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ON THE FIRST k MOMENTS OF THE RANDOM
COUNT OF A PATTERN IN A MULTISTATE
SEQUENCE GENERATED BY A MARKOV SOURCE
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Abstract

In this paper we develop an explicit formula that allows us to compute the first k
moments of the random count of a pattern in a multistate sequence generated by a Markov
source. We derive efficient algorithms that allow us to deal with any pattern (low or high
complexity) in any Markov model (homogeneous or not). We then apply these results to
the distribution of DNA patterns in genomic sequences, and we show that moment-based
developments (namely Edgeworth’s expansion and Gram—Charlier type-B series) allow
us to improve the reliability of common asymptotic approximations, such as Gaussian or
Poisson approximations.
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1. Introduction

The distribution of pattern counts in a random sequence generated by a Markov source has
many applications in a wide range of fields, including reliability, insurance, communication
systems, pattern matching, and bioinformatics. In the latter field, a common application is the
statistical detection of patterns of interest in biological sequences such as DNA or proteins. Such
approaches have successfully led to the confirmation of known biological signals (PROSITE
signatures, CHI motifs, etc.) as well as the identification of new functional patterns (regulatory
motifs in upstream regions, binding sites, etc.); see, e.g. [3], [8], [13], [15], [19], [20], [24],
and [37].

From a statistical point of view, studying the distribution of the random count of a pattern
(simple or complex) in a multistate Markov chain is a difficult problem. A great deal of effort
has been spent on this problem in the last fifty years with many concurrent approaches and we
give here only a few references (see [23, Chapter 6], [28], and [32], for more comprehensive
reviews). Exact methods are based on a wide range of techniques, such as Markov chain
embedding, moment generating functions, combinatorial methods, and exponential families
[1],[6], [71, [9], [16], [27], [35], [36]. There is also a wide range of asymptotic approximations,
the most popular among them being Gaussian approximations [10], [21], [30], [31], Poisson
approximations [14], [17], [18], [33], and large deviations approximations [12], [26].

More recently, the connection between this problem and pattern matching theory has been
pointed out by several authors [11], [22], [25], [29], [34]. Thanks to these works, it is now
possible to obtain an optimal Markov chain embedding of any pattern problem through minimal
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deterministic finite automata (DFAs). In this paper we apply this technique to the exact com-
putation of the first k moments of a pattern count in a random sequence generated by a Markov
source. Our aim is to provide efficient algorithms to perform these computations both for low
and high complexity patterns in either homogeneous or heterogeneous Markov models.

The paper is organized as follows. In a first part, we recall the principles of optimal Markov
chain embedding through DFAs. We then derive from the moment generating function of the
random pattern count a new expression for its first k moments, and introduce three different
algorithms to compute it. The relative complexity of these algorithms with respect to previous
approaches are then discussed. Finally, we apply Edgeworth’s expansion and Gram—Charlier
type-B series techniques to obtain near Gaussian or near Poisson approximations, and show
how this allows us to improve the reliability of classical asymptotic approximations with a
modest additional cost.

2. DFAs and optimal Markov chain embedding

2.1. Sequence model

Let (X;)1<i<¢ be an order-(d > 0) Markov chain over the cardinal s > 2 alphabet 4. For
all1 <i < j < ¢, we denote by ij := X; --- X the subsequence between positions i and ;.
For all a‘f ‘=aj---aq € Al besAandl <i <{l—d,letus denoteby v(a‘f) = P(Xd = a‘li)
the starting distribution and by ﬂi+d(ail, b) :=PXitqa =D | X;*dfl = a‘ll) the transition
probability towards X;4.

2.2. Pattern count

Let ‘W be a finite set of words (for the purpose of simplification, we assume that ‘W contains
no word of length smaller or equal to d) over A. We consider the random number N of matching

positions of ‘W in X{ defined by .

N:zzl{X‘ieA*W}’ (1)
i=1
where A* W is the set of all finite sequences over 4 ending with one element of W and 14 is
the indicator function of the event A.

