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Multivariate Rankin–Selberg Integrals on
GL4 and GU(2, 2)
Aaron Pollack and Shrenik Shah

Abstract. Inspired by a construction by Bump, Friedberg, and Ginzburg of a two-variable integral
representation on GSp4 for the product of the standard and spin L-functions, we give two similar
multivariate integral representations. _e ûrst is a three-variable Rankin–Selberg integral for cusp
forms on PGL4 representing the product of the L-functions attached to the three fundamental rep-
resentations of the Langlands L-group SL4(C). _e second integral, which is closely related, is a
two-variable Rankin–Selberg integral for cusp forms on PGU(2, 2) representing the product of the
degree 8 standard L-function and the degree 6 exterior square L-function.

1 Introduction

Integral representations of Rankin–Selberg type have been used over the years to re-
late the analytic behavior of L-functions to the study of the more tractable analytic
properties of Eisenstein series. _e vastmajority of Rankin–Selberg integral represen-
tations relate an Eisenstein series in a single variable to a single L-function together
with some normalizing factors, which usually take the form of Dirichlet L-functions.

In the last couple of decades, there has been interest in multivariate versions of
this type of construction. Bump and Friedberg [1] gave a two-variable integral on
GLn representing the product of the standard and exterior square L-functions. Bump,
Furusawa, and Ginzburg [3] later gave a two-variable integral on GL3n unfolding to
a nonunique model that represents the product of the standard L-function and the
dual of standard L-function. Bump, Friedberg, and Ginzburg [2] gave several con-
structions of two-variable integral representations on GSp4 , GSp6 , and GSp8 repre-
senting the product of the standard and spin L-functions. _ese were among the ûrst
examples of such identities in more than one complex variable.

Ginzburg and Hundley [7] found the ûrst three-variable Rankin–Selberg integral;
for a generic cusp form on the split orthogonal similitude group GSO8, it represents
the product of the standard L-function with two spin L-functions. Gan and Hund-
ley [6] gave a general construction of an integral for quasi-split groups of type D4
that specializes to a diòerent three-variable integral when the group is split. Continu-
ing the work initiated in [7], Hundley [8] gave various constructions of two-variable
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integrals on split orthogonal groups. Recently, Hundley and Shen [9] gave a two-
variable integral on GSp4 ×GL2 ×GL2 representing the product of two GL2-twisted
spin L-functions, one coming from each GL2-factor. We found in [12] a two-variable
Rankin–Selberg integral on GSp4 ×GL2.

Such integrals are valuable for many reasons. Analysis of the Eisenstein series
in these constructions give a tool to study the relationship between the diòerent
L-functions involved; for instance, Bump, Friedberg, and Ginzburg [2, _eorem A]
rule out simultaneous poles at s = 1 for the standard and spin L-functions on GSp6.
_ere seems to be an interesting relationship between multivariate Rankin–Selberg
integrals and those unfolding to non-unique models, which we have explored in
[11, 13]. _ere is an analogous relationship between the GU(2, 2) construction below
and a non-unique model integral given by the ûrst author in [10].

Inspired by the form of the aforementioned Bump–Friedberg–Ginzburg construc-
tion on GSp4 [2], we give two multivariate Rankin–Selberg integrals that have a sim-
ilar shape: one in three variables on GL4 and one in two variables on GU(2, 2). _e
integrand of the construction in [2] is the product of a cusp form with both a Siegel
and Klingen Eisenstein series. Using the symplectic form given by the anti-diagonal
matrix

J =
⎛
⎜
⎜
⎜
⎝

1
1

−1
−1

⎞
⎟
⎟
⎟
⎠

,

the Siegel and Klingen parabolics on GSp4 are those represented by matrices with
entries of the form

(1.1)
⎛
⎜
⎜
⎜
⎝

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

⎞
⎟
⎟
⎟
⎠

and
⎛
⎜
⎜
⎜
⎝

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗

⎞
⎟
⎟
⎟
⎠

,

respectively. Both are maximal, so the Eisenstein series for these parabolics are func-
tions of a single complex variable. _e parabolics with the same shape on GL4 are
respectively maximal and non-maximal, with respective Eisenstein series in one and
two complex variables. On the other hand, the parabolics with the same shape on
GU(2, 2) are both maximal and give Eisenstein series in a single variable. Both the
integral representations given here are of the products of the pair of Eisenstein series
on GL4 or GU(2, 2) with a cusp form in a generic automorphic representation.

We give rough statements of the main theorems of the paper. For precise deûni-
tions of the groups, Eisenstein series, etc., see Sections 2 or 3. We ûrst give the integral
on GL4/F , F a number ûeld. Everywhere in this paper,A denotes the adelesAF of F.
We write ζF for the Dedekind zeta function of F.

