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Separable Quotients of Free Topological
Groups

Arkady Leiderman and Mikhail Tkachenko

Abstract. We study the following problem: For which Tychonoò spaces X do the free topological
group F(X) and the free abelian topological group A(X) admit a quotient homomorphism onto a
separable and nontrivial (i.e., not ûnitely generated) group? he existence of the required quotient
homomorphisms is established for several important classes of spaces X, which include the class of
pseudocompact spaces, the class of locally compact spaces, the class of σ-compact spaces, the class of
connected locally connected spaces, and some others.

We also show that there exists an inûnite separable precompact topological abelian group G such
that every quotient ofG is either the one-point group or contains a dense non-separable subgroup and,
hence, does not have a countable network.

1 Introduction

he famous, still open, problem of Banach–Mazur asks whether every inûnite-
dimensional Banach space has an inûnite-dimensional separable quotient Banach
space. Similar problems have been studied for various classes of topological vector
spaces and, in particular, for spaces of continuous functions with the pointwise con-
vergence topology [2, 5]. his line of research has been continued in [7], where the
following general problem has been investigated in the class of topological groups.

Problem 1.1 Characterize topological groups that have an inûnite separable topolog-
ical quotient group.

Let us mention several positive results obtained there for the topological groups
more general than compact groups.

heorem 1.2 ([7]) Let G be an inûnite σ-compact topological group. hen G has an
inûnite quotient group with a countable network (hence the quotient group is separable).

heorem 1.3 ([7]) Let G be an inûnite pseudocompact topological group. hen G has
an inûnite quotient group that is compact and metrizable.

It turns out that heorem 1.3 cannot be extended to precompact groups.
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heorem 1.4 ([7]) here exists an uncountable dense subgroup G of the compact
abelian group Tc satisfying dimG = 0 such that every quotient group of G is either the
one-element group or non-separable.

Free topological groups constitute a prominent class of topological groups— every
topological group G is a quotient group of a free topological group, namely, F(X),
where X is a space homeomorphic to G. he group F(X) contains X as a subspace
that generates F(X) algebraically and is characterized by the property that every
continuous mapping of X to a topological group H extends to a continuous homo-
morphism of F(X) to H (see [8] or [1, Section 7.1]). In the category of topologi-
cal abelian groups, a similar object is known as the free abelian topological group,
which is denoted by A(X). Our deûnition of free topological groups followsMarkov’s
approach [8].

In this article we consider the special case of Problem 1.1 for the free (abelian)
topological groups.

Problem 1.5 Is it true that for any inûnite Tychonoò space X, the free topological group
F(X) and the free abelian topological group A(X) have nontrivial separable quotient
groups?

hroughout the paper all topological spaces under consideration are assumed to be
Tychonoò. It is known that A(X) is a quotient of F(X) (see [3] or [1,heorem 7.1.11]),
so for our purposes it suõces to ûnd a separable quotient group for the free abelian
group A(X). To shorten arguments, we frequently denote the groups F(X) and A(X)
by G(X).

It is known that the groups G(X) are not locally compact for any non-discrete
space X [9, Corollary 2]. Also, since X is closed inG(X), the groupG(X) is σ-compact
if and only if X is σ-compact. herefore, according to heorem 1.2, F(X) and A(X)
each has an inûnite quotient group with a countable network for every nonempty
σ-compact space X. he latter conclusion, however, is trivial, as explained below.

Quotient groups provided by heorem 1.2 can be ûnitely generated. It turns out
that for every nonempty space X, the group A(X) (hence, also F(X)) has the dis-
crete group of integers Z as a quotient group. Indeed, for every non-empty Tychonoò
space X, we can take the constantmapping f from X toZ deûned by f (x) = 1 for each
x ∈ X. hen f admits an extension to a continuous homomorphism f ∗∶A(X) → Z,
which is open by [1, Corollary 7.1.10] since themapping f is evidently quotient. Hence,
the discrete group Z is always a quotient of A(X). Observe that due to this fact the
groups A(X) and F(X) are not pseudocompact for any nonempty space X.

To exclude this trivial quotient of G(X), by nontrivial groups we always mean the
groups that are not ûnitely generated.

Improving upon heorem 1.2, one of the main results of our paper, heorem 2.10,
says that for every inûnite σ-compact space, the groups G(X) have a nontrivial quo-
tient group with a countable network. In Corollary 3.5, we extend this conclusion to
the more general case of an inûnite space X with a dense σ-compact subspace.

In Section 3, we show that if a dense subgroup H of a topological group G
has an inûnite separable quotient group, then so has G, and a similar conclusion
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remains valid for nontrivial separable quotients provided the group H is abelian
(see Proposition 3.1). We apply the latter result in Example 3.6 to describe a tech-
nique for construction of some topological groups with separable quotients that are
not covered by the results in Section 2.

