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Multivariate Rankin—Selberg Integrals on
GL4 and GU(2,2)

Aaron Pollack and Shrenik Shah

Abstract. Inspired by a construction by Bump, Friedberg, and Ginzburg of a two-variable integral
representation on GSp, for the product of the standard and spin L-functions, we give two similar
multivariate integral representations. The first is a three-variable Rankin-Selberg integral for cusp
forms on PGL4 representing the product of the L-functions attached to the three fundamental rep-
resentations of the Langlands L-group SL4(C). The second integral, which is closely related, is a
two-variable Rankin-Selberg integral for cusp forms on PGU(2, 2) representing the product of the
degree 8 standard L-function and the degree 6 exterior square L-function.

1 Introduction

Integral representations of Rankin-Selberg type have been used over the years to re-
late the analytic behavior of L-functions to the study of the more tractable analytic
properties of Eisenstein series. The vast majority of Rankin-Selberg integral represen-
tations relate an Eisenstein series in a single variable to a single L-function together
with some normalizing factors, which usually take the form of Dirichlet L-functions.

In the last couple of decades, there has been interest in multivariate versions of
this type of construction. Bump and Friedberg [1] gave a two-variable integral on
GL, representing the product of the standard and exterior square L-functions. Bump,
Furusawa, and Ginzburg [3] later gave a two-variable integral on GL3, unfolding to
a nonunique model that represents the product of the standard L-function and the
dual of standard L-function. Bump, Friedberg, and Ginzburg [2] gave several con-
structions of two-variable integral representations on GSp,, GSp, and GSpg repre-
senting the product of the standard and spin L-functions. These were among the first
examples of such identities in more than one complex variable.

Ginzburg and Hundley [7] found the first three-variable Rankin-Selberg integral;
for a generic cusp form on the split orthogonal similitude group GSOs, it represents
the product of the standard L-function with two spin L-functions. Gan and Hund-
ley [6] gave a general construction of an integral for quasi-split groups of type Dy
that specializes to a different three-variable integral when the group is split. Continu-
ing the work initiated in [7], Hundley [8] gave various constructions of two-variable
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integrals on split orthogonal groups. Recently, Hundley and Shen [9] gave a two-
variable integral on GSp, x GL, x GL, representing the product of two GL,-twisted
spin L-functions, one coming from each GL,-factor. We found in [12] a two-variable
Rankin-Selberg integral on GSp, x GL,.

Such integrals are valuable for many reasons. Analysis of the Eisenstein series
in these constructions give a tool to study the relationship between the different
L-functions involved; for instance, Bump, Friedberg, and Ginzburg [2, Theorem A]
rule out simultaneous poles at s = 1 for the standard and spin L-functions on GSps.
There seems to be an interesting relationship between multivariate Rankin-Selberg
integrals and those unfolding to non-unique models, which we have explored in
[11,13]. There is an analogous relationship between the GU(2,2) construction below
and a non-unique model integral given by the first author in [10].

Inspired by the form of the aforementioned Bump-Friedberg-Ginzburg construc-
tion on GSp, [2], we give two multivariate Rankin-Selberg integrals that have a sim-
ilar shape: one in three variables on GL4 and one in two variables on GU(2,2). The
integrand of the construction in [2] is the product of a cusp form with both a Siegel
and Klingen Eisenstein series. Using the symplectic form given by the anti-diagonal
matrix

the Siegel and Klingen parabolics on GSp, are those represented by matrices with
entries of the form

* * * * * * * *
* * * * * * *
1.1) and ,
* * * * *
* * *

respectively. Both are maximal, so the Eisenstein series for these parabolics are func-
tions of a single complex variable. The parabolics with the same shape on GL,4 are
respectively maximal and non-maximal, with respective Eisenstein series in one and
two complex variables. On the other hand, the parabolics with the same shape on
GU(2,2) are both maximal and give Eisenstein series in a single variable. Both the
integral representations given here are of the products of the pair of Eisenstein series
on GL4 or GU(2, 2) with a cusp form in a generic automorphic representation.

We give rough statements of the main theorems of the paper. For precise defini-
tions of the groups, Eisenstein series, etc., see Sections 2 or 3. We first give the integral
on GLy/p, F a number field. Everywhere in this paper, A denotes the adeles A of F.
We write ( for the Dedekind zeta function of F.