_eorem 1.1 If π is a cuspidal automorphic representation on GL4/F with trivial cen-
tral character and EP(g ,w) and EQ(g , s1 , s2) are the Eisenstein series with degenerate
data associated to the parabolics P and Q given by the respective shapes in (1.1), then we
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have

∫
GL4(F)Z(A)/GL4(A)

ϕ(g)EP(g ,w)EQ(g , s1 , s2) dg =S

L(π, Std, 2w + s1 − s2 − 1
2 )L(π,∧

2 , 2s1 + 2s2 − 1)L(π,∧3 , 2w − s1 + s2 − 1
2 )

ζF(4w)ζF(4s1)ζF(4s2)ζF(4w − 1)ζF(4s1 + 4s2 − 2)
,

where =S means that the two sides of the equality are both Eulerian (i.e., factor into local
components for each place) and, that the local components are the same away from a
ûnite set of places S.

We have the following result for the group GU(2, 2). Write E/F for the totally
imaginary quadratic extension used to deûne this group. (See Section 3 for details.)

_eorem 1.2 If π is a generic cuspidal automorphic representation on GU(2, 2) with
trivial central character and EP(g ,w) and EQ(g , s) are the Siegel and Klingen Eisen-
stein series on GU(2, 2) respectively, then we have

∫
GU(2,2)(F)Z(A)/GU(2,2)(A)

ϕ(g)EP(g ,w)EQ(g , s) dg =S

L(π, Std, 2w − 1
2 )L(π,∧

2 , 3s − 1)
L(єE/F , 4w − 1)ζF(4w)ζE(3s)ζF(6s − 2)

,

where єE/F is the quadratic character of the ûeld extension.

2 Three-variable Rankin–Selberg Integral for GL4

Let {b1 , b2 , b3 , b4} be the ordered basis ofV4, the standard representation ofG = GL4
with the right action. Deûne the standard maximal parabolic P and non-maximal
parabolicQ to be the respective stabilizers of the �ags ⟨b3 , b4⟩ and ⟨b4⟩ ⊆ ⟨b2 , b3 , b4⟩.
_ese deûnitions agree with the shapes given by (1.1) in the introduction.

We deûne Eisenstein series for P and Q with degenerate data. For P, pick a stan-
dard section fP(g ,w) ∈ IndG(A)

P(A)
δwP that factorizes as fP(g ,w) = ∏v fP ,v(gv ,w),

gv ∈ GL4(Fv). For Q, ûrst denote by P3,1 the maximal parabolic stabilizing the
line ⟨b4⟩ via the right action, so that the elements of P3,1 have 0’s for their (4, 1),
(4, 2), and (4, 3) entries. Similarly deûne P1,3 to be the parabolic with 0’s in the spots
(1, 2), (1, 3), and (1, 4), so that Q = P3,1 ∩ P1,3. _en we pick a standard section
fQ(g , s1 , s2) in IndG(A)

Q(A)
(δs1P3,1

δs2P1,3
) that similarly factorizes as∏v fQ ,v(gv , s1 , s2). _e

Eisenstein series are then

EP(g ,w) = ∑
γ∈P(F)/GL4(F)

fP(γg ,w),

EQ(g , s1 , s2) = ∑
γ∈Q(F)/GL4(F)

fQ(γg , s1 , s2),

which are absolutely convergent when the real parts of w , s1 , s2 are suõciently large.
If π is a cuspidal representation, and ϕ is in the space of π, the global integral is

I(ϕ, s1 , s2 ,w) = ∫
GL4(F)Z(A)/GL4(A)

ϕ(g)EP(g ,w)EQ(g , s1 , s2) dg .
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We will show that the integral unfolds to the Whittaker model of ϕ and that it repre-
sents the product of the L-functions of the three fundamental representations of SL4.

2.1 Global Construction

Set

νP =

⎛
⎜
⎜
⎜
⎝

1
1

1
1

⎞
⎟
⎟
⎟
⎠

and νQ =

⎛
⎜
⎜
⎜
⎝

1
1

1
1

⎞
⎟
⎟
⎟
⎠

.

_e following lemma will be used in the unfolding.

Lemma 2.1 _e double coset space Q(F)/GL4(F)/P(F) is represented by the four
permutation matrices corresponding to the permutations

{νPν−1
Q = (1243), 1, γ1 = (123), γ2 = (243)} .

For i ∈ {1, 2}, the stabilizer of the coset Q(F)γ i inside P(F) contains the unipotent
radical of a parabolic subgroup of GL4.