Our main tool for ûnding separable quotients of free topological groups is con-
tinuous R-quotient mappings of Tychonoò spaces. Given a space X, we try to ûnd
an R-quotient mapping f ∶X → Y onto an inûnite separable space Y . Once this is
done, we extend f to a continuous surjective homomorphism f ∗∶G(X) → G(Y).
By heorem 2.1, the homomorphism f ∗ is open, while the group G(Y) is separable,
since it contains the countable dense subgroup generated by a countable dense sub-
set of Y . We do not know, however, whether every inûnite Tychonoò space admits
an R-quotient mapping onto an inûnite separable Tychonoò space or even onto an
inûnite subspace of the unit interval [0, 1] (see Problem 2.18). he existence of the
required mapping f ∶X → Y is established for several important classes of spaces X
that include the class of pseudocompact spaces (Corollary 2.5), the class of locally
compact spaces (Lemma 2.8), the class of Lindelöf Σ-spaces (Lemma 2.11), the class
of connected locally connected spaces (Lemma 2.16), and some others.

In fact, in all aforementioned cases, we show that there exists a quotient homo-
morphism from G(X) onto a nontrivial G(Y) such that Y , and hence G(Y), has a
countable network.

he following question arises naturally.

Problem 1.6 Does there exist a separable space X such that free abelian topological
group A(X) does not admit a nontrivial quotient with a countable network?

While Problem 1.6 remained unsolved, we prove that there exists a separable pre-
compact topological abelian group G such that every quotient of G is either the one-
point group or contains a dense non-separable subgroup and, hence, does not have a
countable network (heorem4.1). In Sections 2, 3, and 4we pose other open problems
related to quotients of free (abelian) topological groups.

Several results of this article have been announced (without proofs) in the survey
paper [6].

2 Classes of X for which G(X) Admits a Nontrivial Separable
Quotient Group

A continuous onto mapping φ∶X → Y is said to be R-quotient [4] if for every real-
valued function f on Y , the composition f ○ φ is continuous if and only if f is con-
tinuous. Clearly, every quotient mapping is R-quotient, but the converse is false.

Let φ∶X → Y be a continuous onto mapping, where the space Y is Tychonoò.
hen Y admits the ûnest topology, say, σ such that the mapping φ∶X → (Y , σ) is
R-quotient. he topology σ of Y is initial with respect to the family of real-valued
functions f on Y such that the composition f ○ φ is continuous. It is easy to see that
the space (Y , σ) is also Tychonoò and that σ is ûner than the original topology of
Y . We say that σ is the R-quotient topology on Y (with respect to φ). Notice that the
mapping φ∶X → (Y , σ) remains continuous.
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he next result proved by Okunev in [10, Proposition 1.8] explains the powerful
role of R-quotient mappings when studying quotients of free topological groups.

heorem 2.1 Let X and Y be Tychonoò spaces and let φ∶X → Y be a continuous
surjective mapping. Denote by φ∗∶ F(X) → F(Y) the extension of φ to a continuous
homomorphism of the free topological groups on X and Y, respectively. hen φ∗ is open
if and only if the mapping φ is R-quotient. he same conclusion remains valid for free
abelian topological groups.

Sometimes it is useful to represent a topological groupG as a quotient group of the
free topological group on G (see [1, Corollary 7.1.10]).

Lemma 2.2 Let G be a Hausdorò topological group. hen G is a quotient group of
the free topological group F(G). If G is abelian, then G is a quotient group of the free
abelian topological group A(G).

In the following fact we present a fundamental property of the free topological
groups which generalizes [1, Corollary 7.1.10].

Proposition 2.3 If a Tychonoò space X admits an R-quotient mapping onto a topo-
logical (abelian) group G, then F(X) (resp., A(X)) admits an open continuous homo-
morphism onto G.

Proof Let φ∶X → G be an R-quotient mapping of X onto G. By heorem 2.1, the
extension of φ to a continuous homomorphism φ∗∶ F(X) → F(G) is open. It follows
from Lemma 2.2 that there exists an open continuous homomorphism j of F(G)
onto G. Hence, the composition j ○ φ∗ is an open continuous homomorphism of
F(X) onto the group G. If G is abelian, a similar argument shows that G is a quotient
group of A(X). ∎

ATychonoò space X is called pseudocompact if every continuous real-valued func-
tion on X is bounded.

Lemma 2.4 Every continuous mapping of a pseudocompact space X onto a Tychonoò
space Y of countable pseudocharacter is R-quotient.

Proof Let φ∶X → Y be a continuous mapping of X onto Y . Denote by τY the topol-
ogy of Y and let σ be the R-quotient topology on Y with respect to φ. hen the topol-
ogy σ is Tychonoò and τY ⊂ σ . Clearly, themapping φ∶X → (Y , σ) is also continuous,
so the space (Y , σ) is pseudocompact. In particular, Y is bounded in (Y , σ).
Consider the identity mapping j∶ (Y , σ) → (Y , τY). Since every point y in (Y , τY)

is the intersection of a countable family of closed neighborhoods of y, we can apply
[12, Corollary 2.2] to conclude that j is a homeomorphism. Hence, σ = τY and the
mapping φ is R-quotient. ∎

Corollary 2.5 Every continuousmapping of a pseudocompact space onto a ûrst count-
able Tychonoò space is R-quotient.
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Lemma 2.6 Let U be an open subset of a Tychonoò space X and let A be an inûnite
subset of U. here exists a continuous real-valued function f on X such that f (A) is
inûnite and f (X/U) = {0}.