Theorem 1.1  If mis a cuspidal automorphic representation on GLy/p with trivial cen-

tral character and Ep(g,w) and Eq(g, s1,s2) are the Eisenstein series with degenerate
data associated to the parabolics P and Q given by the respective shapes in (1.1), then we
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have

Jovscorsancnsin HOEP (@ Ea(g51,52) dg =s
L(m,Std, 2w + sy — s — 3 )L(7, A%, 251 + 255 = 1) L(7, A%, 2w — 51 + 5 — 1)
Cr(4w){r(4s1)(r(4s2) Cp(4w — 1){F(4s1 + 45, — 2) ’
where =g means that the two sides of the equality are both Eulerian (i.e., factor into local

components for each place) and, that the local components are the same away from a
finite set of places S.

We have the following result for the group GU(2,2). Write E/F for the totally
imaginary quadratic extension used to define this group. (See Section 3 for details.)

Theorem 1.2 If it is a generic cuspidal automorphic representation on GU(2,2) with
trivial central character and Ep(g,w) and Eq(g,s) are the Siegel and Klingen Eisen-
stein series on GU(2, 2) respectively, then we have

$(g)Ep(gw)Eq(g>s) dg =s
L(m,Std, 2w — 3)L(, A%, 35 — 1)
L(eg/pr4w — 1)Cp(4w)(E(3s)(p(6s - 2)°

where egp is the quadratic character of the field extension.

/;}U(Z,Z)(F)Z(A)\GU(2,2)(A)

2 Three-variable Rankin-Selberg Integral for GL,

Let {b1, by, b3, by} be the ordered basis of Vj, the standard representation of G = GL4
with the right action. Define the standard maximal parabolic P and non-maximal
parabolic Q to be the respective stabilizers of the flags (b3, by) and (b4) € (b2, b3, by).
These definitions agree with the shapes given by (1.1) in the introduction.

We define Eisenstein series for P and Q with degenerate data. For P, pick a stan-
dard section fp(g,w) ¢ Indg(AA))(Sg that factorizes as fp(g,w) = II, fp.v(gv. W),
gv € GLy(F,). For Q, first cienote by Ps,; the maximal parabolic stabilizing the
line (b4) via the right action, so that the elements of P;; have 0’s for their (4,1),
(4,2), and (4, 3) entries. Similarly define P, 5 to be the parabolic with 0’s in the spots
(1,2),(1,3), and %1,4), so that Q = P;; n Py 3. Then we pick a standard section
fa(g,s1,82)in IndQEi; (85,0, ,) that similarly factorizes as ], fo,v(gv»s1,52)- The
Eisenstein series are then

Er(gw)= > fe(ygw),

y€P(F)\ GL4(F)

Eq(g.s1,52) = >, fa(yg,s1,52),
y€Q(F)\ GL4(F)

which are absolutely convergent when the real parts of w, s, s, are sufficiently large.
If 7 is a cuspidal representation, and ¢ is in the space of 7, the global integral is

1(¢,s1, 2, = E wW)E 181> dg.
(¢, 51,52, W) L (P Z(A)\ GLy(A) ¢(g)Ep(gw)Eq(g,s1,52) dg
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We will show that the integral unfolds to the Whittaker model of ¢ and that it repre-
sents the product of the L-functions of the three fundamental representations of SLy.

2.1 Global Construction

Set

and wvq =

The following lemma will be used in the unfolding.

Lemma 2.1 'The double coset space Q(F)\ GL4(F)/P(F) is represented by the four
permutation matrices corresponding to the permutations

{vevg' = (1243), 1, y; = (123),y, = (243)}.
For i € {1,2}, the stabilizer of the coset Q(F)y; inside P(F) contains the unipotent
radical of a parabolic subgroup of GLj4.

Proof The Bruhat decomposition gives

Q(F)\GL4(F) /P(F) = ((23))\ $4/((12), (34)).

The coset space S4/{((12), (34)) is represented by the six permutations ¢ € S; with
0(1) < 0(2) and 0(3) < 0(4). Letting ((23)) act on this set, one finds 4 distinct
lists of the form (0(1),0(2),0(3),0(4)), namely (1,2,3,4), (1,4,2,3), (2,3,1,4),
and (2,4,1,3). These correspond to the permutations listed. The stabilizer for y;
contains the unipotent radical of the parabolic P5 ; and the stabilizer for y, contains
the unipotent radical of Py 3. ]

Define R = (v;' Qvp) N (vg' Pvq) € GLy. Then R consists of matrices of the form

(2.)