2.3. Pattern cardinality

Let us define the pattern cardinality R to be the cardinal of the finite set W, i.e. R = |W|.
In the simple widespread approach whereby we count all the elements of ‘W, the simple task of
obtaining the number of pattern occurrences in a sequence results in a linear complexity with R.
For more complex tasks, such as computing variance or moment generating functions, we often
get complexities in O(R?) or O(R?). For patterns of modest cardinality (e.g. R < 50), this
could be an acceptable cost. However, the computation cost quickly becomes unbearable when
considering more complex patterns (e.g. R > 50, R > 1000, or more).

Fortunately, this problem can be largely reduced by exploiting classical results from pattern
matching theory. The idea consists in embedding the whole set ‘W into a special graph called
a deterministic finite automaton (DFA), whose number of states L is usually much smaller
than R. This transformation and how we can take advantage of it for probabilistic computations
are recalled in the following three subsections.

2.4. Deterministic finite automata

As suggested in [11], [22], [25], and [29], we want to perform an optimal Markov chain
embedding of the problem through a DFA. Here we use the notation of [29].
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Let (A, @, 0, F,8) be a DFA, where «4 is our finite alphabet, @ is a finite state space,
o € @ is the starting state, ¥ C @ is the subset of final states, and §: @ x A — @ is the
transition function. We recursively extend the definition of § over @ x A* thanks to the relation
3(p,aw) :=8(8(p,a),w) forall p € @, a € A,and w € A*.

We assume the following two properties.

(P1) The DFA recognizes the language A™* W (i.e. the set of all finite sequences over + ending
with one element of W). This means that x € A*W is equivalent to § (o, x) € F.

(P2) The DFA is non-d-ambiguous (a DFA having this property is also called a dth order DFA
in [22]), which means that, for all ¢ € @, 8"’(4]) = {a‘f € Af, there existsa p € @,
8(p, af) = g} is either a singleton, or the empty set. For the sake of simplicity, we
denote by 8% (g) its unique element in the singleton case.

Thanks to classical results from the theory of languages and automata, it can be proved
that the set of DFAs having properties (P1) and (P2) is not empty and, hence, it is possible to
consider a minimal DFA in the sense that it achieves properties (P1) and (P2) with the smallest
possible cardinal L = |@|. From now on, we assume that we have built such a minimal DFA.

2.5. Markov chain embedding

Theorem 1. We consider the random sequence over Q defined by Xo = o and )~( =
8(X, 1,Xi) forall 1 < i < £ Then (X;)i>q is a heterogeneous order-1 Markov chain
over @ = 3(s, ALA*) such that, forall p,q € Q and1 <i < £— d, the starting distribution
1a(p) == P(Xy = p) and the transition matrix Tiyq(p, q) = P(Xiza = q | Xi+a—1 = p)
are given by

v p)) ifsUp) # 2,
ma(p) =

0 otherwise,

Tiza(8~4(p), b) ifthere exists ab € A such that §(p, b) = g,
Tita(p.q) = .
0 otherwise.
In addition, we have
X X;eA"W < X,eF foralll <i<{ 2)
and
¢ ¢
N= Z Lixicarwy = Z L% ey 3)
i=1 i=1

Proof. Thanks to (P2), it is clear that ()~( i)i>4 18 an order-1 Markov chain whose starting
distribution and transition matrix are easy to obtain. Equation (2) is a direct consequence of
(P1), and (3) naturally follows thanks to definition (1). See [22] or [29] for more details.

2.6. Moment generating function
Corollary 1. The moment generating function f(y) of N is given by

L—d

fO) = ZP(N =n)y" = w(]‘[(m + le+d>> “

= i=1

where 1 is a column vector of 1s (in the same manner, we denote by 0 the column vector of Os)
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and, forall 1 <i <€ —d, Tiyg = Piya + Qita with Pira(p, q) = lig¢x Ti+a(p, q) and
Qi+a(p, q) = lger Ti+a(p, q) forall p,q € @'.

Proof. Since Q;44 contains all counting transitions, we keep track of the number of occur-
rences by associating a dummy variable y to these transitions. We hence just have to compute
the marginal distribution at the end of the sequence and sum up the contribution of each state.
See [11], [22], [25], and [29] for more details.

