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Abstract

All groups considered in this paper are finite. A subgroup H of a group G is called a primitive subgroup
if it is a proper subgroup in the intersection of all subgroups of G containing H as a proper subgroup.
He et al. [‘A note on primitive subgroups of finite groups’, Commun. Korean Math. Soc. 28(1) (2013),
55-62] proved that every primitive subgroup of G has index a power of a prime if and only if G/®(G) is
a solvable PST-group. Let X denote the class of groups G all of whose primitive subgroups have prime
power index. It is established here that a group G is a solvable PST-group if and only if every subgroup
of G is an X-group.
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1. Introduction and statements of results

All groups considered here are finite. A subgroup H of a group G is called primitive
if it is a proper subgroup in the intersection of all subgroups containing H as a proper
subgroup. All maximal subgroups of G are primitive. Some properties of primitive
subgroups are given in Lemma 2.1 and include:

(a) every proper subgroup of G is the intersection of a set of primitive subgroups
of G;

(b) if X is a primitive subgroup of a subgroup T of G, then there exists a primitive
subgroup Y of G suchthat X =Y N T.

Johnson [10] introduced the concept of primitive subgroup of a group. He proved
that a group G is supersolvable if every primitive subgroup of G has prime power index
in G.

The next results on primitive subgroups of a group G indicate how such subgroups
give information about the structure of G.

Tueorem 1.1 [7]. Let G be a group. The following statements are equivalent:

(1) every primitive subgroup of G containing ¢(G) has prime power index;
(2) G/¢(G) is a solvable PST-group.
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TueoreM 1.2 [6]. Let G be a group. The following statements are equivalent:

(1) every primitive subgroup of G has prime power index;

(2) G =[L]IM is a supersolvable group, where L and M are nilpotent Hall subgroups
of G, L is the nilpotent residual of G and G = L Ng(L N X) for every primitive
subgroup X of G. In particular, every maximal subgroup of L is normal in G.

Note that G = [L]M in Theorem 1.2 means that G is the semidirect product of L
by M.

Let X denote the class of groups G such that the primitive subgroups of G have
prime power index (see [5, pages 132—-137]). By (a) it is clear that X consists of those
groups whose subgroups are intersections of subgroups of prime power indices.

One purpose of this paper is to characterise solvable PST-groups in terms of
X-subgroups.

A subgroup H of a group G is said to be S-permutable in G if it permutes with
the Sylow subgroups of G. Kegel proved that an S-permutable subgroup of G is
subnormal in G (see [2, Theorem 1.2.14]). S -permutability is said to be transitive in G
if, whenever H and K are subgroups of G such that H is §-permutable in K and K is
S -permutable in G, then H is S -permutable in G. A group G is said to be a PST-group
if S -permutability is a transitive relation in G. By Kegel’s result, G is a PST-group if
and only if every subnormal subgroup of G is S -permutable. Agrawal [1] characterised
solvable PST-groups. He proved the following theorem.

TueorEM 1.3. Let G be a solvable group. G is a PST-group if and only if it has an
abelian normal Hall subgroup N such that G /N is nilpotent and G acts by conjugation
on N as a group of power automorphisms.

In Theorem 1.3, N can be taken to be the nilpotent residual of G. From Theorem 1.3
it follows that subgroups of solvable PST-groups are solvable PST-groups. Many
interesting results about PST-groups can be found in [2, Ch. 2].

THeOREM A. Let G be a group. The following statements are equivalent:

(1) G is a solvable PST-group,
(2) every subgroup of G is an X-group.

Let G be an X-group. It follows from Theorem A that if G is not a solvable PST-
group, then G has a subgroup H which does not belong to X. See Examples 4.1 and 4.2.

A well-known theorem of Lagrange (see [13, Ch. 1, Theorem 1.3.6]) states that
given a subgroup H of a group G, the order of G is the product of the order |H| of H
and the index |G : H| of H in G. In particular, the order of any subgroup divides the
order of the group. The converse, namely, if d divides the order of a group G, then G
has a subgroup of order d, is not true in general. Groups satisfying this condition are
often called CLT-groups. The alternating group of order 12, having no subgroups of
order six, is an example of a non-CLT-group.

