Canad. Math. Bull.Vol. 34 (3), 1991 pp. 385-391

A LIMIT THEOREM FOR BROWNIAN
MOTION IN A RANDOM SCENERY

BRUNO REMILLARD AND DONALD A. DAWSON

ABSTRACT.  We find the limiting distribution of 1/ a, [* V(B.)du,t € [0, 1], where
{B.}u>0 is the standard Brownian motion on R4 Visa particular random potential
and {a,,},,zl is a normalizing sequence.

1. Introduction. In Kesten and Spitzer (1979), the authors studied among other
things the limiting behavior of

1.1) Wi/ an=1/an, ), &, t€[0,1]

0<k<nt
where { S;}«>1 is the symmetric nearest neighbor random walk on Z¢, {£4}4cz4 are
i.i.d random variables independent of the random walk and normalized in such a way
that E(¢,) = O and E(¢2) = 1.

They proved that when d = 1 and a, = n’/* or whend > 3 and a, = n'/2, W,(-)/ a,
converges weakly to a self- similar process; moreover the process is Gaussian if d >
3. The only open problem left was to study the case d = 2; it was conjectured that
an, = (nlogn)!/? was the appropriate normalization and the limiting distribution was
Gaussian.

In this article, instead of considering W, as defined by (1.1), we study the following
process

X, () = /O " VB, du, telo,1],

where { B, },>0 is a Brownian motion independent of the random scenery { €4 }, ez« and
V(x) = €. x € RY, where [x] = ([x1],...,[x4]),[-] being the integer part and U is
uniformly distributed over 7, = [0, 1)4; itis also assumed that U, { B, }u>0 and { €4 }qc74
are all independent.

REMARK. Let (Tx€)y = €xvas k, @ € Z¢ and define
(€, u) = (Tpw€x+u—[x+ul), x€RueT,.

If V is defined by V((¢,u)) = €, then V(x) takes the form V(x,£,U) = V(r(¢, 1)),
and it is easy to prove that 7, o 7, = Ty, and the joint law u of (§, U) is stationary and
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ergodic with respect to { 7; }xcr«. Moreover the process {75,(£, U)}i>o0 is a reversible
Markov process and p is an invariant ergodic measure for the process.

The main result of this paper is that X,,(-) / y/nlogn converges weakly to a suitably
scaled Brownian motion in the open case d = 2. The proof that the conjecture of Kesten
and Spitzer is true follows in an analogous way.

The study of the asymptotic behavior of fj V(B,) du is motivated by the fact that this
process plays an important role in the study of large deviations for diffusion processes
with random coefficients (cf. Dawson and Remillard (1989)).

In Section 2, we prove the following Theorem.

THEOREM. Let (2, F, 1) be a probability space, { & }rezae be i.i.d random variables
with mean 0 and variance 1, U a random variable which is uniformly distributed over
[0, )¢ = T;and independent of { i,k € Z d }. Further let P be the Wiener measure over
X = C([0, 00); R starting from O at time 0. We write B, to designate the canonical
Wiener process; in the following W, stands for the law of o B.

Set V(x) = &), X € R4, X, (1) = V(B du,n € N,t € [0,1]. Then under P® p

a) Cased = 1: X,/ n¥* = Z € C([0,1]; R ) where Z has the following represen-

tation: Z(t) = [§° £4(x) dZi(x) + [§° £.(—x) dZ,(x), where B, Z,,Z, are 3 indepen-
dent 1-dimensional Wiener processes and £,(-) is the local time of B i.e.

/0’ B du= [ L)dx, A€BR),I>0.

b) Cased =2:PQpu O(X,,/\/nlogn)_l = ‘Wl/,r on C([0,1; R)
c)Cased > 3: PQpuo(X,//n)! = fwaj on C([0,1];R), where 03 =

d
fie piefal deand ) = 11 (5522 ), x € RY,

en
i

2. Proof of the theorem.
PROOF. Let X(1) = [§ V(B.)du,t > 0, and let 62() = E(X*(t)), where E stands for
the expectation with respect to P ® p. Then
@.1) E(X()) =0 Vrando(r) =2 / ' / "E(V(B.)V(BY)) duds
o Jo “ y ’

Now for x,y € Z¢

E(V@V)) = E(VOV = 1) = E(éoépy-nu1) =

2.2) 4
/Rd Liuj=0l y—x+ruj=0 du = hy(y — x) = /Rd <MY £\ ) d,

where f; is defined in (c) above and

d
ha(x) = [1(A = [xD1g g <y, d> 1.
i=1
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Therefore

=2 [, B B)i\) A duds
- 2/0'/(;/'“(3—'%‘37‘,(,\)(1,\ du ds.