Proof _e Bruhat decomposition gives

Q(F)/GL4(F) /P(F) = ⟨(23)⟩/ S4 /⟨(12), (34)⟩.

_e coset space S4/⟨(12), (34)⟩ is represented by the six permutations σ ∈ S4 with
σ(1) < σ(2) and σ(3) < σ(4). Letting ⟨(23)⟩ act on this set, one ûnds 4 distinct
lists of the form (σ(1), σ(2), σ(3), σ(4)), namely (1, 2, 3, 4), (1, 4, 2, 3), (2, 3, 1, 4),
and (2, 4, 1, 3). _ese correspond to the permutations listed. _e stabilizer for γ1
contains the unipotent radical of the parabolic P3,1 and the stabilizer for γ2 contains
the unipotent radical of P1,3.

Deûne R = (ν−1
P QνP) ∩ (ν−1

Q PνQ) ⊆ GL4. _en R consists of matrices of the form

(2.1)
⎛
⎜
⎜
⎜
⎝

∗ ∗ ∗

∗ ∗

∗

∗

⎞
⎟
⎟
⎟
⎠

.

Deûne R0 to be the unipotent radical of R.

Proposition 2.2 Denote by

W χ
ϕ (g) = ∫UB(F)/UB(A)

χ−1
(u)ϕ(ug) du

the Whittaker model of ϕ attached to a non-degenerate character χ∶UB(F)/UB(A) →

C×. _en

I(ϕ, s1 , s2 ,w) = ∫
R0

(A)Z(A)/GL4(A)

W χ
ϕ (g) fP(νQ g ,w) fQ(νP g , s1 , s2) dg .
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Proof Unfolding EP and then EQ gives, using Lemma 2.1 and the cuspidality of ϕ,

I(ϕ, s1 , s2 ,w) =

∫
((νQ ν−1

P Q(F)νP ν−1
Q )∩P(F))Z(A)/GL4(A)

ϕ(g) fP(g ,w) fQ(νPν−1
Q g , s1 , s2) dg .

Changing variables, this is

∫
R(F)Z(A)/GL4(A)

ϕ(g) fP(νQ g ,w) fQ(νP g , s1 , s2) dg .

Forming an inner integral over R0(F)/R0(A) and Fourier expanding along the rest
of the unipotent radical of the Borel gives the result.

For v a place of F, deûne

Iv(W , s1 , s2 ,w) = ∫
R0

(Fv)Z(Fv)/G(Fv)
W χ,v

ϕ (g) fP(νQ g ,w) fQ(νP g , s1 , s2) dg .

Also write ζFv for the local factor at v of the ζ-function of F.

2.2 Unramified Computation

In this section we prove the following theorem.

_eorem 2.3 When all the data is unramiûed and v is non-Archimedean,

Iv(W , s1 , s2 ,w) =

L(πv , Std, 2w + s1 − s2 − 1
2 )L(πv ,∧2 , 2s1 + 2s2 − 1)L(πv ,∧3 , 2w − s1 + s2 − 1

2 )

ζFv (4w)ζFv (4s1)ζFv (4s2)ζFv (4w − 1)ζFv (4s1 + 4s2 − 2)
.

Proof Let T denote the diagonal torus of GL4, a typical element of which is t =

diag(t1 , t2 , t3 , t4), and let UB denote the unipotent radical of the upper-triangular
Borel of GL4. Since everything is local, we write F for Fv , I for Iv , W for W χ,v

ϕ , fP
and fQ for fP ,v and fQ ,v , p for a uniformizer ofOF , and ∣ ⋅ ∣ for the absolute value on F
such that ∣p∣ is the size of OF modulo its maximal ideal. _en I(W , s1 , s2 ,w) is equal
to

∫
Z/T

δ−1
B (t)W(t)∫

R0
/UB

χ(u) fP(νQut,w) fQ(νPut, s1 , s2) du dt

= ∫
Z/T

δ−1
B (t)W(t)∣ t1

t4
∣ ∫

R0
/UB

χ(tut−1
) fP(νQ tu,w) fQ(νP tu, s1 , s2) du dt

= ∫
Z/T

δ−1
B (t)W(t)∣ t1

t4
∣ ∣

t1 t3
t2 t4

∣
2w

∣
t2 t1 t4
t33

∣
s1
∣

t32
t1 t4 t3

∣
s2

× ∫
R0

/UB

χ(tut−1
) fP(νQu,w) fQ(νPu, s1 , s2) du dt.

