Cn be a
countable and dense subset of Yn. Then put

Yn+1 := sp
(

Cn ∪ {uil(x, a, b, r,∆, k) : x ∈ Cn, a ∈ A, b ∈ B,

r > 0 rational,∆ ∈ D, k, i, l ∈ N}
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∪ {gil(x, h, a, b, r,∆, k) : x, h ∈ Cn, ‖h‖ < δ1, a ∈ A, b ∈ B,

r > 0 rational, k, i, l ∈ N}
)
.

We obviously have Y0 ⊂ Y1 ⊂ · · · ⊂ X. Finally let us define Y =
⋃
{Yn : n ∈ N} and

C =
⋃
{Cn : n ∈ N}. Then C = Y and Y is a separable subspace of X containing Y0.

Let us prove that the constructed subspace Y ensures the fulfillment of (3.5) for any
given numbers ε ≥ 0 and M > ε. Taking x ∈ Y with ∂̂ε( f|Y )(x) \MBY∗ , we need to show
that (3.1) holds for this x. According to Lemma 3.1, the latter reduces to the verification of
conditions (i) and (ii) therein.

Taking ξ ∈ ∂̂ε( f|Y )(x) \MBY∗ and using the definition of ∂̂ε, we find a sequence ∆ :=
(δ)∞i=1 of rational numbers δi such that δ1 > δ2 > · · · > 0 and

f (x + y) +

(
ε +

1

i

)
‖y‖ ≥ f (x) + 〈ξ, y〉 for all y ∈ Y with ‖y‖ < 2δi(3.6)

and all i = 1, 2, . . . . We are going to prove that both conditions (i) and (ii) in Lemma 3.1
are satisfied along this∆.

First let show that condition (i) in Lemma 3.1 holds with c = ‖ξ‖ along the chosen
sequence ∆. Similarly to the proof of Theorem 2.3, for any n ∈ N we find xn ∈ Cn and a
rational number γn such that ‖x − xn‖ → 0 as n→∞ and

‖x − xn‖ ≤ γn ≤ 2‖x − xn‖, n ∈ N.

Fix any h ∈ X and assume that ‖h‖ < δ1; otherwise ϕ f ,x,∆,ε(h) =∞ by (3.3) and (2.2),
and we are done. Further, take an arbitrary rational number r ∈ (‖h‖, δ1) and consider any
a = (αi) ∈ A, any b = (βil) ∈ B, and any hil ∈ X with ‖hil‖ < δi , i, l ∈ N, such that∑∞

i=1 αi
∑∞

l=1 βilhil = h. Find i0 ∈ N so large that αi = 0 for i ≥ i0 and βil = 0 if either
i ≥ i0 or l ≥ i0. Then we may take hil = 0 for all such i and l. So we have

‖h‖ + γn < r, ‖hil‖ + γn < δi, and δi + γn < 2δi, i ≤ i0, l ∈ N,(3.7)

for all sufficiently large n ∈ N. Let us put hn
il := hil + x − xn for these n, i, l and consider

the sequence ∆0 := (δ1, δ2, . . . , δi0 , 0, 0, . . . ). Thus ∆0 ∈ D. Taking into account the
construction of Y 3 x (the part involving uil) and the above estimates, we get

l(h) :=
∞∑
i=1

αi

∞∑
l=1

βil

[
f (x + hil) +

(
ε +

1

i

)
‖hil‖

]

=

∞∑
i=1

αi

∞∑
l=1

βil

[
f (xn + hn

il) +

(
ε +

1

i

)
‖hil‖

]

≥
∞∑
i=1

αi

∞∑
l=1

βil

[
f (xn + hn

il) +

(
ε +

1

i

)
‖hn

il‖

]
−
∞∑
i=1

αi

(
ε +

1

i

)
γn

≥ −
1

n
− γn +

∞∑
i=1

αi

∞∑
l=1

βil

[
f
(

xn + uil(xn, a, b, r,∆0, n)
)
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+

(
ε +

1

i

)
‖uil(xn, a, b, r,∆0, n)‖

]