Define R to be the unipotent radical of R.

Proposition 2.2  Denote by

W)= [ X w)9ug) du

the Whittaker model of ¢ attached to a non-degenerate character y: Ug(F)\Up(A) —
C*. Then

I(¢,s1,52,w) = Wy (8)fr(vag:w) fa(vrg:s1,52) dg.

fR°<A>z<A>\GL4(A>
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Proof Unfolding Ep and then E, gives, using Lemma 2.1 and the cuspidality of ¢,

I(¢)51)52) W) =

-1
b b b d .
[((VQVEIQ(F)VPVEI)ﬁP(F))Z(A)\GL4(A) Yo ) alvrvg & si52) dg

Changing variables, this is

b > > d .
Jeorsancnin H@S(vagw)falveg. s 52) dg

Forming an inner integral over R°(F)\R%(A) and Fourier expanding along the rest
of the unipotent radical of the Borel gives the result. ]

For v a place of F, define

— XV
LWosnsw)= [0 W (@) fr(vag ) fa(vrg sus) de.

Also write (F, for the local factor at v of the {-function of F.
2.2 Unramified Computation
In this section we prove the following theorem.
Theorem 2.3  When all the data is unramified and v is non-Archimedean,

IV(W)SI)SZ)W) =
L(m,,Std, 2w + 51 = 55 = 2)L(my, A%, 251 + 255 = 1)L(7,, A%, 2w — 51 + 5, — 1)
Cr, (4w) (E, (4s1)(F, (4s2)Cr, (4w — 1) p, (451 + 455 — 2) ’

Proof Let T denote the diagonal torus of GL,, a typical element of which is t =
diag(ty, t3, t3,t4), and let Uy denote the unipotent radical of the upper-triangular
Borel of GLy4. Since everything is local, we write F for F,, I for I,, W for WX Y, fp
and fq for fp,, and fq,,, p for a uniformizer of Of, and | - | for the absolute Value on F
such that |p| is the size of O modulo its maximal ideal. Then I(W, s1, s, w) is equal
to

fZ\Tal—;(t)W(t) fRO\UB 3 fo (vaut, w) fo (veut, 1, 52) du dt
= L\ 8gl(t)W(t)‘t—l‘ [0 x(tut™) fo(votu, w) fo(vptu, sy, sy) du dt

i~
f14t3

S2

f1t3 2W| fatity)*

:fz\ 5; (t)W(t)‘ Hm

x[\ X(tut‘ Vfe(vou, w) fo(veu,s1,s2) du dt.
RO\ Us

Parametrize Z\T by (a,b,c) € F* x F* x F* with (a, b, ¢) mapping to the diagonal
element t(a, b, ¢) = diag(abc, be, ¢, 1). Asusual, set K = 8;/2 W. Witht = t(a, b, ¢),
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then
tit ttt £ =
st own| |22 1 -
244 1t443
b>sii| b2 i
K(t(a,b, c))|ac\2w”‘a—‘ T
a

and the vanishing properties of W imply that this expression is 0 unless a, b, c € Op.

With ¢ = t(a,b,c) and a, b, ¢ € O, we compute the inner integral. For r € F, let
nij(r) = 1+ rE;; and let E;; denote the matrix with 1 at the (i, j) position and 0’s
elsewhere. Then R%\Uj is isomorphic to F x F x F via the map sending (x, y,z) to
n12(x)n23(y)n34(z). Observe that the two-by-two matrix (! ¢) is right K-equivalent

to (4" ) (7, ©) when |r| > 1. It follows that fp(vou,w) = fp(vonas(y),w) =
|y|™*" if [y| > 1 and is 1 if |y| < 1. Similarly,

fo(vpu,sy1,s2) :fQ(VPnlz(x),Sl,Sz)fQ(VP”34(Z),S],52).