Parametrize Z/T by (a, b, c) ∈ F× × F× × F× with (a, b, c) mapping to the diagonal
element t(a, b, c) = diag(abc, bc, c, 1). As usual, set K = δ−1/2

B W . With t = t(a, b, c),

https://doi.org/10.4153/CMB-2018-003-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2018-003-2


Multivariate Rankin–Selberg Integrals on GL4 and GU(2, 2) 827

then

δ−1
B (t)W(t)∣ t1

t4
∣ ∣

t1 t3
t2 t4

∣
2w

∣
t2 t1 t4
t33

∣
s1
∣

t32
t1 t4 t3

∣
s2
=

K(t(a, b, c))∣ac∣2w−
1
2 ∣
ab2

c
∣
s1− 1

4
∣
b2c
a

∣
s2− 1

4
,

and the vanishing properties ofW imply that this expression is 0 unless a, b, c ∈ OF .
With t = t(a, b, c) and a, b, c ∈ OF , we compute the inner integral. For r ∈ F, let

n i j(r) = 1 + rE i j and let E i j denote the matrix with 1 at the (i , j) position and 0’s
elsewhere. _en R0/UB is isomorphic to F × F × F via the map sending (x , y, z) to
n12(x)n23(y)n34(z). Observe that the two-by-twomatrix ( 1 0

r 1 ) is rightK-equivalent
to ( 1 r−1

0 1 ) ( r−1 0
0 r ) when ∣r∣ > 1. It follows that fP(νQu,w) = fP(νQn23(y),w) =

∣y∣−4w if ∣y∣ > 1 and is 1 if ∣y∣ ≤ 1. Similarly,

fQ(νPu, s1 , s2) = fQ(νPn12(x), s1 , s2) fQ(νPn34(z), s1 , s2) .

_e section fQ(νPn12(x), s1 , s2) is 1 when ∣x∣ ≤ 1 and is ∣x∣−4s2 when ∣x∣ > 1, and
fQ(νPn34(z), s1 , s2) is 1 when ∣z∣ ≤ 1 and ∣z∣−4s1 when ∣z∣ > 1.

_e inner integral is thus

(1+∫
∣y∣>1

ψ(by)∣y∣−4w dy)(1+∫
∣x ∣>1

ψ(ax)∣x∣−4s2 dx)(1+∫
∣z∣>1

ψ(cz)∣z∣−4s1 dz) =

1
ζ(4w)ζ(4s1)ζ(4s2)

× (
1 − ∣p∣(m+1)(4w−1)

1 − ∣p∣4w−1 )(
1 − ∣p∣(ℓ+1)(4s2−1)

1 − ∣p∣4s2−1 )(
1 − ∣p∣(n+1)(4s1−1)

1 − ∣p∣4s1−1 ) ,

where ℓ,m, n are the p-adic valuations of a, b, c.
Let us write K[ℓ,m, n] for K(t(pℓ , pm , pn)). We deduce that I(W , s1 , s2 ,w) is

1
ζ(4w)ζ(4s1)ζ(4s2)

× ∑
ℓ ,m ,n≥0

K[ℓ,m, n]∣p∣(ℓ+n)(2w− 1
2 )∣p∣(ℓ+2m−n)(s1− 1

4 )∣p∣(−ℓ+2m+n)(s2− 1
4 )

× (
1 − ∣p∣(m+1)(4w−1)

1 − ∣p∣4w−1 )(
1 − ∣p∣(ℓ+1)(4s2−1)

1 − ∣p∣4s2−1 )(
1 − ∣p∣(n+1)(4s1−1)

1 − ∣p∣4s1−1 ) .

Set

X = ∣p∣(2w−
1
2 )+(s1−

1
4 )−(s2−

1
4 ) ,

Y = ∣p∣2[(s1−
1
4 )+(s2−

1
4 )] ,

Z = ∣p∣(2w−
1
2 )−(s1−

1
4 )+(s2−

1
4 ) .

_en XZ = ∣p∣4w−1, YZ
X = ∣p∣4s2−1, XY

Z = ∣p∣4s1−1, and the expression above is the
reciprocal of the zeta factors times

∑
ℓ ,m ,n≥0

K[ℓ,m, n]Ym
(
1 − (XZ)m+1

1 − XZ
)(

Xℓ+1 − (YZ)ℓ+1

X − YZ
)(

Zn+1 − (XY)n+1

Z − XY
) .
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By Lemma 2.4 below and the Casselman–Shalika formula, this is

( ∑
t ,v≥0

Aπ[t, 0, v]X tZv
)( ∑

u≥0
Aπ[0, u, 0]Yu

) ,

whereAπ[n1 , n2 , n3] is the characterA[n1 , n2 , n3]deûned in the statement of Lemma
2.4 evaluated on the conjugacy class associated to πv in SL4(C). _is product is

L(πv , Std, 2w + s1 − s2 − 1
2 )L(πv ,∧3 , 2w − s1 + s2 − 1

2 )

ζFv (4w − 1)
L(πv ,∧2 , 2s1 + 2s2 − 1)

ζFv (4s1 + 4s2 − 2)
,

so the theorem follows.