On the other hand, abelian groups contain subgroups of every possible order, and it
is not difficult to prove that a group is nilpotent if and only if it contains a normal
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subgroup of each possible order [8]. Ore [11] and Zappa [15] obtained a similar
characterisation for supersolvable groups. Further results on supersolvable groups can
be found in [3].

THeoREM 1.4. A group G is supersolvable if and only if each subgroup H < G contains
a subgroup of order d for each divisor d of |H|.

Of course, we can state Theorem 1.4 in the following equivalent way, more easily
treated.

THeorReM 1.5. A group G is supersolvable if and only if each subgroup H < G contains
a subgroup of index p for each prime divisor p of |H|.

A proof of this theorem can be found in [5, Ch. 1, Theorem 4.2]. It must be noted
that CLT-groups are not necessarily supersolvable, as the symmetric group of order
four shows.

The condition on a group G given in Theorem 1.5, namely,

for all H < G and for all primes ¢ dividing |H]|, there exists a subgroup K of G
such that K < H and |H : K| =g,

has a dual formulation:

for all H < G and for all primes ¢ dividing |G : H|, there exists a subgroup K of
G suchthat H< K and |K : H| =gq.

Groups satisfying the latter condition have been studied by some authors. Following
[5, Ch. 1, Section 4], we will call them Y-groups.

A group G is said to be a Y-group if for all subgroups H of G and all primes ¢
dividing the index |G : H| of H in G, there exists a subgroup K of G with H < K and
K :H|=gq.

Note that a group G is a Y-group if and only if for every subgroup H of G and
for every natural number d dividing |G : H| there exists a subgroup K of G such
that H < K and |K : H| = d. The following characterisation of Y-groups appears in
[5, Ch. 1, Theorem 4.3].

TueorEM 1.6. Let L =G™ be the nilpotent residual of the group G. Then G is a Y-
group if and only if L is a nilpotent Hall subgroup of G such that for all subgroups H
of L, G = LNg(H).

From Theorem 1.6, we see that if G € ¥ and X is a normal subgroup of L, then X
is normal in G. In particular, Y-groups are supersolvable. Moreover, if G € Y, then L
must have odd order.

Further results on Y-groups can be found in [5, Ch. 4, Theorems 5.2 and 5.3]. For
example, a solvable group G is a Y-group if and only if every subgroup of G can be
written as an intersection of subgroups of G of coprime prime power indices.

From Theorems 1.3 and 1.6 we obtain the following theorem.
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Tueorem 1.7. Let G be a Y-group with nilpotent residual L.

(1) G is a solvable PST-group if and only if L is abelian.
(2) G/¢(G) is a solvable PST-group.

We note that the class Y is a subclass of the class X by Theorems 1.2 and 1.7. The
example of Humphreys in [5, page 136] (see also [9]) shows that Y is a proper subclass
of X.

TueoreM B. Let G be a group. The following statements are equivalent:

(1) G is a solvable PST-group;
(2) every subgroup of G is a Y-group;
(3) every subgroup of G is an X-group.

Let & be a class of groups. Denote by SF (respectively, S(&F)) the class of groups
all of whose subgroups are F-groups (respectively, solvable §-groups).

Tueorem C. We have
SX =8Y = 8Ty = S(Ty) = SPST = S(PST ) = S(PSTy) = S(PTy).

We mention that SX = SY of Theorem C follows from Theorem B and is [5,
Theorem 5.3, page 135]. The proof of [5, Theorem 5.3] is very different and more
difficult than the proof of Theorem B.

2. Preliminaries

Lemma 2.1 [6, 7, 10]. Let G be a group. The following statements hold.

(1)  Forevery proper subgroup H of G, there is a set of primitive subgroups {X; |i € I}
in G such that H = (e X;.

(2) IfH<GandT is a primitive subgroup of H, then T = H N X for some primitive
subgroup X of G.

(3) IfK<GandK < H LG, then H is a primitive subgroup of G if and only if H/ K
is a primitive subgroup of G/K.

(4) Let P and Q be subgroups of G with (|P|, |Q|) = 1. Suppose that H is a subgroup
of G such that HP < G and HQ < G. Then HP N HQ = H. In particular, if H is
a primitive subgroup of G, then P< H or Q < H.