The section fq(vpnia(x),s1,s2) is 1 when |x| < 1 and is |x|*? when |x| > 1, and
fo(vpnsa(z),s1,52) is 1 when |z] < 1 and |z| ™" when |z| > 1.
The inner integral is thus

(1w 0) (1 @) (14 wieae ™ ) -

1
C(4w){(4s1)¢(4s2)
_ | p|(m+1)(4w-1) _ | 4|(€+1)(4s2-1) _ | p|(n+1)(4s1-1)
X(l Pl )(1 Jd )(1 Pl
1-[p|*v! 1-[p|*~! 1= [p[tsi=t
where ¢, m, n are the p-adic valuations of a, b, c.
Let us write K[€, m, n] for K(t(p®, p™, p")). We deduce that I( W, s1,s;, w) is
1
C(aw){(4s1){(4s2)
Z K[f, m, n]|p‘(€+n)(2w7%)|p|(€+2m7n)(slfi)|p|(7€+2m+n)(327%)

€,m,n>0

>

|(m+1)(4w—1)

- — |p|(€+1)(452-1) | p|(n+1)(4s1-1)
X(l |1p—|pl4wl )(1 1|p—||p452—1 )(1 PD—|IPI‘“1‘1 )

Set

X = |p|(2W—%)+(51—%)—(32—%

Y = |p|2[(51—i)+(sz—i)]’

7 = |p|(2w—%)—(sl—%)+(sz—i
Then XZ = |p|*~!, X2 = |p|*=27!, XL = |p[*1~1, and the expression above is the
reciprocal of the zeta factors times

. 1-— (XZ)m+1 X€+1 _ (YZ)€+1 Zn+1 _ (XY)”H
> Klemny"( ) ) )
1-XZ X-YZ zZ-XY

€,m,n>0
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By Lemma 2.4 below and the Casselman-Shalika formula, this is
(2 Adlt0v1x'2")( X Axl0,u,00¥"),
t,v>0 u>0

where A ;[n1, n,, n3] is the character A[np, n,, 13| defined in the statement of Lemma
2.4 evaluated on the conjugacy class associated to 7, in SL4(C). This product is

L(my,Std, 2w + 51 — 55 = 3 )L(7y, A%, 2w = 51 + 5 = 3) L(m,, A%, 251 + 25, — 1)
Cr, (4w - 1) Cr, (4s) +4s, - 2)
so the theorem follows. |

>

Denote by w;, w,, w3 the fundamental weights of SL4, so that w; is the highest
weight of the standard representation, w, is the highest weight of A%, and w3 is the
highest weight of A* or the dual to the standard representation.

Lemma 2.4 Write A[ny, ny, n3] for the character of the irreducible representation of
SL4 with highest weight nyw; + nyw, + n3ws. Then one has the identity of power series

2.2)

> Ale,m, n]Ym(

€,m,n>0

1= (XZ)m+1 (X€+1 _ (YZ)€+1 ) ( Zn+1 _ (XY)”“) ~
1-XZ X-YZ Z - XY -

(X afLov]x'z)( 3 Alo,u,0]v").

t,v20 u>0

Proof We first claim that the coefficient of X' Y*Z" on the right-hand side of (2.2)
is

A[t,0,v]A[0,u,0] = > Alt+u-2i—j,i+j—kv-u+j+2k].

0<k<i<t

0<j<u—i

u-v<j+k
This is obtained by applying the Littlewood-Richardson rule. The terms on the right-
hand side correspond to strict extensions of the Young diagram Dy, with rows of size
(t+v,v,v) by the Young diagram Dy , o with rows of size (u, u). The parameters i, j,
and k correspond respectively to the number of boxes labeled 1 added to the second
row of Dy g ,,, the number of boxes labeled 2 added to the second row of Dy ¢ ,,, and the
number of boxes labeled 2 added to the third row of Dy ,. These three parameters
completely determine the extension, since the remainder of the 1’s and 2’s must go
in the top row and fourth row, respectively. The inequalities and the weight of the
representation are easily computed from the resulting diagram.