Denote by ω1 ,ω2 ,ω3 the fundamental weights of SL4, so that ω1 is the highest
weight of the standard representation, ω2 is the highest weight of ∧2, and ω3 is the
highest weight of ∧3 or the dual to the standard representation.

Lemma 2.4 Write A[n1 , n2 , n3] for the character of the irreducible representation of
SL4 with highest weight n1ω1 + n2ω2 + n3ω3. _en one has the identity of power series

(2.2)

∑
ℓ ,m ,n≥0

A[ℓ,m, n]Ym
(
1 − (XZ)m+1

1 − XZ
)(

Xℓ+1 − (YZ)ℓ+1

X − YZ
)(

Zn+1 − (XY)n+1

Z − XY
) =

( ∑
t ,v≥0

A[t, 0, v]X tZv
)( ∑

u≥0
A[0, u, 0]Yu

) .

Proof We ûrst claim that the coeõcient of X tYuZv on the right-hand side of (2.2)
is

A[t, 0, v]A[0, u, 0] = ∑
0≤k≤i≤t
0≤ j≤u−i
u−v≤ j+k

A[t + u − 2i − j, i + j − k, v − u + j + 2k].

_is is obtained by applying the Littlewood–Richardson rule. _e terms on the right-
hand side correspond to strict extensions of theYoungdiagramDt ,0,v with rows of size
(t+v , v , v) by the Young diagram D0,u ,0 with rows of size (u, u). _e parameters i , j,
and k correspond respectively to the number of boxes labeled 1 added to the second
row ofDt ,0,v , the number of boxes labeled 2 added to the second row ofDt ,0,v , and the
number of boxes labeled 2 added to the third row of Dt ,0,v . _ese three parameters
completely determine the extension, since the remainder of the 1’s and 2’s must go
in the top row and fourth row, respectively. _e inequalities and the weight of the
representation are easily computed from the resulting diagram.

_e coeõcient of A[ℓ,m, n] on the le�-hand side of (2.2) can be rewritten as

(2.3) (
ℓ

∑
α=0

Xℓ−αY αZα)(
m

∑
β=0

XβYmZβ)(
n

∑
γ=0

XγY γZn−γ
) =

∑
α∈[0,ℓ]
β∈[0,m]

γ∈[0,n]

Xℓ−α+β+γYm+α+γZn+α+β−γ .
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We need to identify the le�-hand side of (2.2) with

(2.4) ∑
t ,u ,v≥0

∑
0≤k≤i≤t
0≤ j≤u−i
u−v≤ j+k

A[t + u − 2i − j, i + j − k, v − u + j + 2k].

Rearranging the summation in (2.2) using (2.3) and the change of variable ℓ =

α + α′ ,m = β + β′ , and n = γ + γ′, we obtain

(2.5) ∑
α ,β ,γ ,α′ ,β′ ,γ′≥0

A[α + α′ , β + β′ , γ + γ′]Xα
′
+β+γY α+β+β

′
+γZα+β+γ′ .

If one instead starts with (2.4), applies the substitutions α = u − i − j, α′ = t − i,
β = i − k, β′ = j, γ = k, and γ′ = v − u + j + k, and rearranges the resulting system of
inequalities, one again arrives at (2.5).

3 Two-variable Rankin–Selberg Integral for GU(2, 2)
In this section we give the two-variable integral on GU(2, 2) mentioned above. _is
integral is the quasi-split version of the three-variable integral on GL4. Since many of
the computations are identical to those in Section 2, we only provide brief proofs.

3.1 Notation

Let E/F be a quadratic extension of ûelds. Denote by J4 the matrix

J4 =
⎛
⎜
⎜
⎜
⎝

1
1

−1
−1

⎞
⎟
⎟
⎟
⎠

.

We deûneG = GU(2, 2)/F to be the algebraic group over F consisting of the elements
(g , ν(g)) ∈ (ResEF GL4) × GL1/F that satisfy gJ4∗g = ν(g)J4, where ∗g denotes con-
jugate transpose.