(as ‖hn
il‖ ≤ ‖hil‖ + γn < δi for i = 1, . . . , i0

and
∥∥∥ ∞∑

i=1

αi

∞∑
l=1

βilh
n
il

∥∥∥ ≤ ‖h‖ + γn < r)

≥ −
1

n
− 2γn +

∞∑
i=1

αi

∞∑
l=1

βil

[
f
(
x + uil(xn, a, b, r,∆0, n) + xn − x

)

+

(
ε +

1

i

)
‖uil(xn, a, b, r,∆0, n) + xn − x‖

]

≥ −
1

n
− 2γn +

〈
ξ,

∞∑
i=1

αi

∞∑
l=1

βiluil(xn, a, b, r,∆0, n) + xn − x
〉

+ f (x)

(as uil(xn, a, b, r,∆0, n) + x − xn ∈ Y

and ‖uil(xn, a, b, r,∆0, n) + xn − x‖ < δi + γn < 2δi)

≥ −
1

n
− 2γn − ‖ξ‖γn − ‖ξ‖

∥∥∥ ∞∑
i=1

αi

∞∑
l=1

βiluil(xn, a, b, r,∆0, n)
∥∥∥ + f (x)

≥ −
1

n
− 2γn − ‖ξ‖γn − ‖ξ‖r + f (x).

Now letting first n→∞ and then r → ‖h‖, we arrive at

l(h) ≥ −c‖h‖ + f (x)

with c := ‖ξ‖. Comparing the definition of ϕ f ,x,∆,ε in (3.3) with the above construction of
l, we get condition (i) in Lemma 3.1 along the sequence∆ selected in (3.6).

To complete the proof of the theorem, it remains to verify condition (ii) in Lemma 3.1.
Take y ∈ Y , ‖y‖ < δ, and γ ∈ (0, 1) so that

〈ξ, y〉 > (M + 3γ)‖y‖.

Take a rational number ζ satisfying

0 < ζ < min{δ1 − ‖y‖, γ‖y‖/(3‖ξ‖), γ‖y‖/(M + 1)}

and put U = {h ∈ X : ‖h − y‖ < ζ}. Now fix any h ∈ U and any rational number
t ∈ (0, 1]. Then ‖th‖ ≤ ‖h‖ < δ. Find h0 ∈ C so that ‖th− h0‖ < tζ .

Then we repeat the arguments in the verification of condition (i) and find i0 ∈ N such
that (3.7) holds for the corresponding hil when n ∈ N is sufficiently large. Also h0 ∈ Cn for
all large n. Again putting hn

il := hil + x−xn,∆0 := (δ1, δ2, . . . , δi0 , 0, 0, . . . ) and taking into
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account the construction of Y 3 x (the part involving gil) as well as the above estimates,
we get

l(th) :=
∞∑
i=1

αi

∞∑
l=1

βil

[
f (x + hil) +

(
ε +

1

i

)
‖hil‖

]

=

∞∑
i=1

αi

∞∑
l=1

βil

[
f (xn + hn

il) +

(
ε +

1

i

)
‖hil‖

]

≥
∑[

f (xn + hn
il) +

(
ε +

1

i

)
‖hn

il‖

]
−
∞∑
i=1

αi

(
ε +

1

i

)
γn

≥ −
1

n
− γn(ε + 1)

+
∞∑
i=1

αi

∞∑
l=1

βil

[
f (xn + gil(xn, h0, a, b, tζ + γn,∆0, n)

+

(
ε +

1

i

)
‖gil(xn, h0, a, b, tζ + γn,∆0, n)‖

]

(as ‖hn
il‖ < δi for i = 1, . . . , i0,

and
∥∥∥ ∞∑

i=1

αi

∞∑
l=1

βilh
n
il − h0

∥∥∥ ≤ ‖th− h0‖ + ‖xn − x‖ < tζ + γn)

≥ −
1

n
− 2γn(ε + 1)

+
∞∑
i=1

αi

∞∑
l=1

βil

[
f
(
x + xn − x + gil(xn, h0, a, b, tζ + γn,∆0, n)

)

+

(
ε +

1

i

)
‖xn − x + gil(xn, h0, a, b, tζ + γn,∆0, n)‖

]