The coefficient of A[£, m, n] on the left-hand side of (2.2) can be rewritten as

4 m n
l—ayarza Bym 7 n— _
(2.3) (‘;)X Y*z )(;)X Y™z )(;)X”Y”Z V)

Z Xf—rx+ﬁ+y Ym+a+yZn+a+[§—y

ael0,¢]
Be[o,m]
ye[0,n]
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We need to identify the left-hand side of (2.2) with

(2.4) YooY Alt+u-2i-ji+j-k,v-u+j+2k]
t,u,v>0 0<k<i<t
0<j<u—i
u—v<j+k

Rearranging the summation in (2.2) using (2.3) and the change of variable ¢ =
a+a’,m=pB+p and n=7y+y’, weobtain

(2'5) Z A[“ + 06,,/5 i ﬂ,7 y+ yr]Xaf+ﬁ+yYoc+ﬁ+ﬁ/+yZ(x+ﬁ+y/'
@pBy,a’,p,y"20

If one instead starts with (2.4), applies the substitutions & = u —i — j, «’ = ¢ — i,
B=i-k B =jy=k,andy =v—u+ j+k, and rearranges the resulting system of
inequalities, one again arrives at (2.5). ]

3 Two-variable Rankin-Selberg Integral for GU(2,2)

In this section we give the two-variable integral on GU(2,2) mentioned above. This
integral is the quasi-split version of the three-variable integral on GL4. Since many of
the computations are identical to those in Section 2, we only provide brief proofs.

3.1 Notation

Let E/F be a quadratic extension of fields. Denote by J; the matrix

We define G = GU(2,2),F to be the algebraic group over F consisting of the elements
(g,v(g)) € (Res GLy) x GLy / that satisfy gJ4* g = v(g)J4, where * g denotes con-
jugate transpose.

We denote by (Wy, J4) the four dimensional skew-Hermitian vector space over
E, which is the defining representation of G. The group G acts on the right of Wj.
We write {ej, ez, f2, fi} for the ordered basis of W, and write (-, -} for the skew-
Hermitian form associated with J4. Thus, (Awy, pw;) = Au{wq, w,) for wy, w, € Wy
and A, y in E. Moreover, (e;, fj) = 8ij = —(fj, i) and (ei, ej) = (fi, f;) = 0 for all
i,je{1,2}.

3.2 Dual Groups and L-functions

The integral representation studied in this section will produce a degree 6 (exterior
square) and degree 8 (standard) L-function on PGU(2,2). We define the dual groups
and L-functions, and then provide more explicit descriptions at places where 7, is
unramified.
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3.2.1 Dual Groups
Recall that the dual group of G = GU(2,2) is
LG = (GL,(C) x GL4(C)) x Gal(E/F).
The nontrivial element 0 of Gal(E/F) acts on GL; (C) x GL4(C) by
(A, 8) — (Adet(g), @4'g ' @}"),

where

Oy =
-1

(See, for instance, [14].) The adjoint group PGU(2,2) of G has dual group given by
the derived subgroup SL4(C) x Gal(E/F) of L G.

3.2.2 Exterior Square Representation of G

We now define the “exterior square” representation of “G. A very clear discussion of
this representation is given in [5, Section 2]. For the convenience of the reader, we
now recall this discussion, following [5] closely.

Let V denote the standard 4-dimensional representation of GL4(C), and let 1 G° =
GL,(C)xGL4(C) acton A*V, = C®via (A, g) = Ar%(g). Denote this representation
by p°:1G° - GLg(C). Then x +— p°(x) and x = p°(0~'x0) are irreducible repre-
sentations of GL1 (C) x GL4(C) with the same highest weight, and thus are isomor-
phic. Hence, there is an element A € GL(A?V}) satisfying p°(67'x0) = A™'p°(x)A.
Since A and —A induce the same conjugation action, we can and do choose A to have
positive trace.

For example, if one uses the ordered bases

3.1) {v1,v2,v3,v4} for Vg,

(VI AV V1 AV3, VLA Vg,V A Vs, Vg AVg,v3 Ay} for A%V,

then A can be represented by the block diagonal matrix

. 0 1
(3.2) A=d1ag(12,( 1 0 ),12),

where 1, is the 2 x 2 identity matrix.

The map that sends x = (A, g) to p°(x) and (1, 1) » 6 to A defines a representation
p: LG — GLs(C), where LG = L G° x Gal(E/F) = (GL,(C) x GL4(C)) » Gal(E/F).
This representation is what we refer to as the exterior square; we denote it by A%.

Remark 3.1 Had we chosen A with negative trace, we would get a different six-

dimensional representation /\ﬁeg of L G. The results below pertain to A2, not /\ﬁeg.
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The standard representation of “G has a simpler definition. If x = (A, g) € L G®, let
poa(x) = Ag € GL(V4). Then the standard representation pyq is the 8-dimensional

representation pgq: 'G — GLg(C) defined by psq = Indig0 Pecd:

3.2.3 Unramified L-factors

Suppose that for a finite place v, 7, is an unramified representation of GU(2,2). We
consider two cases.