We denote by (W4 , J4) the four dimensional skew-Hermitian vector space over
E, which is the deûning representation of G. _e group G acts on the right of W4.
We write {e1 , e2 , f2 , f1} for the ordered basis of W4 and write ⟨ ⋅ , ⋅ ⟩ for the skew-
Hermitian form associated with J4. _us, ⟨λw1 , µw2⟩ = λµ⟨w1 ,w2⟩ for w1 ,w2 ∈ W4
and λ, µ in E. Moreover, ⟨e i , f j⟩ = δ i j = −⟨ f j , e i⟩ and ⟨e i , e j⟩ = ⟨ f i , f j⟩ = 0 for all
i , j ∈ {1, 2}.

3.2 Dual Groups and L-functions

_e integral representation studied in this section will produce a degree 6 (exterior
square) and degree 8 (standard) L-function on PGU(2, 2). We deûne the dual groups
and L-functions, and then provide more explicit descriptions at places where πv is
unramiûed.
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3.2.1 Dual Groups

Recall that the dual group of G = GU(2, 2) is

LG = (GL1(C) ×GL4(C)) ⋊Gal(E/F).

_e nontrivial element θ of Gal(E/F) acts on GL1(C) ×GL4(C) by

(λ, g) z→ (λ det(g), Φ4
t g−1Φ−1

4 ),

where

Φ4 =

⎛
⎜
⎜
⎜
⎝

1
−1

1
−1

⎞
⎟
⎟
⎟
⎠

.

(See, for instance, [14].) _e adjoint group PGU(2, 2) of G has dual group given by
the derived subgroup SL4(C) ⋊Gal(E/F) of LG.

3.2.2 Exterior Square Representation of LG

We now deûne the “exterior square” representation of LG. A very clear discussion of
this representation is given in [5, Section 2]. For the convenience of the reader, we
now recall this discussion, following [5] closely.

LetV4 denote the standard 4-dimensional representation ofGL4(C), and let LG○ =

GL1(C)×GL4(C) act on∧2V4 ≅C6 via (λ, g) ↦ λ∧2(g). Denote this representation
by ρ○∶ LG○ → GL6(C). _en x ↦ ρ○(x) and x ↦ ρ○(θ−1xθ) are irreducible repre-
sentations of GL1(C) ×GL4(C) with the same highest weight, and thus are isomor-
phic. Hence, there is an element A ∈ GL(∧2V4) satisfying ρ○(θ−1xθ) = A−1ρ○(x)A.
Since A and −A induce the same conjugation action, we can and do choose A to have
positive trace.
For example, if one uses the ordered bases

{v1 , v2 , v3 , v4} for V4 ,

{v1 ∧ v2 , v1 ∧ v3 , v1 ∧ v4 , v2 ∧ v3 , v2 ∧ v4 , v3 ∧ v4} for ∧2 V4 ,

(3.1)

then A can be represented by the block diagonal matrix

(3.2) A = diag(12 , (
0 1
1 0 ) ,12) ,

where 12 is the 2 × 2 identity matrix.
_emap that sends x = (λ, g) to ρ○(x) and (1, 1)⋊θ to A deûnes a representation

ρ∶ LG → GL6(C), where LG = LG○ ⋊Gal(E/F) = (GL1(C) ×GL4(C)) ⋊Gal(E/F).
_is representation is what we refer to as the exterior square; we denote it by ∧2.

Remark 3.1 Had we chosen A with negative trace, we would get a diòerent six-
dimensional representation ∧2

neg of LG. _e results below pertain to ∧2, not ∧2
neg.
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_e standard representation of LG has a simpler deûnition. If x = (λ, g) ∈ LG○, let
ρ○std(x) = λg ∈ GL(V4). _en the standard representation ρstd is the 8-dimensional
representation ρstd∶

LG → GL8(C) deûned by ρstd = Ind
LG
LG○ ρ○std.

3.2.3 Unramified L-factors

Suppose that for a ûnite place v, πv is an unramiûed representation of GU(2, 2). We
consider two cases.

Case 1 (v splits in E): If v splits in E, then there is an isomorphismQv⊗QE →Qv⊕Qv .
_is identiûcation induces projections p i ∶GU(2, 2)/Qv → GL4/Qv corresponding to
each factor i ∈ {1, 2}, where for aQ-algebra R and group G over Q we write G/R for
its scalar extension to R. We obtain an isomorphismGU(2, 2)/Qv ≅ GL1/Qv ×GL4/Qv

deûned by mapping g to the pair (µ(g), p1(g)). _is induces a unique identiûcation
between the dual groups of GU(2, 2)/Qv and GL1/Qv ×GL4/Qv , so we can use LG○ =

GL1(C) ×GL4(C) to deûne the local L-factor.
_us for v split, we have

L(πv ,∧2 , s) = L(π′v , λ×∧2 , s) and L(πv , Std,w) = L(π′v , λ×Std,w)L(π′v , λ×∧3 ,w).