Corollary 2. In the particular case where (X;)1<i<¢ is a homogeneous Markov chain we can
drop the indices in P4 and Q;+q; hence, (4) simplifies to

fO) = pa(P+yQ) 1. (5)
Corollary 2 can be found explicitly in [22] or [34], but its (although straightforward)
generalization to the heterogeneous model (Corollary 1) appears to be a new result.
3. Main result
Lemma 1. Forall k > 0, we have

f(k)(y)zk!ﬂd( > T4 ik}<y>>1, 6)

I<ij<-<iy<tl—d i

where, forall I CN, A; j(y) = Pita +yQita ifi ¢ L and A; 1(y) = Qita ifi € 1.

Proof. The lemma is obvious for k = 0. We now assume that the lemma is true for fixed
rank k. When differentiating (6), the key is to see that, for all I C N, (J[; 4i.1(») =
ngé[ I A 1u(jy(y). For each configuration / = {iy, ..., ixy1}, it is therefore obvious that
A; 1(y) appears in A;, Nt for all j € I. This explains the k 4 1 factor which combines with
k! to establish the lemma for rank £ + 1.

Theorem 2. For all k > 0, we have
0—d

N!
E((N —_k)!> = kgD with  g(y) = Md(E(TH-d + )’Qi+d))1: )

where [g(y)],« denotes the coefficient of degree k in g(y).

Proof. By differentiating the moment generating function f k times we easily obtain

E(L) — F(k)(l).
(N —k)!

Expanding the expression of g(y) to degree k then allows us to identify the correct term in (6)
for y = 1, thus proving the theorem.

Corollary 3. In the particular case where (X;)1<i<¢ is a homogeneous Markov chain, (7)
simplifies to

A =kl [gO]x with g(y) = ua(T + y0)' ™1 ®)
v 0 g, g(y) = ta y :
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4. Three algorithms

4.1. Full recursion

Forall 1 <i < ¢ — d, we consider the column polynomial vector defined by

L—d
Ei(y) = (H(TM +y0 ,m)l.

j=i
If we denote by Ex (i) := [E;(y)]« its coefficient of degree k for all k > 0 then it is clear that
we can rewrite the expression of g(y) in (7) as [g(¥) ]k = na Ex(1).

Proposition 1. We have the following results forall 1 <i <{ —d:
1) Eo(i) =1;
(i) E1(6—d) = Ql;
(i) ifk>1land (€ —d —i+ 1) <k, then Ex(i) =0;
(iv) ifk>landi <€ —d, then Ex(i) = Ti1q Ex (i + 1) + QiyaEx—1G + 1).

Proof. (1) It is clear that Eq(i) = (]_[f-;‘f T4+4)1, which is equal to 1 since all the T4 are
stochastic matrices. Part (ii) is immediate. For part (iii), the product must contain at least k
terms to have a degree k contribution. Part (iv) is easily proved by recurrence using the fact

that E; (y) = (Tivd +yQi+a)Eiv1(y).

Algorithm 1. Compute the first k£ terms of g(y) in the most general case by performing the
following full recursion.

Require: the starting distribution 4, matrices 7; and Q; forall 1 <i < {—d,
and an O (k x L) workspace to keep the current values of £ (i) for0 < j <k,
where L denotes the cardinal of @Q'.

Initialization

Eo(l—d)=1,E(t—-d)=Q¢l,and E;({ —d) =0for2 < j <k.

Recursion
fori=¢—-d—-1,...,1do
for j =k,...,1do
Ej(@)=Ti1qE;( + 1)+ QitaEj—1G+ 1)
end for
end for

Output: forall0 < j <k, (8] = uaEj(1).