Casel (v splitsin E): If v splits in E, then there is an isomorphism Q,®qE - Q,®Q,.
This identification induces projections p;: GU(2,2)/q, — GL4/q, corresponding to
each factor i € {1, 2}, where for a Q-algebra R and group G over Q we write G for
its scalar extension to R. We obtain an isomorphism GU(2,2),q, = GLy;q, x GL4/q,
defined by mapping g to the pair (#(g), p1(g)). This induces a unique identification
between the dual groups of GU(2,2),q, and GL,/q, x GL4/q,, s0 we can use “G° =
GL;(C) x GL4(C) to define the local L-factor.
Thus for v split, we have

L(m,, A%, s) = L(7), Ax A%, s) and L(7m,, Std, w) = L(n,, A x Std, w)L(7), A x A>, w).

Here, 7, denotes the representation 7, thought of as a representation of GL; x GL4,
the notation A x p denotes the tensor product of the tautological 1-dimensional rep-
resentation of GL; (C) with a representation p of GL4, and the L-functions of 7, are
those considered in Section 2.

Case 2 (v is inert in E): If the finite place v is inert in E and 7, is unramified, then the
exterior square and standard L-functions are related to L-functions for an embedded
symplectic group. Let T denote the diagonal torus of G. Define G’ = GSp, € G to be
the group of matrices g € GLy/p that satisfy gJ4‘g = v(g)J4 for some v(g) € F*, and
denote by T" = T n G’ the diagonal torus of G.

The dual group of G’ is G’ = GSpin, (C). We write Spin for its 4-dimensional spin
representation; under the isomorphism GSpin.(C) =~ GSp,(C), this is the defining
four-dimensional representation of GSp,(C). We denote by Std the five-dimensional
representation of GSpin, (C) that sits inside the exterior square of the Spin represen-
tation. Letting y: GSpins(C) — GL;(C) denote the similitude, Std ® ™! factors
through GSpin, (C) — SOs(C) and has an invariant quadratic form.

The following well-known proposition relates L-functions for G to L-functions for
G’ when v is inert in E.

Proposition 3.2 Suppose that v is inert in E, « is an unramified character of T, and m,
is an unramified irreducible subquotient of Ind$ (8113/ *&). Denote by o the restriction of
ato T', and suppose that 1) is an unramified irreducible subquotient of IndS, (8113{20/
Then if m, has central character w,

L(m,, A% s) = L(7), Spin, s) L(w, 25),
L(m,Std, 2w)

L(m,,Std,w) = L(wn,2w)
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The first part of this proposition is implicit in [5]. Let p = p, be a uniformizer of F,,.
Note that the reciprocals of both sides of the first equality are of degree 6 polynomials
in |p[; , and that the reciprocals of both sides of the second equality are degree four
polynomials in |p|3* and thus degree eight polynomials in | p[} . We omit the proof of
Proposition 3.2, which follows easily from the explicit choices of bases and the matrix
A given in (3.1) and (3.2).

3.3 The Global Integral

We define the Siegel parabolic P of G to be the stabilizer of the (isotropic) subspace
(f1, f2) € Wy, and the Klingen parabolic Q to be the stabilizer of the line {f; ). These
are consistent with the shapes (1.1) from the introduction. If fp € Indg((:)) Op and fq €
Indc(i) 86 are standard sections with respective factorizations [],, fp,, and I, fo,v»
then the Siegel and Klingen Eisenstein series are, respectively,

Ep(gw)= > fe(ygsw)  and  Eq(gs)= Y folygs).

yeP(F)\G(F) YeQ(EN\G(F)
The global integral is
I 9 = E 5> E > d .
(@5mw) = | o manca, P& P& W)E(g5)dg

The unfolding of I(¢,s, w) is identical to that of the three-variable integral con-
sidered in Section 2. Namely, set

and vq =

Define R = (v3' Qvp) N (vy' Pvq). Then R is the subgroup of G consisting of matrices
of the form in (2.1). Denote by Ug C B the unipotent radical of the upper-triangular
Borel of G, and suppose x: Ug(F)\Ug(A) - C* is a nondegenerate character of Ug.
Define

WD = [ X )9(ug) d

to be the y-Whittaker model of ¢.