Here, π′v denotes the representation πv thought of as a representation of GL1 ×GL4,
the notation λ × ρ denotes the tensor product of the tautological 1-dimensional rep-
resentation of GL1(C) with a representation ρ of GL4, and the L-functions of π′v are
those considered in Section 2.

Case 2 (v is inert in E): If the ûnite place v is inert in E and πv is unramiûed, then the
exterior square and standard L-functions are related to L-functions for an embedded
symplectic group. Let T denote the diagonal torus of G. Deûne G′ = GSp4 ⊆ G to be
the group of matrices g ∈ GL4/F that satisfy gJ4 t g = ν(g)J4 for some ν(g) ∈ F×, and
denote by T ′ = T ∩G′ the diagonal torus of G′.

_e dual group ofG′ is LG′ = GSpin5(C). Wewrite Spin for its 4-dimensional spin
representation; under the isomorphism GSpin5(C) ≃ GSp4(C), this is the deûning
four-dimensional representation of GSp4(C). We denote by Std the ûve-dimensional
representation of GSpin5(C) that sits inside the exterior square of the Spin represen-
tation. Letting µ∶GSpin5(C) → GL1(C) denote the similitude, Std ⊗ µ−1 factors
through GSpin5(C) → SO5(C) and has an invariant quadratic form.

_e following well-known proposition relates L-functions forG to L-functions for
G′ when v is inert in E.

Proposition 3.2 Suppose that v is inert in E, α is an unramiûed character of T, and πv
is an unramiûed irreducible subquotient of IndG

B (δ
1/2
B α). Denote by α′ the restriction of

α to T ′, and suppose that π′v is an unramiûed irreducible subquotient of IndG′

B′ (δ
1/2
B′ α

′).
_en if πv has central character ωπ ,

L(πv ,∧2 , s) = L(π′v , Spin, s)L(ωπ , 2s),

L(πv , Std,w) =
L(π′v , Std, 2w)

L(ωπ , 2w)
.
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_eûrst part of this proposition is implicit in [5]. Let p = pv be a uniformizer of Fv .
Note that the reciprocals of both sides of the ûrst equality are of degree 6 polynomials
in ∣p∣sFv , and that the reciprocals of both sides of the second equality are degree four
polynomials in ∣p∣2wFv and thus degree eight polynomials in ∣p∣wFv . We omit the proof of
Proposition 3.2, which follows easily from the explicit choices of bases and the matrix
A given in (3.1) and (3.2).

3.3 The Global Integral

We deûne the Siegel parabolic P of G to be the stabilizer of the (isotropic) subspace
⟨ f1 , f2⟩ ⊆ W4, and the Klingen parabolic Q to be the stabilizer of the line ⟨ f1⟩. _ese
are consistent with the shapes (1.1) from the introduction. If fP ∈ IndG(A)

P(A)
δwP and fQ ∈

IndG(A)

Q(A)
δs
Q are standard sections with respective factorizations∏v fP ,v and∏v fQ ,v ,

then the Siegel and Klingen Eisenstein series are, respectively,

EP(g ,w) = ∑
γ∈P(F)/G(F)

fP(γg ,w) and EQ(g , s) = ∑
γ∈Q(F)/G(F)

fQ(γg , s).

_e global integral is

I(ϕ, s,w) = ∫
G(F)ZE(A)/G(A)

ϕ(g)EP(g ,w)EQ(g , s) dg .

_e unfolding of I(ϕ, s,w) is identical to that of the three-variable integral con-
sidered in Section 2. Namely, set

νP =

⎛
⎜
⎜
⎜
⎝

1
1

1
1

⎞
⎟
⎟
⎟
⎠

and νQ =

⎛
⎜
⎜
⎜
⎝

1
1

−1
1

⎞
⎟
⎟
⎟
⎠

.

Deûne R = (ν−1
P QνP)∩(ν−1

Q PνQ). _en R is the subgroup ofG consisting of matrices
of the form in (2.1). Denote by UB ⊆ B the unipotent radical of the upper-triangular
Borel ofG, and suppose χ∶UB(F)/UB(A) →C× is a nondegenerate character ofUB .
Deûne

W χ
ϕ (g) = ∫UB(F)/UB(A)

χ−1
(u)ϕ(ug) du

to be the χ-Whittaker model of ϕ.

Proposition 3.3 Suppose π has trivial central character. Denote by ZE the center of
G, which is E× embedded diagonally, and let R0 be the unipotent radical of R. _en for
any choice of nondegenerate character χ of UB ,

(3.3) I(ϕ, s,w) = ∫
R0

(A)ZE(A)/G(A)

W χ
ϕ (g) fP(νQ g ,w) fQ(νP g , s) dg .

