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A GENERALIZATION OF THE LAX-MILGRAM LEMMA 

BY 

K. INAYATNOOR AND M. ASLAM NOOR 

Let H be a real Hilbert space with its dual space H'. The norm and inner 
product in H are denoted by ||-|| and (.,.) respectively. We denote by (. , .) , the 
pairing between JFf ' and H. 

If a(u, v) is a bilinear form and F is a real-valued continuous functional on 
H, then we consider I[v], a functional defined by 

I[v] = a(v,v)-2F(v), for all veH. 

It has been shown by Noor and Whiteman [5], that under certain conditions 
on a(u,v) and F, the minimum of I(v) on H can be characterized by 

(1) a{u,v) = (F\u),v), for all veH, 

where F'(u) is the Fréchet derivative of F at u e H. 
For a linear continuous functional F, solving equation (1) is equivalent to 

finding ueH such that 

a(u, v) = (F, v), for all veH, 

and this is the well known Lax-Milgram lemma [2]. 
The motivation of this paper is to show that under certain conditions, there 

does exist a unique solution of a more general equation of which (1) is a special 
case. Our result can be considered as a representation theorem analogous to 
the Lax-Milgram lemma for a class of nonlinear problems. 

DEFINITION 1. The operator T:H->H' is called antimonotone, if 

(Tu- Tv, u - u > < 0 , for all u,veH, 

and is said to be Lipschitz continuous, if there exists a constant y > 0 such that 

| | T u - T i ) | | < y | | u - i 4 for all u,vsH. 

DEFINITION 2. A bilinear form a(u, v) on H is said to be coercive [3] and 
continuous, if there exist constants p > 0, JLL > 0 such that 

a(v,v)>p\\v\\2, for all veH, 
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and 

|a(u, v)\ ^ /ut ||u|| ||u||, for all u,veH. 

In particular, it follows that p^jx , see [4]. If a(u, v) is continuous coercive 
bilinear form, then by the Riesz-Fréchet representation theorem [1], we have 

a(u, v) = (Tu, v), for all veH. 

It has been shown [4] that ||T||<JUL. Finally, we define A, a canonical 
isomorphism from Hr onto H by 

(2) </,t>) = (A/,t>), for all veH,feH'. 

Then||A||„. = ||A-1||„ = l. 
We make the following hypothesis. 

Condition N. We assume that y < p, where 7 is the Lipschitz constant of the 
nonlinear operator A and p is the coercivity constant. 

We now state and prove the main result. 

THEOREM 1. Let a(u, v) be a coercive continuous bilinear form and A is a 
Lipschitz continuous antimonotone operator. If condition N holds, then there 
exists a unique ueH such that 

(3) a(u,v) = (A(u),v), for all veH. 

Moreover, if a(u, v) is a symmetric positive bilinear form and A(u) — F(u), the 
Fréchet derivative of F at u, then solving (3) is equivalent to finding 
MinUGH {a(v, v)-2F(v)}, as shown in [5], 

We need the following lemma, which is essentially due to Noor [4]. We 
include its proof for the sake of completeness. 

LEMMA 1. Let Ç be a number such that 0<Ç<2(p-y/ii2-y2) and y £ < l . 
Then there exists a 6 with 0 < 6 < 1 such that 

\\<b(u1)-&(u2)\\^0\\u1-'U2\\, for all ux, u2eH, 

where for ueH, $ ( K ) e H ' is defined by 

(4) (&(u)9v) = (u,v)-$a(u,v) + $(A(u),v), for all veH. 

Proof. For all ul9 u2eH, 

(®(ul)-<&(u2),v) = (ul-u2,v)-Ça(u1-u2,v) + Ç(A(ui)-A(u2),v), 

for all veH. 

= (u1-u2,v)-Ç(T(uî-u2),v) + Ç(A(ul)-A(u2),v) 

= (ux - u2, v) - Ç(AT(u, - u2), v) + £(AA(1^) - AA(u2), v), by (2). 

= (wi-M 2 - fAT(i i 1 - i i 2 ) ,u) + f(AA(u1)-AA(ii2),i?). 
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Thus 

| << i>( M l ) -< i> (u 2 ) , ^ 

Now by ||T||^ju, and the coercivity of a(u, v), it follows that 

| | M l -u 2 - |AT(u 1 -u 2 ) | | 2 < | | M l -u 2 | | 2 + | 2 | |T | | 2 | | M l -u 2 | | 2 -2^a(u 1 -u 2 , M l -u 2 ) , 

< ( l + É V - 2 £ p ) | k - i i 2 | | 2 . 

Hence 

|<4)(Ml)-<D(u2), v)\<(Vl + 1 2 V L 2 - 2 f r ) | | H l - u2\\ \\v\\ + | | | A ( M l ) - A M I ||»||, 

< {(Vi+e^ - 2ô>)+IT) Ik - «all IMI, 

by the Lipschitz continuity of A. 