The workspace complexity is O (k x L), and, since all matrix vector products exploit the sparse
structure of the matrices, the time complexity is O(€ x k x s x L), where s x L corresponds
to the maximum number of nonzero terms in 7;44.
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4.2. Direct power computation

From now on we consider the particular case where the Markov model is homogeneous.
According to (8), the expression of g(y) in such a case then simplifies to g(y) = uq(T +
yQ)E_dl. If we denote by M;(y) = 7 (T + yQ)i) (where 7% is the truncature function
whose value is O for all terms of degree greater than k), our problem is then to compute only
Mq—q(y) since [g(¥)1y; = [maMe—a(¥)1]y; forall 0 < j < k.

Proposition 2. We have

J
Me—a(y) =[] Moy ()57, ©)
j=0

where € —d = ap2° + ai2' + -+ +a;2’ witha; € {0, 1} for 0 < j < J := [log,(¢ — d)].
(Here, for all x € R, | x] denotes the largest integer smaller than x.)

Proof. The proof is immediate.

Since we need to compute only the terms of degree smaller than k in M,_,(y) to obtain the
first k moments of N, we can speed up the computation by ignoring terms of degree greater
than k in (9). Hence, we obtain Algorithm 2, where 7 [ p(y)] denotes the truncated polynomial
obtained from p(y) by dropping all terms of degree greater than k.

Algorithm 2. Compute the first k terms of g () in the particular case of a homogeneous Markov
model through the following direct power computation.

Require: the starting distribution j¢, matrices 7 and Q, £, d, an O (k x L? x
J) workspace for M,; (y) for 0 < j < J, and a polynomial matrix M (y).
Preliminary computations
Perform the binary decomposition £ — d = a2’ + - +ay2’, My (y) =
(P+yOQ).
for j=1,...,Jdo
My (v) = wlMai1 (9)°]
end for
Computing M¢_;4(y)
M(y) = Mo(y).
for j =0,...,Jdo
ifaj =1then M(y) = w[M(y) X My;(y)]
end for

Output: forall 0 < j <k, [g(W)]y; = [maMe—a(y)1]y;.

The workspace complexity is O (k x L% x log, ¢) and the time complexity is O (k* x L3 x log, £)
(k? for the polynomial products and L3 for the matrix products).

4.3. Partial recursion

In this subsection we assume that 7 is an irreducible and aperiodic matrix, and we denote
by v the magnitude of its second largest eigenvalue.
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For all i > 0, we consider the polynomial vector F;(y) := (T + yQ)'1, and, for all k > 0,
we denote by Fi (i) := [F; (y)] « the term of degree k in F;(y). By convention, Fi(i) = 0 if
i < 0. It is then possible to rewrlte the expression of g(y) in (8) as [g(y)] v = ugFr(€ — d).
Additionally, let us finally recurswely define the quantlty Dk (i) forall k,i, j > O by D0 @) =
Fr(i) and,ifi > 1 and j > 1, D i) := D/ (i )—Dk (z — 1) so that

D) = Z( 1>5( )Fko ~3). (10)

Lemma 2. We have the following initial conditions:
(i) foralli >0, DJ(i) = 1;
Gi) forall j = 1, D§() = (=D ("TY1if0 < i < j — 1, and D{Gi) = 0 if i > j;
(iii) forallk > 1, DY(0) =0, and DY(i) = TD2(i — 1) + QDY (i — 1) fori > 1.
In addition, for all k, j,i > 1, we have the following recurrence relations:
(v) DIG)=D!""G)— D" —1);
(v) D]()=TD]G —1)+QD]_,i—1).

Proof. (1) It is clear that Dg(i) = T'1 =1 since T is a stochastic matrix. Part (ii) is a
consequence of (i) and (10). Part (iii) is proved by recurrence. Part (iv) is simply the definition
of D,i (i). Part (v) is a consequence of (iii) and of the recursive definition of D,? (i).

Lemma 2 provides an efficient way to compute all the D,{ (i)for0 <k,j<K,and0 <i <«

(see Algorithm 3 below). However, these computations suffer numerical instability in floating
point algebra. This phenomenon is emprically studied in Subsection 5.3.

Lemma 3. Forall k > 1, we have
() Di@) = Y5 T/ QDf_\(j = k) fori = k;
(ii) there exists a Cy € R such that Df(i) = Cy + O (kv'/*) and DI (i) = 0+ O (kv'/*)
foralli > 2k asi — oo.