Proof Let F = X/U . We can assume without loss of generality that F ≠ ∅. Since the
set A ⊂ U is inûnite, we can ûnd a point x0 ∈ A and an open neighborhood V0 of x0
in X such that V0 ⊂ U and A1 = A/V0 is inûnite. Again, we can ûnd a point x1 ∈ A1

and an open neighborhood V1 of x1 in X such that V1 ⊂ U , V1 is disjoint from F ∪ V0

and the complement A1/V1 is inûnite. Continuing in this way we obtain a sequence
{xn ∶ n ∈ ω} ⊂ A and a pairwise disjoint sequence {Vn ∶ n ∈ ω} of open sets in X,
where xn ∈ Vn and Vn ⊂ U for each n ∈ ω.
For every n ∈ ω, take a non-negative continuous real-valued function fn on X

bounded by 2−n such that fn(xn) = 2−n and fn(X/Vn) = {0}. hen the function
f =∑∞

n=0 fn is continuous, f (xn)= 2−n , and f (X/U)={0}. Hence, f (A) is inûnite.∎

One can now apply the technique of R-quotient mappings described in the intro-
duction and deduce the following result.

heorem 2.7 Let X be an inûnite pseudocompact space. hen the groups G(X) ad-
mit an open continuous homomorphism onto A(K), where K is an inûnite compact
subspace of the closed unit interval [0, 1]. In particular, A(X) and F(X) admit an open
continuous homomorphism onto a nontrivial group with a countable network.

Proof It suõces to consider the caseG(X) = A(X). Take a countably inûnite subset
A of X. By Lemma 2.6, there exists a continuous function f on X with values in
[0, 1] such that f (A) is inûnite. Hence, K = f (X) is inûnite and pseudocompact as
a continuous image of the pseudocompact space X. herefore, K is a compact subset
of [0, 1] and by Lemma 2.4, f is an R-quotient mapping of X onto K. According to
heorem 2.1, the mapping f extends to an open continuous homomorphism of A(X)
onto A(K). Clearly, the group A(K) is nontrivial and has a countable network. ∎

Similarly to pseudocompact spaces, locally compact spaces admit “good” map-
pings onto compact subsets of the real line.

Lemma 2.8 Every non-discrete locally compact space admits a continuous closed
mapping onto an inûnite compact subspace of the closed unit interval [0, 1].

Proof Let X be a non-discrete locally compact space and let x0 be a non-isolated
point of X. Take open neighborhoodsU andV of x0 such that the closure ofU is com-
pact andV ⊂ U . By Lemma 2.6, there exists a continuous real-valued function f on X
such that f (V) is inûnite and f (X/U) = {0}. hen f (X) = f (U)∪{0} is an inûnite
compact subset of the real line. If F is a closed subset of X, then f (F) = f (F ∩U) ∪
f (F ∩ (X/U)) is a closed subset of R, since U is compact and f (F ∩ (X/U)) ⊂ {0}.
Hence, f is a closed mapping. ∎

heorem 2.9 Let X be an inûnite locally compact space.
(i) If X is discrete, then the group G(X) admits an open continuous homomorphism

onto the discrete nontrivial group A(N).

A. Leiderman and M. Tkachenko614

https://doi.org/10.4153/S0008439519000699 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000699


(ii) If X is non-discrete, then the group G(X) admits an open continuous homomor-
phism onto A(K), where K is an inûnite compact subspace of the closed unit
interval [0, 1].

In both cases, A(X) and F(X) admit an open continuous homomorphism onto a non-
trivial group with a countable network.

Proof Again, it suõces to prove the conclusion for A(X). If X is discrete, there
exists a continuous mapping g of X onto the countable inûnite discrete space N.
We extend g to a continuous homomorphism g∗∶A(X) → A(N). So g∗ is an open
surjective homomorphism onto a nontrivial countable (hence, separable) discrete
group A(N).
Assume that X is non-discrete. By Lemma 2.8, there exists a closed continuous

mapping f ∶X → K onto an inûnite compact metrizable space K. Clearly, f is a
R-quotient mapping. Hence, the continuous homomorphic extension of f to the ho-
momorphism f ∗∶A(X) → A(K) is open by heorem 2.1. Evidently the group A(K)
is nontrivial. Finally, K has a countable base, so A(K) has a countable network. ∎

A similar argument is used to prove the following statement.

heorem 2.10 Let X be an inûnite σ-compact space. hen the group G(X) admits an
open continuous homomorphism onto A(Y), where the inûnite space Y is a countable
union of subspaces homeomorphic to compact subsets of the closed unit interval [0, 1].
In particular, G(X) admits an open continuous homomorphism onto a nontrivial group
with a countable network.