≥ −
1

n
− 2γn(ε + 1)

+
〈
ξ, xn − x +

∞∑
i=1

αi

∞∑
l=1

βilgil(xn, h0, a, b, tζ + γn,∆0, n)
〉

+ f (x)

(as xn − x + gil(· · · ) ∈ Y and ‖xn − x + gil(· · · )‖ < γn + δi < 2δi)

≥ −
1

n
− 2γn(ε + 1) + 〈ξ, h0〉

− ‖ξ‖
(
γn + ‖

∞∑
i=1

αi

∞∑
l=1

βilgil(xn, h0, a, b, tζ + γn,∆0, n)− h0‖
)

+ f (x)

> −
1

n
− 2γn(ε + 1) + 〈ξ, t y〉 − 2‖ξ‖tζ − ‖ξ‖

(
γn + (tζ + γn)

)
+ f (x)
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> −
1

n
− 2γn(ε + 1) + (M + 3γ)t‖y‖ − 3‖ξ‖tζ − 2‖ξ‖γn + f (x).

Passing there to the limit as n→∞, we get

l(th) ≥ (M + 3γ)t‖y‖ − 3‖ξ‖tζ + f (x).

Then arguing identically to the proof in the end of Theorem 2.3, we finally arrive at the
estimate

l(th) ≥ f (x) + (M + γ)t‖h‖.

This implies condition (ii) in Lemma 3.1 due to the above construction of l(th) and the
definition of ϕ f ,x,∆,ε in (3.3) along the sequence ∆ selected in (3.6). This completes the
proof of the theorem.

Corollary 3.4 Let Y0 be a separable subspace of a Banach space X, let Ω ⊂ X be a nonempty
set, and let ε ≥ 0. Then there exists a separable subspace Y ⊂ X such that Y0 ⊂ Y and one
has

N̂ε(x;Ω) \MBX∗ 6= ∅ whenever x ∈ Y and N̂ε(x;Ω ∩Y ) \MBY∗ 6= ∅(3.8)

for any M > ε.

Proof This follows from Theorem 3.3 applied for the indicator function f = δ( · ;Ω) due
to (1.4). It can also be obtained directly from the separable reduction result of Corollary 3.2
using just the second half of the proof of Theorem 3.3. Note that condition (i) in Lemma 3.1
is trivially fulfilled in this case.

Remark 3.5 For ε = 0 we know that N̂0(x;Ω) is a cone. Thus condition (3.8) can be read
in this case as

N̂0(x;Ω) 6= {0} whenever x ∈ Y and N̂0(x;Ω ∩ Y ) 6= {0}.(3.9)

Remark 3.6 The assumption about the local lower boundedness of the function f in
Theorems 2.3 and 3.3 can be dropped by a further elaboration of the separable reduction
method. Indeed, a rather simpler argument gives the following:

Given a separable subspace Y0 of a Banach space X and a function f : X → (−∞,∞],
there exists a separable subspace Y ⊂ X such that Y0 ⊂ Y and f is bounded from below on a
neighborhood of x whenever x ∈ Y and f|Y is bounded from below on a neighborhood (in Y )
of x.

Note that f|Y is locally bounded from below (in Y ) if either ∂̃ε( f|Y )(x) 6= ∅ or

∂̂ε( f|Y )(x) 6= ∅ for ε ≥ 0. Taking this into account and incorporating the proof of the
latter statement into the proof of Theorem 2.3 and 3.3 respectively, we may drop the lo-
cal lower boundedness assumption in these theorems. Of course, we do not need such an
improvement for Corollaries 2.4 and 3.4.
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4 Characterizations of Asplund Spaces

In the concluding section of the paper we consider a remarkable subclass of Banach spaces
called Asplund spaces. This class is well investigated in the geometric theory of Banach
spaces. It is sufficiently broad and convenient for many applications; in particular, it con-
tains reflexive Banach spaces. We refer the reader to the books [D], [P] for various prop-
erties and characterizations of Asplund spaces, and to [MS2] for recent applications in
nonsmooth analysis and optimization. Note that this class includes every Banach space
with Fréchet differentiable bump functions, being in general very much related to Fréchet
type differentiability and subdifferentiability. On the other hand, there are Asplund spaces
which fail to have even a Gâteaux differentiable renorm.