Proof Part (i) is a direct application of Lemma 2(v). For k = 1, part (i) simply gives
Dl HOE Ti-1 01, which proves (ii) for k = 1. We assume that (ii) is true for some fixed rank
k and then decompose D],;jj (i) into

o i

D;’EIIU)=T"‘“< ) T“—JQD§+‘(,-_/<_1))+ > TIODI G k-1

j=k+1 j=a+1

A B

for some o > 2k. Thanks to the stochasticity of T, there exists a C{f, | € RE such that
A=Cy 1t O(v'™®), and since (ii) is true at rank k, B = Z O(kvf/k) Elementary
analysis proves that

i
min{vi—(x + Zkvi//k} — 0((k+ 1)Vi/(k+l)),
o .
j=a
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the minimum being obtained for o« = i(k — 1)/k. Part (ii) is then proved at rank k + 1 with
Cit1 = C/?H for that particular «.
Proposition 3. Forallk > 1,0 < j <k, andanyi > a > 2k,
i g i —«o it i —«o
D;(i)zz< r >D,{+/ (a)+0<k(k_j>v“/k> asi — 0o, (11)
j’=0

and in the particular case where j = 0 we obtain

ko, )
Fr(i) = Fr(a) + Z (l ;,Q)D/{,(Ot) + O(k(l ;(X)v"‘/k) asi — 0o.

j'=1

Proof. A simple application of Lemma 3(ii) proves that D],j i) = D,’: (@) + O (v¥/*), which
is exactly (11) for j = k. We then obtain the result for j < k by recurrence and the facts that

l 1 . .
Dliy=Dj@+ Y. DM@ and Y (l/:“> = (’.,_“).
i'=a+1 i'=a+1 J J 1
Algorithm 3. Compute D,{ (o) forall 0 <k, j < K as follows.
Require: the matrices 7 and Q, avalueo > K, andan O (K 2% L) workspace
to keep the current value of D;i (i) and DZ i—1)forall0 <k,j<K.
fori =0,...,ado
Initialization
DY) =1
forj=1,...,K do
D) = (=1 ()7H1if0 <i < j—1,and D§(i) = 0ifi > j
end for
fork=1,...,K do
DY(i) =0ifi =0,and DY(i) = TDY(i — 1)+ QD) (i — 1) if
i>1
end for
end for

Recursion
fork=1,...,Kandj=1,...,K do
update D{ (i) with either

p/7'&)-D/"'i—-1) or TDlG-1)+0QD]_,i-1.
end for

Output: D/ (a) forall 0 < k, j < K.

The workspace complexity is O(K? x L) and, since all matrix vector products exploit the
sparse structure of the matrices, the time complexity is O(a x K% x s x L).
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4.4. Comparison with known methods

To the author’s knowledge, there is no record of a method that allows us to compute order-k
moments of a pattern count in heterogeneous Markov sequences. This work was in fact initially
motivated by this observation. In the homogeneous case however, many interesting approaches
can be found in the literature. In most cases, these methods are limited to the computation of
the first two moments, but several of them can be also used to obtain arbitrary order moments,
as with our method.

One of these approaches involves considering the bivariate moment generating function

foh= ) PWNe=n)y"z,

n>0,¢>d

where Ny is the random number of pattern occurrences in a sequence of length £. Thanks to
(5), it is easy to show that

f.2) =2 x uaI —z(P +y0))™'1,

where [ denotes the identity matrix. It is then possible to obtain order-k moments of N, using