Next limy—o, 02(1)/ t = +00 if d = 1,2 and im0 22 = 02,02 = fn riefi\)d) €
(0, 00) when d > 3. Adapting a result of Kipnis and Varadhan (1986), we obtain c).

Next a) follows from an adaptation of the results of H. Kesten and F. Spitzer [1979],
so we only indicate how to prove it.

PROOF OF a). By stationarity

E((X,,(t) — X))’ /n3/ 2) -

+1—u 2
=) = S ([0 s as) )

—Uu

1
<=5 By @)ax,

where £,(-) is the local time of B.
From the scaling property of B, E(n_3/25,,2,(x)) = 7’;E(£,2(x/ \/71)), t>0,x €R.
Hence

E((X,,(t)—x,,(s))2 / Y 2) < E( oty dx) = |t —s|¥ 2E( IREE dx)

It follows from Billingsley (1968) that { P ® u o (X,/ n3/#)~!},5, is tight.
Next ol
P®u(sup/ Lo(x +u)du > 6n3/4) —0 Vre[0,1].
k k

It follows that forevery0 = 1o <, < - <¢t, <land ;- -, a, €R,

m

Tim E(exp{ij:z] o5(Xa(t) = Xu-1)) / n*/*} )

= E(exp{—% /R (i aj(E,j x)— £, (x)))2 dx})
which completes the proof.

PROOF OF b). Set a(t) = (tlog t)'/ 2 ¢t > 2, and let pi(k) = [} 1{p,+v}=k ds. Further
let 0 (t) = Yiez p2(k),t > 0. From now on we will write P and Yy instead of P ® u and

EkeZZ-
Assume
. 2 2 1
Ay limo*(t)/ a’(t) = —
1—00 s
and

Ay: lim E(0%(n/a*(0) = ;12— and therefore E(0%(1)) < Fa(r)
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where « is increasing and a (f) ~ (log#)?, which means lim;_, <1(;;§?)2 = L. Then
-1 o
(2.3) {Po(X,/am) "}, istight (in C[0, 1];R)
and
2.4) lim E(eiz;":'“"(x"(")_x"(’f*‘))/ “W) — % TRt
n—oo

foranyO0=1<#(, <---<tp,<land o €R.
Clearly (2.3) and (2.4) are equivalent to b). So suppose that A} and A; hold. To prove
(2.3) it suffices to prove (cf. Billingsley (1968, Theorem 8.2))

2.5) llmhmsupP( Sup | Xa(t) — Xa(s)| > 3«/§ea(n)) =0 Ve>o0.
810 p—ooo 0<s<1<1
0<t—s<é
Put

Amed) = { swp € (pulh —puih)” < a0
0<t—s<6

and set m = [1/8]. Let u > Obe givenand set &,y = &kl (<} G = &k — Eku- Since
p:(k) is increasing in ¢ for fixed k,

P(A(n,€,6)°)
< P( sup &2 (puor () — puth)) > ()

0<s<1

<y P<Z &2 (Paras ®) — puis (0))” > ezaz(n)).
=0 V%

By definition £ = €2, + (2, and E(&},) < u*. Therefore

4yt

2.6 P(A(ne6)) < 0

2
E(0%(2n8)) + 5200 2(2n8)EG,),

where we have used Markov’s inequality in both terms and the stationarity of &[y.5,).4

and (u+g,1u-
It follows from (2.6), A; and A, that

2.7) limsup P(A(n,€,6)°) < 16u*5 [ e*n* + —475(402”)
TE ?

n—oo

forevery 6 €[0,1]and u > 0.
Let 6 — 0 and then u — o0 in (2.7) to verify that

il ) —
16%1 1ﬂﬁpP(A(n,e,6) )
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Now suppose that 1 > § >t — s > 0. Then since X(1) = S &xpi(k),
(A(n €.8) N {[Xa(0) = Xu(9)] > v2ea(n)})
< P 64 (ulk) = pusth) (pui) = pas()) > €%a*(w))

k#j
. - 2
-= 4a4(n)E( ZEIC&] pm‘(k) pns(k))(pnt(/) _pns(l))) )
2 2|t —s|?
< ME(az(nlt_sl)) < pr. C,and C, — 1/7T2, by A;.

It follows from Billingsley (1968) that

limsup P(A(n,e,8) N { sup | Xu(s) — X,(6)| > V2ea(n)}) <

n—00 J8 <s<(j+1)6

Ki6?
et

for some finite constant K; (ind. from § and €). Combining the last inequality with

hmllm sup P(A(n,€e,6)°) =

n—o0
we get (2.5) thus completing the proof of (2.3).