Proof Again it suõces to consider the case G(X) = A(X). Let X = ⋃n∈ω Cn , where
eachCn is a compact subset of X. By Lemma 2.6, X admits a continuousmapping f to
the closed unit interval [0, 1] such that the image f (X) is inûnite. Let τ be a topology
on f (X) such that the mapping f ∶X → ( f (X), τ) is R-quotient. Clearly, τ is ûner
than the topology of f (X) inherited from [0, 1] and that the space Y =( f (X), τ)
is Tychonoò. For every n ∈ ω, consider the compact subspace Kn = f (Cn) of Y .
hen each Kn admits a continuous one-to-one mapping to [0, 1], so Kn is homeo-
morphic to a subspace of [0, 1]. Since Y = ⋃n∈ω Kn , the space Y has a countable
network.
Extend f to a continuous onto homomorphism f ∗∶A(X) → A(Y). It follows from

heorem2.1 that the homomorphism f ∗ is open. Also, the groupA(Y) is algebraically
generated by Y and, hence, has a countable network. Since Y is inûnite, the group
A(Y) is nontrivial. ∎

In fact, the last assertion can be generalized to the topological spaces X, which are
Lindelöf Σ-spaces. Recall that the important class of Lindelöf Σ-spaces contains all
σ-compact and all separable metrizable topological spaces and is closed with respect
to countable products, closed subgroups and continuous images. Again, we start with
a lemma about R-quotient mappings.

Lemma 2.11 Every inûnite Lindelöf Σ-space X admits an R-quotient mapping onto
an inûnite space with a countable network.
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Proof Fix a continuous mapping f ∶X → [0, 1] such that the image f (X) is inûnite.
Let τ be a topology on f (X) such that the mapping f ∶X → ( f (X), τ) is R-quotient.
We have that τ is ûner than the topology of f (X) inherited from [0, 1] and the space
Y = ( f (X), τ) is an inûnite Lindelöf Σ-space. he space Y admits a continuous one-
to-one mapping to [0, 1], hence, by [1, Proposition 5.3.15], we conclude that Y has a
countable network. ∎

Since the free (abelian) topological group of a space with a countable network has
a countable network, the following result is immediate from Lemma 2.11.

heorem 2.12 Let X be an inûnite Lindelöf Σ-space. hen the groups F(X) and A(X)
admit an open continuous homomorphism onto a nontrivial group with a countable
network.

Remark 2.13 One might ask whether the technique used in the proof of heo-
rem 2.12 can be applied for any inûnite Lindelöf space X. Unfortunately, this is not
the case. he reason is that there exists an inûnite Lindelöf space Y that admits a con-
tinuous one-to-one mapping into [0, 1], but Y is not even separable. Indeed, there is
a scattered separable σ-compact space X such that the function space Y = Cp(X ,D)
has the following properties: Y n is Lindelöf for every ûnite power n, but the count-
able powerYω is not Lindelöf [11]. HereD denotes the discrete space consisting of two
points {0, 1}. hen Y admits a continuous one-to-one mapping into the Cantor set
Dω ⊂ [0, 1], since X is separable. However, Y cannot be separable, otherwise all com-
pact subsets of X would be metrizable and X would have a countable network, which
is not true, since Yω is not Lindelöf. So, we do not know ifheorem 2.12 remains true
for all Lindelöf spaces X.

Lemma 2.14 If a space X contains inûnitely many clopen sets, then X contains an
inûnite disjoint family of clopen sets.

Proof Let γ be an inûnite family of nonempty clopen sets in X. Denote by γ∗ the
minimal by inclusion family of nonempty clopen sets in X which contains γ and is
closed under ûnite intersections, ûnite unions and complements. Clearly, γ∗ is count-
ably inûnite and each element of γ∗ is a clopen set in X.
For every U ∈ γ∗, we put

λU = {V ∈ γ∗ ∶ U ∩ V = ∅} and δU = {V ∈ γ∗ ∶ V ⊂ U}.

Note that if U ,V ∈ γ∗, then V = (U ∩ V) ∪ (V/U), where U ∩ V ∈ δU ∪ {∅} and
V/U ∈ λU ∪ {∅}. herefore, for each U ∈ γ∗, either γU or δU is inûnite.

Take an arbitrary element U ∈ γ∗ with U ≠ X. If λU is inûnite, we put U0 = U ,
otherwise let U0 = X/U . In either case, we have that U0 ∈ γ∗ and the family λU0 is
inûnite. Let us assume that we have deûned pairwise disjoint elements U0 , . . . ,Un of
γ∗ such that λW is inûnite, whereW = ⋃n

k=0 Uk . Note that W ∈ γ∗. Again, we take
an arbitrary element U ∈ λW and argue as at the initial step of our construction to
deûne an element Un+1 ∈ λW such that the family λW ∩ λUn+1 is inûnite. In fact, one
deûnes Un+1 to be either U or X/(U ∪ W) depending on the number of elements
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of λW disjoint from U . hen U0 , . . . ,Un ,Un+1 are pairwise disjoint elements of γ∗

and the family λW∪Un+1 = λW ∩ λUn+1 is inûnite.
Continuing this way, we obtain an inûnite pairwise disjoint family {Un ∶ n ∈ ω} of

nonempty clopen sets in X. ∎

Proposition 2.15 Let a space X contain inûnitely many clopen sets. hen the group
G(X) has a nontrivial countable quotient group.