the relation .
—(1,2) = E{ —— )z
o (9= 2 ()¢

Such interesting approaches have been developed by several authors, including Lladser [22]
and Nicodéme et al. [25]. In order to apply this method, we should first use a computer algebra
system (CAS) to perform the bivariate polynomial inversion of the matrix I — z(P + yQ) to
obtain f(y, z), thus resulting in a complexity of O(L3), where L is the number of states in
the embedding Markov chain. Hence, we need to compute the order-k partial derivative in y
of f(y, z) prior to performing the fast Taylor expansion of the result up to z¢. The resulting
complexity is O(log, £ x D3), where D is the degree of the denominator in 9% £/3y*(1, z).
As in Algorithm 2, we obtain a cubic complexity with L3 for linear algebra computations, and
a logarithmic complexity with ¢ thanks to the binary decomposition. However, this method
is much more sophisticated to implement (it requires only simple operations on polynomial
matrices while the alternative approach requires a complete computer algebra system) and
the D3 term that appears in the Taylor expansion complexity in fact hides at least a cubic
complexity in k£ which is not easy to handle. Let us note that Nicodeme et al. [25] also suggested
obtaining the asymptotic development of moments by computing only the local behavior of the
generating function f(y, z), which allows the computation to be performed in faster floating
point arithmetic. However, this approach cannot give the exact moments, only approximations,
and we still need to perform the formal inversion of an order-L bivariate polynomial matrix,
which is an expensive step.

More recently, Ribeca and Raineri [34] suggested computing the full bulk of the exact
distribution of N, through (5) using a power method similar to that given in Subsection 4.2,
with the difference that all polynomial products are performed using fast Fourier transforms
(FFTs). The drawback with FFT polynomial products is that the resulting coefficients are
known with an absolute precision equal to the largest one times the relative precision of the
floating point. As a consequence, the distribution is well computed only in its center part.
Fortunately, this is precisely the part of the distribution that matters for moment computations.
Using this approach, and a very careful implementation, we can compute the full distribution
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with a complexity of O (L3 x 10g5 € X nmax 102y Nmax), where nmayx is the maximum number of
pattern occurrences in the sequence. Once again, the resulting complexity is likely to be much
higher than that of Algorithm 2 since k2 s usually far smaller than npyax 102, nmax. Moreover,
Algorithm 2 is again much easier to implement than this sophisticated FFT approach.

Finally, we should note that both these two known approaches involve a complexity of
O(L?) in time (and at least O(L?) in memory), which makes it difficult or even impossible
to use them for moderate or high complexity patterns (e.g. L = 100 or L = 1000). For such
patterns, Algorithm 1 appears to be a safe but slow alternative (linear complexity with sequence
length £) and Algorithm 3 seems to be a very promising approach since it allows us to handle
such complex patterns while retaining a logarithmic complexity with £ as in Algorithm 2.
Unfortunately, the numerical instabilities observed in practice with Algorithm 3 need to be
investigated further before we can trust this approach.

5. Application to DNA patterns in genomics
5.1. Dataset

We consider an order-(d = 1) homogeneous Markov model over A4 = {A, C, G, T}, whose
transition matrix estimated over the complete genome of the bacteria Escherichia coli is given
by

0.30 0.21 0.22 0.27
0.23 0.23 0.33 0.22
0.28 0.29 0.23 0.20
0.19 0.28 0.23 0.30

We consider a sequence X = X --- X, of length £ = 400 000, starting with X| = A.

5.2. Some moments

In this subsection we compute the first k = 4 moments of several DNA patterns. We then
use these moments to compute the expectation m = m, the standard deviation o = ,/my, the
skewness y; = m3/m§/2, and the excess kurtosis y» = m4/m% —3,where m; := E((N —m)})
is the centered moment of order i. A negative or positive skewness indicates that the mass of the
distribution is concentrated on the right or, respectively, left side of the expectation. A skewness
of 0 indicates a balanced distribution. A negative or positive excess kurtosis indicates that the
distribution is more flat or, respectively, more peaked than the Gaussian distribution. A Gaussian
distribution has a excess kurtosis of 0.

In Table 1 we can see the value of these quantities for several DNA patterns. The first three
patterns have been arbitrarily chosen, but pattern GCTGGTGG is a well-known functional pattern
in the E. coli bacteria genome: the crossover hotspot instigator, also called the CHI motif (see
[13] for more details on CHI motifs in bacteria).

For the first three simple patterns, we can see how the additional information of the skewness
and excess kurtosis gives us a better description of their distribution. For example, we know
from theory that highly overlapping patterns are distributed according to compound Poisson
approximations. This is exactly why we observe an increased skewness and kurtosis from
pattern GCTGGT (nonoverlapping) to pattern GGGGGG (highly self-overlapping).