Proof One proves that the double coset space Q(F)/G(F)/P(F) is represented by
{1, νPν−1

Q }, and then the unfolding proceeds exactly as in the proof of Proposition 2.2.
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3.4 Unramified Calculation

As is well known, the global Whittaker coeõcient W χ
ϕ factorizes over the places v of

F as a product of local Whittaker functions whenever ϕ is a pure tensor in a tensor-
product decomposition of π. _us, the integral on the right-hand side of (3.3) is an
Euler product. We now compute the local analogues of this integral when all the data
is unramiûed.

More precisely, assume that v is a ûnite place of F unramiûed in E, write Ev =

Fv ⊗F E, and write p = pv for a uniformizer for Fv . Also write OFv for the ring of
integers of Fv . Denote by n(x1 , x2) an element of G(Fv) of the form

⎛
⎜
⎜
⎜
⎝

1 x1 ∗ ∗

1 x2 ∗

1 ∗

1

⎞
⎟
⎟
⎟
⎠

for x1 ∈ Ev , x2 ∈ Fv . Denote by χv the restriction of χ to UB(Fv). Assume that the
character χv is unramiûed in the sense of [4, p. 219]. Set Kv = G(OFv ). Assume the
representation πv is spherical, and denote byWv the unique element of IndG(Fv)

UB(Fv)
χv in

the space of theWhittakermodel of πv withWv(Kv) = 1. Finally, assume fP(Kv ,w) =

fQ(Kv , s) = 1.
Deûne

Iv(Wv , s,w) = ∫
R(Fv)ZE(Fv)/G(Fv)

fP ,v(νQ g ,w) fQ ,v(νP g , s)Wv(g) dg .

_eorem 3.4 Denote by єE/F ∶ F×/A×

F the quadratic character associated with E/F,
i.e., єE/F(pv) = 1 if the place v of F splits in E and єE/F(pv) = −1 if v is inert in E.
(Recall that pv = p is a uniformizer of Fv .) _en when the data is unramiûed,

Iv(Wv , s,w) =
L(πv , Std, 2w − 1

2 )L(πv ,∧2 , 3s − 1)
L(єE/F ,v , 4w − 1)ζFv (4w)ζEv (3s)ζFv (6s − 2)

.

Here, we have the notation
L(єE/F ,v ,w) = (1 − єE/F(p)∣p∣sv)−1 and ζEv (s) = ∏

w∣v
(1 − ∣p∣sw)−1 .

Proof If v splits in E, this becomes the unramiûed calculation considered in Sec-
tion 2. _us we brie�y explain the proof in the case that v is inert in E. Write q for the
order of the residue ûeld of the integer ring of Fv . Set U = q−(2w− 1

2 ), V = q−(3s−1),
and KG

πv
= δ−1/2

B Wv , where Wv is, as above, the spherical Whittaker function of πv
normalized so that Wv(1) = 1. Deûne I1(Wv , s,w) = ζFv (4w)ζEv (3s)I(Wv , s,w).
By manipulations similar to those in the proof of _eorem 2.3, we get that

I1(Wv , s,w) = ∑
n ,m≥0

V nU2m
(
1 −U2n+2

1 −U2 )(
1 − V 2m+2

1 − V 2 )KG
πv
[m, n],

where KG
πv
[m, n] = KG

πv
(diag(pm+n , pn , 1, p−m)). Since the rational root system of G

is that of GSp4, a fact due to Tamir [15] is that the Casselman–Shalika formula for G
reduces to that of GSp4 in the sense that KG

πv
= KGSp4

π′v
on the torus T ′ of GSp4 ⊆ G.
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Here π′v and T ′ are as in Proposition 3.2. See [6, Section 5.2] for an exposition of this
relationship. Applying this fact, I1 is computed in [2, _eorem 1.2] to be

(3.4)
L(π′v , Std,U2)L(π′v , Spin,V)

ζFv (U4)
.

Here, L(πv , Std, Z) means ∑k≥0 tr(SymkStd(Aπv ))Zk , where Aπv is the conjugacy
class in LG corresponding to πv , and similarly for the other L and ζ-functions. Via
Proposition 3.2, (3.4) is equal to

ζ(U2)L(πv , Std,U)L(πv ,∧2 ,V)

ζ(U4)ζ(V 2)
=

L(πv , Std, 2w − 1
2 )L(πv ,∧2 , 3s − 1)

L(єE/F ,v , 4w − 1)ζ(6s − 2)
.

_e theorem follows.
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