Proof By Lemma 2.14, one can ûnd a family γ = {Un ∶ n ∈ ω} of pairwise disjoint
nonempty clopen sets in X. Let F = X/⋃n∈ω Un . Diminishing the family γ, if nec-
essary, we can assume that F ≠ ∅. Fix a countable set Y = {yn ∶ n ∈ ω}, where
yn ≠ ym for distinct m, n ∈ ω. We deûne a surjective mapping φ∶X → Y by letting
φ(F) = {y0} and φ(Un) = {yn+1} for each n ∈ ω. Denote by τ the topology on Y
such that the mapping φ∶X → (Y , τ) turns to be R-quotient. It is easy to see that con-
tinuous real-valued functions separate points of Y . Indeed, let m and n be distinct
non-negative integers, m < n. Also, let f be the real-valued function on Y deûned by
f (yn) = 1 and f (yk) = 0 if k ≠ n. hen f ○ φ is a continuous real-valued function on
X, so f is continuous on (Y , τ), and we have that 1 = f (yn) ≠ f (ym) = 0. herefore,
a countable space Y = (Y , τ) is Tychonoò.

Now we extend φ to a continuous homomorphism φ∗ of A(X) onto A(Y). heo-
rem 2.1 implies that the homomorphism φ∗ is open. ∎

Proposition 2.15 applies only to the class of non-connected spaces. Now we deal
with some class of connected spaces. First, we need an auxiliary fact on continuous
real-valued functions deûned on connected locally connected spaces.

Lemma 2.16 Let f ∶X → R be a continuous function on a connected locally connected
space X. hen f is hereditarily quotient.

Proof here is nothing to prove if f is constant, so we can assume that ∣ f (X)∣ > 1.
Let U be an open neighborhood of the ûber f −1(r), for some r ∈ f (X). Let us show
that the image f (U) contains a neighborhood of r in f (X).
Case 1. here exists a point x0 ∈ f −1(r) such that for every neighborhood V of x0 in
X, the sets f (V)∩(−∞, a) and f (V)∩(a,∞) are nonempty. Since X is locally con-
nected, there exists a connected neighborhood V0 of x0 with V0 ⊂ U . It follows from
our assumption about x0 that V0 contains elements x and y with f (x) < a < f (y).
Since the set f (V0) is connected, the image f (U) contains the interval ( f (x), f (y)),
as required.
Case 2. Every point x ∈ f −1(a) has a neighborhood Vx such that either f (Vx) ⊂
[a,∞) or f (Vx) ⊂ (−∞, a]. Clearly, we can choose an open connected neighbor-
hood Ox of x satisfying Ox ⊂ Vx ∩ U . hen U∗ = ⋃{Ox ∶ x ∈ f −1(a)} is an open
neighborhood of f −1(a) contained in U . Again, if both sets f (U∗) ∩ (−∞, a) and
f (U∗) ∩ (a,∞) are nonempty, we take points x , y ∈ f −1(a) and elements x′ ∈ Ox
and y′ ∈ Oy such that f (x′) < a and f (y′) > a. Since the sets f (Ox) and f (Oy) are
connected, we have that [a, f (y′)) ⊂ f (Oy) and ( f (x′), a] ⊂ f (Ox). herefore, the
image f (U) contains the open neighborhood ( f (x′), f (y′)) of a.

Separable Quotients of Free Topological Groups 617

https://doi.org/10.4153/S0008439519000699 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000699


Finally, assume that either f (U∗) ⊂ [a,∞) or f (U∗) ⊂ (−∞, a]. It suõces to
consider the ûrst of the two cases. hen f −1(a) ⊂ U ⊂ f −1(a) ∪ f −1(a,∞). Notice
that the open sets f −1(−∞, a) and U∗ ∪ f −1(a,∞) are disjoint and cover X. By the
connectedness of X, we conclude that f (X) ⊂ [a,∞). In particular, f (Ox) ⊂ [a,∞)
for each x ∈ f −1(a). If f is constant on U∗, then U∗ = f −1(a) is a clopen subset of X,
which is possible only if X = U∗ or, equivalently, f (X) = {a}. he latter contradicts
our assumption that ∣ f (X)∣ > 1. Hence, f is not constant on at least one of the sets Ox ,
with x ∈ f −1(a). Since f (Ox) ⊂ [a,∞), we can ûnd y ∈ Ox with f (y) > a. Hence,
[a, f (y)) is an open neighborhood of a in f (X). his completes the proof. ∎

Combining heorem 2.1, Lemma 2.6 and Lemma 2.16, we obtain the next result.

heorem 2.17 Let X be a connected and locally connected space with ∣X∣ > 1. hen
the group G(X) has a nontrivial quotient group with a countable network.