If we now consider the more complex patterns of the second part of Table 1, we can observe
how the running time of Algorithm 2 quickly increases with L. This is obviously not a surprise
since we expect a cubic complexity in this parameter with this approach. We should however
note that it is nevertheless possible to deal with moderately complex patterns like GNNGNNGG,
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TaBLE 1: First four moments of several DNA patterns computed through the power algorithm (running

time indicated in seconds). The background model is the order-(d = 1) homogeneous Markov model

defined in Subsection 5.1 and the sequence length is £ = 400000. The special letter ‘N’ means ‘any
nucleotide’ (this is standard notation in DNA sequences).

Standard Excess
Pattern L Expectation deviation Skewness kurtosis Time
GCTGGT 9 70.09 8.364 0.11910 0.014 13 0.09
AGAGAG 9 84.89 9.791 0.127 80 0.01903 0.09
GGGGGG 9 65.91 10.260 0.20290 0.05363 0.09
GCTGGTGG 11 3.782 1.945 0.51420 0.264 30 0.11
GCTGGNGG 14 20.79 4.559 0.21920 0.048 01 0.11
GNTGGNGG 21 79.55 9.014 0.11570 0.01390 0.49
GNTGNNGG 28 340.1 18.680 0.05628 0.00331 1.10
GNNGNNGG 63 1508.0 42.290 0.03283 0.00136 15.80

which in fact contains a total of 4* = 256 simple patterns. Another interesting observation
is that both the skewness and kurtosis get closer to 0 when we add more N symbols into the
pattern. This is due to the fact that adding more N makes the pattern more frequent (this can
be seen with the geometrically increasing expectation) and that Gaussian approximations for
pattern problems are well known to work better for frequent patterns.

5.3. Numerical stability of the partial recursion

In Figure 1 we plot the results of an empirical study of the convergence of lec'H(i )
towards 0, obtained by computing || le‘ + (i) |loo for several k through Algorithm 3. We consider
here three ways of updating Dy (i): using only D;i_l(i) — D] (i — 1) (Figure 1(a)), using
only TDj (i — 1)+ QD{_,(i — 1) (Figure 1(b)), and taking the update which displays the
smallest norm (Figure 1(c)). If these three alternative approaches give similar results when
I DIIE‘H ())loo = 10~13, differences start to appear for smaller values. The differential recurrence
relation (Figure 1(a)) quickly starts to accumulate machine precision residuals and results in
noisy curves that increase slowly. When using the matrix recurrence relation (Figure 1(b)), a
similar problem arises, although it appears slightly later and with far less noise. Surprisingly, the
last approach which combines the two updating methods at each step benefits from a synergistic
effect and displays a far better stability. Similar behavior has been observed for a wide range

of tested patterns (data not shown).

5.4. Near Gaussian approximations

Gaussian approximations for random pattern counts are widely used in the literature. These
approximations are typically used when exact computations are untractable either because of
the pattern complexity and/or because of the length of the considered sequence and/or the high
number of observed occurrences. For such problems, Gaussian approximations are supposed
to work better for frequent patterns. In practice, however, the quality of these approximations
decrease dramatically when considering extreme events, which means that these approximations
are not recommanded for precisely computing small p-values (see [28] for more details). Here,
we want to advance these approximations by taking advantage of higher-order moments to
obtain near Gaussian approximations. This well-known technique is described in detail in
Appendix B.
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FIGURE 1: Plot of logy || D,I:H () ]loo for 1 < k < 9 (from left to right) against 1 < i < 100 for the pattern

W = GNTGNNGG over the DNA alphabet A = {A, C, G, T} (where the N symbol refers to ‘any letter’)

using an order-(d = 1) Markov model. The curves are obtained through Algorithm 3 using recurrence

relation Lemma 2(iv) only (fop), Lemma 2(v) only (middle), and Lemma 2(iv) and (v), keeping the D,ﬂ (i)

displaying the smallest norm (bottom). The missing values (large contiguous regions) correspond to
I leﬁLl () ]lco = 0 in our floating point computations.