It is well known that the Asplund property is inherited by subspaces [P, Proposition 2.33].
Moreover, every separable Asplund space admits an equivalent norm Fréchet differentiable
away from the origin; see [D, p. 118]. This ensures a peculiar efficiency of the separable
reduction method in the framework of Asplund spaces.

In what follows we provide some applications of the separable reduction results obtained
above to the case of Asplund spaces. In this way, we establish conditions in terms of Ñε,
ε > 0, and N̂ε, ε ≥ 0, which occur to be characterizations of Asplund spaces. First let
us present new characterizations of the Asplund property formulated in terms of the ε-
constructions Ñε and N̂ε with ε > 0.

Theorem 4.1 Let X be a Banach space. The following assertions are equivalent:

(a) X is an Asplund space.
(b) For every proper closed subset Ω of X, every ε > 0, and every M > ε the set

{x ∈ bdΩ : Ñε(x;Ω) \MBX∗ 6= ∅}

is dense in the boundary of Ω.
(c) For every proper closed subset Ω of X, every ε > 0, and every M > ε the set

{x ∈ bdΩ : N̂ε(x;Ω) \MBX∗ 6= ∅}

is dense in the boundary of Ω.
(d) For every proper closed subsetΩ of X, every ε > 0, and every M > ε there exists x ∈ bdΩ

such that Ñε(x;Ω) \MBX∗ 6= ∅.
(e) For every proper closed subsetΩ of X, every ε > 0, and every M > ε there exists x ∈ bdΩ

such that N̂ε(x;Ω) \MBX∗ 6= ∅.

Proof Let us observe that

Ñε(x;Ω) ⊂ N̂ε(x;Ω) ⊂ Ñε+γ(x;Ω) for all ε > 0 and γ > 0

whenever x ∈ Ω. This implies that (b)⇔(c) and (d)⇔(e) in the theorem. Implication
(c)⇒(e) is trivial. We need to prove that (a)⇒(c) and (e)⇒(a).

First we establish (a)⇒(c) using the separable reduction result from Corollary 3.4 with
ε > 0 and Ekeland’s variational principle. So let Ω be a proper closed subset of an Asplund
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space X, let ε > 0, and let M > ε. Fix x̄ ∈ bd Ω and γ > 0. We want to find x ∈ bdΩ such
that ‖x − x̄‖ < γ and

N̂ε(x;Ω) \MBX∗ 6= ∅.(4.1)

We can always assume that ε < γ. Since x̄ is a boundary point of Ω, there is a ∈ X
such that ‖a‖ < ε2/(M + 1) and x̄ + a /∈ Ω. Put Y0 := sp{x̄, a} and pick the separable
subspace Y ⊂ X from Corollary 3.4 found for the given Ω, Y0, and ε. Note that Ω ∩ Y is a
proper closed subset of Y due to the choice of Y0 ⊂ Y . Then we take an equivalent Fréchet
smooth norm | · | on Y with | · | ≤ ‖ · ‖ and consider a lower semicontinuous function
f : Y → (−∞,∞] defined by

f (y) := (M + 1)|y − x̄ − a| + δ(y;Ω ∩ Y ), y ∈ Y.(4.2)

Note that inf f ≥ 0 and f (x̄) < ε2 ≥ inf f + ε2. By Ekeland’s variational principle (see [P,
p. 45]), there is y0 ∈ Y such that |y0 − x̄| < ε < γ and

f (y0) ≤ f (y) + ε|y − y0| ∀y ∈ Y.