Let G be a group. We call G a T-(respectively, PT-)group if HIK <G
(respectively, H is permutable in K and K is permutable in G) implies H < G
(respectively, H is permutable in G). By Kegel’s result, G is a PT-group if and only if
every subnormal subgroup of G is permutable. Many results about T- and PT-groups
can be found in [2, Ch. 2]. We call G a Ty-group if G/¢(G) is a T-group, where ¢(G)
is the Frattini subgroup of G. Ty-groups have been studied in [4, 12, 14]. Several of
the results on Ty-groups given in [4, 12] are contained in the next three lemmas and
are needed in the proof of Theorem A.

A group G is called a PTy-(respectively, PSTy-)group provided that G/¢(G) is a
PT-(respectively, PST-)group. For solvable groups we have the following lemmas.

https://doi.org/10.1017/5S0004972713000592 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972713000592

[5] Primitive subgroups and PST-groups 377

Levma 2.2 [12]. We have S(To) = S(PTo) = S(PST).

Lemwma 2.3 [4]. Let G be a group. Then G is a solvable PST-group if and only if every
subgroup of G is a Ty-group.

3. Proofs of the theorems

Proor oF THEOREM A. Let G be a solvable PST-group and let L be the nilpotent
residual of G. By Theorem 1.3, L is a normal abelian Hall subgroup of G on which G
acts by conjugation as a group of power automorphisms. Let X be a subgroup of L.
Since X < G, G = L Ng(X). Let D be a system normaliser of G. By [13, Theorem 9.2.7,
page 264], G = [L]D, the semidirect product of L by D. It follows by Theorem 1.2
that every primitive subgroup of G has prime power index, and hence G is an X-
group. Since every subgroup of G is a solvable PST-group, every subgroup of G is an
X-group.

Conversely, assume that every subgroup of G is an X-group. We are to show that G
is a solvable PST-group. Let H be a subgroup of G. Because of Theorem 1.1, H/¢(H)
is a solvable PST-group, and hence H is a solvable PSTy-group. By Lemma 2.2, H
is a To-group. It follows that every subgroup of G is a solvable Ty-group and by
Lemma 2.3, G is a solvable PST-group.

This completes the proof. O

Proor oF THEOREM B. Let G be a solvable PST-group. Using the proof of the first part
of Theorems A and 1.6, we see that every subgroup of G is a Y-group and (1) implies
(2). Since Y C X, (2) implies (3). By Theorem A we see that (3) implies (1). O

Proor oF THeorem C. By Theorem B, SX¥=8Y =S(PST)=SPST. Note, by
Theorem 1.1, S(Ty) = STy = SX. Finally, it follows that S(Ty) = S(PSTy) = S(PTy)
by Lemma 2.2. Hence Theorem C holds. O

4. Examples

Exampie 4.1. Let P=(x,y|x =y’ =[x,y]’=1) be an extra-special group of
order 125 of exponent 5. Let z =[x, y] and note Z(P) = ®(P)=(z). Then P has
an automorphism a of order four given by x* = x?, y* =y* and z*=z*=z"!. Put
G =[P)a) and note Z(G) =1, ®(G) =(z) and G/DP(G) is a T-group. Thus G is a
solvable Ty-group. Let H = (y, z, a) and notice ®(H) = 1. Then H is not a T-group
since the nilpotent residual L of H is (y,z) and a does not act on L as a power
automorphism. Thus H is not a Ty-group, and hence not a solvable PST-group. By
Theorem 1.1, G is an X-group and H is not an X-group.

ExampLE 4.2. Let P=(x,y| x> =y>=[x,y]’ = 1) be an extra-special group of order
33 and exponent 3. Then P has an automorphism b of order two given by x* = x7!,
y? =y~ and [x,y]’ = 1. Let G = [P)(b) and note Z(G) = Z(P) = ([x, y]) = #(G). Then
G/$(G) is a T-group, and hence G is a Typ-group. By Lemma 2.3, G has a subgroup
which is not a Ty-group, and hence not a solvable PST-group. Note that G is an
X-group.
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