We ûnish the section with a problem that reduces Problem 1.5 to a purely topolog-
ical question.

Problem 2.18 Is it true that every inûnite Tychonoò space X admits an R-quotient
mapping onto an inûnite Tychonoò space with a countable network?

In view of Proposition 2.3, the aõrmative answer to Problem 2.18 would resolve
both Problems 1.5 and 1.6.

3 Extending Classes of Groups with Separable Quotients

he following fact permits us to extend several results of Section 2 to wider classes of
topological groups.

Proposition 3.1 Let H be a dense subgroup of a topological group G.
(i) If H has an inûnite separable quotient group, then so has G.
(ii) If H is abelian and has a nontrivial separable quotient group, then so has G.

Proof Let N be a closed normal subgroup of H such that the quotient group H/N
is inûnite and separable. We denote by K the closure of N in G. It is clear that K is a
closed normal subgroup of G. Hence, we can consider the quotient homomorphism
p∶G → G/K. Since N = H ∩ K is dense in K, one can identify the group H/N ,
algebraically and topologically, with the subgroup p(H) of G/K. It follows from the
density of p(H) in G/K that the group G/K is inûnite and separable. his implies (i)
of the proposition.

If H is abelian and the quotient group H/N ≅ p(H) is nontrivial and separable,
the quotient group G/K is also nontrivial, since the groups G and G/K are abelian
and every subgroup of a ûnitely generated abelian group is ûnitely generated. ∎

Proposition 3.3 complements [7, Proposition 4.2] in the case of nontrivial commu-
tative Lindelöf Σ-groups (we recall that nontrivial means not ûnitely generated). First
we recall an important property of Lindelöf Σ-groups established in [1, Section 5.3]
and reformulated in [7, Lemma 4.1].
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Lemma 3.2 Let G be a Lindelöf Σ-group. hen
(i) For every closed normal subgroup N of type Gδ in G, the quotient group G/N has

a countable network.
(ii) he family { f −1(V) ∶ π is a continuous homomorphism of G to a topological

group K with a countable network,V is open in K} constitutes a base for G.

Let P be the set of prime numbers. In the proof of the following proposition, we
use the so-called torsion-free rank, r0(G), and p-rank, rp(G) for p ∈ P, of an abstract
abelian group G deûned as follows. he torsion-free rank of G is the cardinality of a
maximal independent subset S of G that consists of elements of inûnite order. Simi-
larly, the p-rank of G is the cardinality of a maximal independent subset S consisting
of elements of order p. In both cases, the deûnition of r0(G) and rp(G) does not
depend on the choice of the set S (see [1, Section 9.9]).

Proposition 3.3 Let G be a nontrivial commutative Lindelöf Σ-group. hen G has a
nontrivial quotient group with a countable network.

Proof he conclusion of the proposition is trivial if G is countable. We assume,
therefore, that ∣G∣ > ω. It follows from Lemma 3.2(ii) that the topology of G is initial
with respect to the family of quotient homomorphisms onto topological groups with
a countable network. Note that the identity of a topological group with a countable
network is a Gδ-set (in fact, the singletons in every Hausdorò space with a countable
network are Gδ-sets). Hence, Lemma 3.2(ii) implies that every neighborhood of the
identity in G contains a closed normal subgroup of typeGδ in G. herefore, for every
countable subgroup A of G, there exists a closed normal subgroup N of G of type
Gδ such that the restriction to A of the quotient homomorphism πN ∶G → G/N is a
monomorphism. Hence, the groups A and πN(A) are isomorphic.

It follows from [1, Proposition 9.9.20] that ∣G∣ = r0(G) + ∑p∈P rp(G), where P is
the set of prime numbers. Since G is uncountable, we have that either r0(G) > ω or
rp(G) > ω, for some prime p. Let S be a countable independent subset ofG consisting
of elements of inûnite order in the ûrst case, and a countable independent subset of
elements of order p in the second case. Denote by A the subgroup of G generated by
S. Since A is countable, there exists a closed invariant subgroup N of G such that the
groupsAand πN(A) are isomorphic. It follows from r0(G/N) ≥ r0(πN(A)) = ∣S∣ = ω
in the ûrst case and rp(G/N) ≥ rp(πN(A)) = ∣S∣ = ω in the second case that the rank
of the group G/N is inûnite. Hence, G/N cannot be ûnitely generated. hus, the
quotient group G/N is nontrivial and has a countable network, by Lemma 3.2(i). ∎

Problem 3.4 Is Proposition 3.3 valid in the non-commutative case?

Corollary 3.5 Let an inûnite Tychonoò space X contain a dense Lindelöf Σ-subspace
(in particular, a dense σ-compact subspace). hen G(X) admits a quotient group that
is nontrivial and separable.