Proposition 3.3  Suppose m has trivial central character. Denote by Zg the center of
G, which is E* embedded diagonally, and let R° be the unipotent radical of R. Then for
any choice of nondegenerate character x of Ug,

33 I(¢,s,w) = wf , ,s) dg.
(33) (¢,5,w) (A Ze(ANG(A) o (8)fp(vagw)fo(veg,s) dg

Proof One proves that the double coset space Q(F)\G(F)/P(F) is represented by
{1,vp val }, and then the unfolding proceeds exactly as in the proof of Proposition 2.2.
|
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3.4 Unramified Calculation

As is well known, the global Whittaker coefficient W(;( factorizes over the places v of
F as a product of local Whittaker functions whenever ¢ is a pure tensor in a tensor-
product decomposition of 7. Thus, the integral on the right-hand side of (3.3) is an
Euler product. We now compute the local analogues of this integral when all the data
is unramified.

More precisely, assume that v is a finite place of F unramified in E, write E, =
F, ®F E, and write p = p, for a uniformizer for F,. Also write OF, for the ring of
integers of F,. Denote by n(x;, x;) an element of G(F, ) of the form

1 %1 * =
1 x =
|

1

for x; € E,, x, € F,. Denote by y, the restriction of y to Ug(F,). Assume that the

character y, is unramified in the sense of [4, p. 219]. Set K, = G(Op, ). Assume the
representation 7, is spherical, and denote by W, the unique element of Indggf;:) )Xy in

the space of the Whittaker model of 7, with W, (K, ) = 1. Finally, assume fp(K,,w) =
fo(Ky,s) = 1.
Define
L(W,,s,w) = frv(vagsw) fo.v(veg, s) Wi (g) dg.

R(FV)ZE(FV)\G(FV)

Theorem 3.4  Denote by eg/r : F*\ A} the quadratic character associated with E/[F,
ie., eg/p(py) = 1 if the place v of F splits in E and egjp(p,) = —1 if v is inert in E.
(Recall that p,, = p is a uniformizer of F,.) Then when the data is unramified,
L(m,,Std, 2w — $)L(my, A%, 35 — 1)

L, (Wy s, w) = L(eg/p,v>4w — 1){p, (4w) {5, (35)(E, (6s - 2)

Here, we have the notation

L(egse.w) = (1-ege(p)lply) ™" and CEV(S)=I"I(1—IP|;)‘1-

Proof If v splits in E, this becomes the unramified calculation considered in Sec-
tion 2. Thus we briefly explain the proof in the case that v is inert in E. Write g for the
order of the residue field of the integer ring of F,. Set U = g~¥~2), v = g=(s-1),
and Kf = 61_31/ 2 W,, where W, is, as above, the spherical Whittaker function of 7,
normalized so that W, (1) = 1. Define I} (W,,s,w) = (g, (4w) (g, (3s)I(W,,s, w).
By manipulations similar to those in the proof of Theorem 2.3, we get that
1- U2n+2 1- V2m+2
1- U2 ) ( 1- V2

L(Wes,w)= Y ViU

n,m>0

)ng[m,n],

where KS [m, n] = K§ (diag(p™*", p",1,p~™)). Since the rational root system of G
is that of GSp,, a fact due to Tamir [15] is that the Casselman-Shalika formula for G

reduces to that of GSp, in the sense that Kfv = KS,SP“ on the torus T” of GSp, <€ G.
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Here 7/, and T’ are as in Proposition 3.2. See [6, Section 5.2] for an exposition of this
relationship. Applying this fact, I; is computed in [2, Theorem 1.2] to be

L(n,Std, U?)L(n, Spin, V)

(3.4) G (UY)

Here, L(7,,Std, Z) means ¥, tr(Sym*Std(A,, ))Z¥, where A, is the conjugacy
class in LG corresponding to 7, and similarly for the other L and ¢{-functions. Via
Proposition 3.2, (3.4) is equal to

{(UY)L(m,,Std, U)L(m,, A%, V)  L(m,Std, 2w - 3)L(7,, A%, 35 — 1)
{(UHL(V?) © L(egppn 4w —1){(6s-2)

The theorem follows. [ |
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