Due to (4.2), this gives that y0 lies in Ω and

(M + 1)|y − x̄ − a| − (M + 1)|y0 − x̄ − a| ≥ −ε|y − y0| ∀y ∈ Ω ∩Y.(4.3)

Note that y0− x̄− a 6= 0 since x̄ + a /∈ Ω. Denote by η ∈ Y ∗ the Fréchet derivative of | · | at
y0− x̄− a. Then |η| = 1, and we get from (4.3) and the definition of the Fréchet derivative
that

(M + 1)〈η, y − y0〉 + o(|y − y0|) ≥ −ε|y − y0| ∀y ∈ Ω ∩ Y.(4.4)

Now invoking the definition of N̂ε, we conclude from (4.4) that ξ ∈ N̂ε(y0;Ω ∩ Y ) for
ξ := −(M + 1)η. Since |ξ| = M + 1, we have N̂ε(y0;Ω∩Y )\MBY∗ 6= ∅. This implies (4.1)
due to Corollary 3.4 and thus completes the proof of (a)⇒(c).

It remains to establish (e)⇒(a). We need to show the following: if X is not Asplund,
then there exist a closed set Ω ⊂ X as well as numbers ε > 0 and M > ε such that

‖x∗‖ ≤ M for all x∗ ∈ N̂ε(x;Ω) and all x ∈ bdΩ.(4.5)

Using arguments from the proof of [FM, Theorem 3.7], it is possible to get more: we con-
struct a set Ω ⊂ X so that (4.5) holds with M = Kε for every ε > 0 and some constant
K > 1 independent of ε.

To furnish this, we take an arbitrary non-Asplund space X and represent it in the form
X = Z × R with the norm ‖(z, µ)‖ := ‖z‖ + |µ| for (z, µ) ∈ X. Then Z is non-Asplund as
well, since the opposite implies the Asplund property of X. In this case there exist a number
c > 0 and a norm | · | on Z, which is equivalent to the original norm ‖ · ‖, so that | · | ≤ ‖ · ‖
and

lim sup
h→0

1

‖h‖

[
|z + h| + |z − h| − 2|z|

]
> c for all z ∈ Z(4.6)
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(cf. [P, Corollary 2.35] and [FM, Theorem 2.1]). Based on the norm | · |, we construct a set
Ω ⊂ X in the epigraphical form

Ω = {(z, µ) ∈ X : µ ≥ ϕ(z)} with ϕ := −| · |.(4.7)

Clearly bd Ω = {
(
z, ϕ(z)

)
∈ X : z ∈ Z}. Our goal is to show that there exists a constant

K > 1 such that

‖(z∗, λ)‖ ≤ Kε for all (z∗, λ) ∈ N̂ε
((

z, ϕ(z)
)

;Ω
)
, z ∈ Z, and ε > 0,(4.8)

where ‖(z∗, λ)‖ = max{‖z∗‖, |λ|} is the dual norm to ‖(z, µ)‖ = ‖z‖ + |µ|.

To proceed, we fix arbitrary z̄ ∈ Z and (z∗, λ) ∈ N̂ε
((

z̄, ϕ(z̄)
)
;Ω
)

. It follows directly

from the definition of N̂ε that

〈z∗, z − z̄〉 + λ
(
µ− ϕ(z̄)

)
≤ 2ε
(
‖z − z̄‖ + |µ− ϕ(z̄)|

)
(4.9)

for all z near z̄ and all µ ≥ ϕ(z̄) nearϕ(z̄). Taking into account thatϕ = −|·| is Lipschitzian
on (Z, | · |) with constant L = 1 and that | · | ≤ ‖ · ‖, we get from (4.9) the estimate

〈z∗, z − z̄〉 + λ
(
ϕ(z)− ϕ(z̄)

)
≤ 4ε‖z − z̄‖(4.10)

for all z ∈ Z near z, which further implies

‖z∗‖ ≤ 4ε + |λ| for any (z∗, λ) ∈ N̂ε
((

z̄, ϕ(z̄)
)

;Ω
)
.(4.11)

Taking z = z in (4.9), we get λ ≤ 2ε.
Now let us show that (4.11) ensures (4.8) with K = max{6, 4 + 8/c}, where c > 0 is the

fixed positive number from (4.6). We consider the two cases: λ ≥ 0 and λ < 0.
If λ ≥ 0, (4.11) gives ‖(z∗, λ)‖ ≤ 6ε, and we get (4.8) with K = 6. Let us consider the

other case when λ < 0. Using (4.10) with ϕ = −| · |, we conclude in this case that

|z̄ + (z − z̄)| + |z̄ − (z − z̄)| − 2|z̄| ≤ −
8ε

λ
‖z − z̄‖

which implies |λ| < 8ε/c by (4.6). Thus (4.11) gives ‖z∗‖ ≤ 4ε + (8ε/c) for λ < 0, and we
arrive at (4.8) with K = 4 + 8/c. This ends the proof of the theorem.