Proof Let Y be a dense Lindelöf Σ-subspace of X. here exists a continuous real-
valued function f on X such that the image Z = f (X) is inûnite. hen f (Y) is dense

Separable Quotients of Free Topological Groups 619

https://doi.org/10.4153/S0008439519000699 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000699


in f (X) and, hence, inûnite. Let τ be the topology on f (X) such that the mapping
f ∶X → (Z , τ) becomes R-quotient. Clearly, τ is ûner than the topology of Z inherited
from the real line, so the space (Z , τ) is Tychonoò. he image Y ′ = f (Y) considered
as a subspace of (Z , τ) is a Lindelöf Σ-space and admits a continuous one-to-one
mapping onto a subspace of the real line, so the space Y ′ has a countable network
by [1, Proposition 5.3.15]. In particular, the spaces Y ′ and Z∗ = (Z , τ) are separa-
ble. Hence, the group G(Z∗) is separable as well. Since the mapping f ∶X → Z∗

is R-quotient, its extension to a continuous homomorphism f ∗∶G(X) → G(Z∗) is
open byheorem2.1. hus, the groupG(X) has a nontrivial separable quotient group,
namely, G(Z∗). ∎

In the next example we show howCorollary 3.5 applies to widen the class of spaces
X for which the groups F(X) and A(X) have separable quotients.

Example 3.6 Let Q be the space of rational numbers considered as a subspace of
the real line R. Also let σQτ be the σ-product of τ > ω copies of Q considered as
a subspace of Qτ . hen σQτ is a dense σ-compact subspace of Qτ (see [1, Propo-
sition 1.6.41]), which is in turn a dense subspace of Rτ . Take an arbitrary space X
with σQτ ⊂ X ⊂ Rτ . hen X can fail to be σ-compact, while the projections of X
to countable subproducts RA with A ⊂ τ need not be open or even quotient. How-
ever, Corollary 3.5 implies that the groups A(X) and F(X) admit an open continuous
homomorphism onto a nontrivial separable topological group.

4 A Separable Group that has no Quotients with a Countable
Network

he reader has surely noticed that all separable quotients of free (abelian) topological
groups found in Sections 2 and 3 (besides perhaps Corollary 3.5) have a countable net-
work or even are countable. his can tempt one to conjecture that every topological
group with a nontrivial separable quotient has a nontrivial quotient with a count-
able network. In the next theorem we present an example of a separable precompact
abelian topological group G such that every quotient of G either is the one-element
group or has no countable network.

heorem 4.1 here exists an inûnite separable precompact topological abelian group
G such that every quotient of G either is the one-element group or contains a dense
non-separable subgroup and, hence, does not have a countable network.

Proof LetH be a dense uncountable subgroup ofTc constructed in [7,heorem3.5].
hen all countable subgroups of H are closed in H and h-embedded. We claim that
there exists an element b ∈ Tc such that the cyclic subgroup ⟨b⟩ of Tc generated by b
is dense in Tc and satisûes

(4.1) ⟨bα⟩ ∩ ⟨ ⋃
ν≤α

πν(H) ∪ {bν ∶ ν < α}⟩ = {1} for each α ∈ c.

Here, πα is the projection of Tc onto the αth factor T(α) and bα = πα(b).
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he construction of H in [7] starts with choosing an independent subset E of T of
elements of inûnite order satisfying ∣E∣ = c and partitioning it into c pairwise disjoint
parts Eα , α ∈ c, where each part Eα is of cardinality c. hen one considers the free
abelian group A(X) on a set X of cardinality c and deûnes a family { fα ∶ α ∈ c} of ho-
momorphisms of A(X) to T. he group H is then deûned as the subgroup f (A(X))
of Tc, where f is the diagonal product of the family { fα ∶ α ∈ c}. To be more pre-
cise, for every α ∈ c, we also have a countable subset Yα of X and its complement
Zα = X/Yα . he homomorphisms fα satisfy several conditions of which we need to
mention only one (we enumerate it as in [7]):
(ii) fα�Zα is a bijection of Zα onto a subset of Eα .
We start deûning b as follows. Since the group ⟨ f0(Y0)⟩ is countable, there exists

a countable set F0 ⊂ E such that ⟨E⟩∩ ⟨ f0(Y0)⟩ ⊂ ⟨F0⟩. hen we choose b0 ∈ E1/F0. It
is easy to see that ⟨b0⟩∩ f0(A(X)) = {1}. Indeed, otherwise (ii) implies that for some
integer m ≠ 0,

bm
0 ∈ f0(A(X)) = ⟨ f0(Y0) ∪ f0(Z0)⟩ ⊆ ⟨ f0(Y0) ∪ E0⟩ = ⟨ f0(Y0)⟩ + ⟨E0⟩.