= 0||w1-u2|||M|, 

where 6 = Vl + £2 |u2-2£p + 7£< 1 for 0 < £ < 2 ( p - 7 / | u 2 - 7 2 ) , and f y < l , be­
cause 7 < p by condition N. 

Thus for all M15 U2GH, 

| |o>(ua) - * ( M 2 ) I I H ' = s u p n—n 
veH \\V\\ 

^e| |Mi-M2 | | . 

Proof of theorem 1. Uniqueness. 
Let ul5 w2 be two solutions in H of 

a(u l 5 u) = <A(w1), v) for all U E H , 

a(u2, t;) = (A(u2), v) for all D e R 

Thus by subtracting and taking v as (u1-u2), we get 

a(Mi - u2, Mi - u2) = (Afa) - A(M 2 ) , Mi - u2>. 

By the coercivity of a(u, v) and the antimonotonicity of A, it follows that 
there exists p > 0 such that 

P IIMI - " J 2 ^ a("i - u2, uv - u2) 

= (A(U])-A(u2),u1-u2) 

< 0 . 

Hence ux~u2^ the uniqueness. 

EXISTENCE. For a fixed £ as in lemma 1 and ueH, define 0 ( u ) e H ' , by (4). 
Thus by the Riesz-Fréchet theorem, there exists a unique w e H such that 

(w, v) = (<&(u), v) for all veH, 
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and w is given by 

w - AO(u) = Tu, 

which defines a map from H into itself. 
Now for all ux, u 2 e H , 

| |TM l-Tu2 |h | |A4>(M l)-AO(u2) | | 

<||$(Wl)-<D(u2)|| 

< 0 Hi*! - u2||, by lemma 1. 

Since 0 < 1, Tw is a contraction and has a fixed point Tu — UGH, which 
satisfies 

(u,v) = (®(u),v) 

= (u, i ;)-ga(u, u)-f-g<A(u), u> 

Thus for £ > 0 , we have 

a(u, v) = (A(u), v) for all veH. 

REMARK 1. It is obvious that for A(u) = Fl(u), the existence of a unique 
solution of (1) follows under the assumptions of theorem 1. 

If A is independent of u, i.e., Au =f (say), then the Lipschitz constant y is 
zero. Consequently theorm 1 is exactly the same as one proved by Lax and 
Milgram [2]. 

Furthermore, for the special case a(u, v) = (u, v), theorem 1 reduces to: 

THEOREM 2. If A is Lipschitz continuous antimonotone operator with Lipschitz 
constant y < l , then there exists a unique solution ueH such that 

(u,v) = (A(u),v) for all veH. 

Theorem 2 shows that the Riesz-Fréchet theorem also holds for a class of 
monotone operators on H, which includes the Fréchet derivatives of nonlinear 
functionals as a special case. 

We give another proof of theorem 1 based on the iteration scheme similar to 
Picard's and also derive a bound for the error. 

We define the iteration un by the following scheme 

(5) a(un+1,v)-(A(un),v) for all veH. 

THEOREM 3. If a(u,v) is a positive definite bilinear form on H and A is a 
Lipschitz continuous operator such that condition N holds, then the iteration un 

defined by (5) converges strongly to u, the solution of (3) in H. Moreover, the 
bound for the error, for any u0 e H, is given by 

OL n 

IK - u\\<- K - M0||, for n = 0 , 1 , 2 , . . . . 
1 — a 

where a = y I p. 
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Proof. By the coercivity (positive definiteness) of a(u, u), it follows that 

p ||un+1 - unf < a(un+1 - un, un+1 - un) 

= (A(un)- A(MW_1) , un+1 - un), by (5). 

^WAiuJ-Ai^Jl 

by the Cauchy-Schwarz inequality. 

by the Lipschitz continuity of A. 
Thus 

y 
ll"ri + l - M n N - | | W n - - " n - l l l 

P 

= a||wri-i«rl_1||, 

where a = yip < 1 by condition N. 
Continuing in this way, we obtain 

IK+i -WnN« n l k i -M 0 | | . 

Hence, by the repeated use of the triangle inequality, it follows that 

IIun+k - un\\ < (a^1-1 + - . . + «") ||Ml - Moll, 

1 - a 
Hux-Uoll. 

Since a < l , it follows that un is a Cauchy sequence and has a limit point 
such that un-> ueH, the unique solution of (3). Also at the same time it 
implies that 

un —» u in H strongly. 

REMARK 2. Theorem 3 holds for any general complete normed space. Note 
that it also shows the existence of a unique solution of (3). 

REMARK 3. We note that if a(w, v) is a positive definite bilinear form on H, 
then from (1), it follows that for all u e H , 

p\\u\\2<a(u,u) = (F(ulu) 

^l|F'(u)|U|u| | , 

by the Cauchy-Schwarz inequality. 
Thus 

l|uN±||F'(u)||„.. 
P 
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This expresses the continuous dependence of u on the Fréchet derivative 
F'(u). For the linear functional F, it follows that 

MI^IIFIIH', 

9 

a well known result, see Strang and Fix [6, page 16]. 
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