Remark 4.2 It follows from the above proof that to get characterizations of Asplund spaces,
it is sufficient to have each of the equivalent properties (b)–(e) not for every closed set Ω
but just for epigraphical sets of type (4.7) generated by norm functions. Furthermore, we
can equivalently replace “every ε > 0” with “exists ε > 0”.

Remark 4.3 The proof of Theorem 4.1 also justifies modified characterizations of Asplund
spaces where M is replaced with Kε, K > 1, in conditions (b)–(e). These modifications
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emphasize a linear dependence of M on ε, being more convenient for the limiting procedure
as ε ↓ 0. In particular, condition (4.5) with M = Kε immediately yields that

N(x;Ω) = {0} for all x ∈ bdΩ

where
N(x;Ω) := lim sup

u→x,ε↓0
N̂ε(u;Ω)

is the normal cone used in [FM, Theorem 3.7] for characterizations of Asplund spaces.
Here “limsup” denotes the sequential Painlevé-Kuratowski upper limit of multifunctions
with respect to the norm topology in X and the weak-star topology in X∗.

Remark 4.4 One can observe that (0, 2ε) ∈ N̂ε
(

(0, 0);Ω
)

for all ε > 0, where the set Ω is
constructed in (4.7). Thus this set provides an example showing that N̂ε(x;Ω) may contain
elements with norm greater than ε, while N̂0(x;Ω) ⊂ N(x;Ω) ≡ {0} for the limiting
normal cone from the previous remark.

The concluding result of the paper provides characterizations of Asplund spaces through
the normal cone N̂0. It contains a nonconvex extension of the Bishop-Phelps density theo-
rem with a proof based on the separable reduction; see the comments in Introduction.

Theorem 4.5 Let X be a Banach space. The following assertions are equivalent:

(a) X is an Asplund space.
(b) For every proper closed subset Ω of X the set of points

x ∈ bdΩ with N̂0(x;Ω) 6= {0}

is dense in the boundary of Ω.
(c) For every proper closed subset Ω of X there exists x ∈ bdΩ such that N̂0(x;Ω) 6= {0}.

Proof To justify (a)⇒(b), we proceed similarly to the proof of (a)⇒(c) in Theorem 4.1, just
replacing Ekeland’s principle by the Borwein-Preiss smooth variational principle for spaces
with Fréchet smooth renorms; see [BP, Theorem 2.6 and its proof]. Using this result for the
function f in (4.2) on the separable Asplund space Y found for the set Ω in question, for
ε = 0, and for Y0 = sp{x̄, a} in Corollary 3.4, we get a Fréchet smooth function g : Y → R
and a point y0 ∈ Ω ∩ Y such that |y0 − x̄| < ε, |g′(y0)| < ε, and

(M + 1)|y − x̄ − a| − (M + 1)|y0 − x̄ − a| + g(y)− g(y0) ≥ 0 ∀y ∈ Ω ∩ Y.
(4.12)

Recall that | · | is Fréchet differentiable at y0− x̄−a 6= 0 with the derivative η ∈ Y ∗, |η| = 1.
Employing this, the Fréchet differentiability of g at y0, and the definition of N̂0, we derive
from (4.12) that

−(M + 1)η − g′(y0) ∈ N̂0(y0;Ω ∩Y ) \MBY∗(4.13)

if ε < 1, which we can always assume. Since N̂0 is a cone and M > 0, (4.13) means that
N̂0(y0;Ω∩Y ) 6= {0}. Finally, employing condition (3.9) (which is Corollary 3.4 as ε = 0),
we conclude that N̂0(y0;Ω) 6= {0}. Thus we have proved (a)⇒(b).

To complete the proof of the theorem, we observe that (b)⇒(c) is trivial, while (c)⇒(a)
follows directly from (e)⇒(a) in Theorem 4.1.
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