Take a ∈ ⟨ f0(Y0)⟩ and c ∈ ⟨E0⟩ such that bm
0 = a ⋅c. hen a = bm

0 ⋅c−1 ∈ ⟨E1⟩⟨E0⟩ ⊂ ⟨E⟩,
which in turn implies that a ∈ ⟨ f0(Y0)⟩ ∩ ⟨E⟩ ⊂ ⟨F0⟩. Hence, bm

0 = a ⋅ c ∈ ⟨F0⟩⟨E0⟩ =
⟨F0 ∪ E0⟩. Since (F0 ∪ E0) ∩ (E1/F0) = ∅ and the set E is independent, the latter
contradicts our choice b0 ∈ E1/F0.
Assume that for some α ∈ c, we have deûne independent elements bν ∈ T with

ν < α, where each bν ∈ Eν+1 has inûnite order. he group

⟨E⟩ ∩ ⟨{bν ∶ ν < α} ∪ ⋃
ν≤α

fν(Yν)⟩

has cardinality less than c, so we can ûnd a set Fα ⊂ E with ∣Fα ∣ < c such that

⟨E⟩ ∩ ⟨{bν ∶ ν < α} ∪ ⋃
ν≤α

fν(Yν)⟩ ⊂ ⟨Fα⟩.

hen we choose bα ∈ Eα+1/Fα . Similarly to the ûrst step of our construction, one can
verify that

(4.2) ⟨bα⟩ ∩ ⟨ ⋃
ν≤α

fν(A(X)) ∪ {bν ∶ ν < α}⟩ = {1}

holds at the step α. his completes the construction.
Since the set E is independent, so is {bα ∶ α ∈ c}. We deûne b ∈ Tc by letting

πα(b) = bα for each α ∈ c. Since the set {bα ∶ α ∈ c} is independent, the cyclic
subgroup ⟨b⟩ is dense in Tc. It is also clear that fα(A(X)) = πα(H), so condition
(4.1) follows from (4.2).

We deûne a group G with the required properties as the subgroup H + ⟨b⟩ of the
compact group Tc. Hence, G is an abelian precompact topological group. Clearly,
G is dense in Tc. It follows from (4.1) that the groups ⟨b0⟩ and π0(H) have trivial
intersection. Hence, the same is valid for ⟨b⟩ and H, so the group G is algebraically
isomorphic to H ⊕ ⟨b⟩.

Take a proper closed subgroup K of G and consider the quotient group G/K. Let
πK ∶G → G/K be the quotient homomorphism. Since ∣G/K∣ > 1, we can ûnd a non-
trivial continuous character χ on G/K. hen φ = χ ○ πK is a nontrivial continuous
character on G and, clearly, K = ker πK ⊂ kerφ. We claim that kerφ ⊆ H. Our proof
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of this fact is based on an (elementary) application of the Pontryagin–van Kampen
duality.

Let (Tc)∧ and G∧ be the groups of continuous characters of Tc and G, respec-
tively. It follows from Pontryagin’s duality theorem for compact abelian groups that
the group (Tc)∧ is algebraically generated by the projections ofTc to the factorsT(α),
with α ∈ c, considered as characters ofTc (see also [7, Lemma 3.1]). SinceG is dense in
Tc, every continuous character of G extends to a continuous character of Tc. Hence,
the group G∧ is algebraically generated by the elements πα�G, α ∈ c. herefore, we
can ûnd pairwise distinct indices α1 , . . . , αk ∈ c and nonzero integers n1 , . . . , nk such
that φ(x) = ∏k

i=1 πα i (x)n i , for each x ∈ G. Take an arbitrary element x ∈ G with
φ(x) = 1. hen x = hbm , for some h ∈ H and m ∈ Z. Let us show that m = 0 and,
hence, x ∈ H. An easy calculation shows that

1 = φ(x) = φ(hbm) =
k
∏
i=1

hn i
α i
⋅ (

k
∏
i=1
bn i
α i
)
m
,

where hα i = πα i (h), i = 1, . . . , k. We can assume that α1 < ⋅ ⋅ ⋅ < αk . hen

bmnk
αk

= (
k
∏
i=1

hn i
α i
)
−1
⋅ (

k−1
∏
i=1
bn i
α i
)
−m
,

which in turn implies that

bmnk
αk

∈ ⟨ ⋃
ν≤αk

πν(H) ∪ {bν ∶ ν < αk}⟩.

Since nk ≠ 0, property (4.1) implies that the latter is possible only if m = 0. Hence,
x = h ∈ H, as claimed. We have thus proved that the kernel of φ is contained in H.
Hence, K ⊂ H ⊂ G.
Finally, it follows from K ⊂ H that H = π−1

K πK(H). Hence, the restriction of πK
to H is an open continuous homomorphism of H onto the subgroup πK(H) of G/K
and the groups πK(H) andH/K are topologically isomorphic. It is clear that πK(H) is
dense in G/K and, hence, ∣πK(H)∣ > 1. According to [7,heorem 3.5], every quotient
group ofH is either the one-element group or non-separable. We conclude, therefore,
that the subgroup πK(H) ≅ H/K of G/K is not separable, so the groups πK(H) and
G/K have no countable network. ∎

We conclude the article with the following unsolved question.

Problem 4.2 Does there exist an uncountable Tychonoò space X such that every in-
ûnite separable quotient group of A(X) is countable? What if X is the one-point com-
pactiûcation of an uncountable discrete space or the compact ordinal space [0, α] with
α ≥ ω1?

Acknowledgments he authors are grateful to the referee for an improvement in
the formulation of Proposition 2.15 and several useful remarks.
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