NE
We will now prove (2.4). Set Y, = sup pn(k) and g,(x) = Lz[t‘ Clearly

21rt

P(Y, > €) < (ea(n))” LCIC)

(ea(n) / /qutz(xz—xn) Q. (G — Xj—1) dx dt

where

Sp={0<n<---<t;<n}.
Define h(t,x) = [r,q(y — x)dy, x € Tp,t > 0. By elementary calculus h(t,0) <
h(t,x) < h(t,xg) Vx € T,, where xg = (%, %) Therefore p(Y, > ¢€) < (ea(n))‘]j'

i1

n< I h(t,xo)dt)’ . Now h(t,xo) < 1 and for large t h(t,x0) ~ 5= so [ h(t,xo)dt ~
5= logn. Choosing j = 3, we get lim,_.0o P(Y, > €) = 0 Ve > 0. Using this and
pik) < pa(k) Y0 < t < n, k € Z2, we can prove easily that

: iXn) _ ~I 20| —

lim |E(e%) — (e 540)| = 0

where
%, = —— 32 0(Xalt) = Xal1-0)s 20K = —— 32 (oK) — g ),
a(n)j_ ] / ] a(n)j=1 J i fj—1
and0=1<t <---<t, <1,a; € R are fixed. Therefore (2.4) will follow if we can
prove that

p, 1
ZZ,%(k)—»; > ot — 1)
k j=1
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0. By stationarity o%(t — 5) = E((X(t) - X(s))2>, 50

Suppose that t > s >
%(az(t) + 0%(s) — o%(t — s)) and it follows from A; that

E(Sipkopo) =
E(Spu®pns(h)) ~ £a(n). Thus

1
0< E(a_%i 52w 6) = P 00) (P ) = P ®))) =0

whenever j # £, and
1 m
Y Zik) — = 3 @kt —ti-1)
k T j=1

2
in probability since E ((;2% >k (p,,,(k) — p,,s(k))z _ 7Lr(t - s)) ) — 0 by A; and station-
arity, 0 < s <t < 1. This completes the proofs of (2.3) and (2.4) assuming that A; and

A, are verified.

PROOFOFA;. By (2.1),(22)0%() =2 J5 03 Jr2 ha(x)qu(x) dx du ds, and h; has com-

pact support. Since gq,(-) ~ 5# uniformly on compacts, it then follows easily that

o) ~ Llogt.
PROOFOFA,. Since f (1) does notdepend on { £} , let us suppose that £, is Gaussian
with mean 0 and variance 1. Then a simple calculation yields E(0 2(t)) = %E(X“(t)) =

8(C1(1)+ Ca(t) + C3(1)), where S, = {0 <5y < --- < 54 <1} and
CLO =5 f, fys -1 02 = M0+ K = ) 0 = 35) dvds
C(n) = Z/S , ds2—s1(X2 + k — x1)qs5;—5,(X3 — k — X2)q5,—5, (x4 + k — x3) dxds
T I8 1y
C3(t) = Zk: _/;,l -/(‘Tz)“ qsz—.Y\(xZ + k — X1 )q53-52(x3 - xz)qS4—Sg(x4 - k - x3)dxds
Since h(t,0) < ht,x) < htx) 1> Ox € Trxo = (4,4), we get fs (s —

2
s1,00h(sa — 53,0)ds < Cy(1) < %( P h(s,xo)ds) , and we can easily check that C(r) ~

> (log)? and f§ h(s, xo) ds ~ 5- logt.
Using Cauchy-Schwarz inequality, we get

1/2
QO< [(T [ autn—k—m)dxdn) "
tNk
1/2
(E [ Gtk =) dxy dxz) :
. 1/2
(Z o Gy, (xa + k — x3) dx3 dX4)) ds.
k

Now 1
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By elementary calculations we obtain Cx(f) < £C) for some constant C, and similarly
1/2
Cx(1) < Cyf2dx(r), where di(r) = ft ( S €20 — x)dxdy) ds ~ 3 logt. Hence we

can conclude that E(G 2(t)2 ~ L (tlogr? and E(() 2(t)) < Pa(t) for some increasing o
such that a(t) ~ % (log £)* which proves A,. .

REMARK. 1° Since (2.3) and (2.4) depend only on A; and A;, and not on the proper-
ties of Wiener process, and also A; and A, depend only on the behaviour of g,(-), we see
that we can replace { & }iez2, U and B, by {§ }rez, U’ = uniformon [0, 1) and x(): sym-
metric Cauchy process, and we can easily prove that X'(f) = [§ {xw)+17) du has the same
limiting distribution as X(?) i.e. X'(nt)/ v/nlogn converges to some Wiener process.

2°: Borodin (1980) has proved a more general result than our Theorem when B; is
replaced by a symmetric random walk on ZZ.
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