We can see in Figure 2 the relative error (on a log scale) of several Edgeworth approximations
for the distribution of pattern GCTGGT. The solid line shows the reliability of plain Gaussian
approximations (which correspond to an order-(s = 0) Edgeworth expansion). Unsurprisingly,
this approximation works better around the expectation (E(N) = 70.09 according to Table 1),
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FIGURE 2: The relative error on a decimal log scale for Edgeworth’s expansion of order s = 0 (solid line),
s = 3 (dash—dot line), and s = 5 (dashed line) for pattern GCTGGT in an order-1 homogeneous Markov
model (parameter estimated on the complete genome of E. coli) of length £ = 400 000.

providing two exact digits in the range [54, 85], and one exact digit in the range [50, 92].
Beyond these limits, we get too far in the tail distribution (i.e. too far from the expectation) to
obtain reliable results. This behavior is exactly what we expect from the central limit theory.

If we now consider an order s = 3 Edgeworth expansion (which uses moments up to order
k = 5) depicted with a dash—dot line in Figure 2, we see a dramatic improvement in both the
accuracy of the approximation (up to six exact digits) and in the range of reliability (at least
one exact digit on [28, 118]). We can even obtain a further improvement by considering an
order-(s = 5) expansion (see the dashed line in Figure 2), which uses moments up to order
k = 7. In both cases, however, the reliability of these approximations decreases dramatically
when the probability of the event of interest decreases.

We observe very similar behavior for pattern AGAGAG and pattern GGGGGG, and thus we
omit the corresponding figures.

We should note the presence of fairly regular peaks in Figure 2 which are characteristics of
Taylor expansions and similar polynomial approximations when looking at the relative error in
the proper scale.

Thanks to this work, we see that, for a modest additional cost (computing moments up to
order k = 5 or k = 7 instead of simple first and second moments), we can dramatically improve
the reliability of Gaussian approximations for pattern problems. However, we should note that
if the improvement is significant, it first affects the region closest to the mean. This is not
surprising for a central limit approximation, as such an approximation works best in the center
of the distribution. As a consequence, our advice would be to use higher-order developments
when considering more extreme distribution events. But even better advice would be to rely
preferably on a tail distribution approximation (e.g. large deviations) when considering such
extreme events.

5.5. Near Poisson approximations

A very common alternative to Gaussian approximations for random pattern counts is Poisson
approximations. These approximations are known to be quite accurate for nonoverlapping
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FIGURE 3: The relative error on a decimal log scale for the Gram—Charlier type-B approximation of

order s = 0 (solid line), s = 4 (dash—dot line), and s = 8 (dashed line) for pattern GCTGGT in an

order-1 homogeneous Markov model (parameter estimated on the complete genome of E. coli) of length
£ =400 000.

patterns, but also to fail for highly self-overlapping patterns for which compound Poisson
approximations are known to perform better. Poisson approximations are supposed to perform
better for rare patterns; in practice, however, it appears that they also perform well for frequent
patterns, with the advantage over Gaussian approximations of being suitable for the computation
of small p-values (see [28] for more details). Here we want to evaluate the reliability of near
Poisson approximations based on the Gram—Charlier type-B series described in Appendix C.

For the nonoverlapping pattern GCTGGT, we can see in Figure 3 that the plain Poisson
approximation (order-(s = 0) Gram—Charlier type-B series) already gives very good results
with at least one exact digit on all the distribution, and up to four or five of them in the region
close to the expectation. This interesting result is dramatically improved by the order-(s = 4)
approximations, which give at least four exact digits on all the considered range and more that
eight exact digits around the expectation. Surprisingly, the order-(s = 8) approximation is less
reliable than the previous approximation, and gives even worse results than the plain Poisson
approximation in the tail distributions. This is due to the fact that the coefficients ¢y computed
according to (15) below accumulate large terms that compensate each other. This is a typical
scenario for large relative errors in floating point arithmetic. We can solve this problem by
either performing computations with an arbitrary number of digits (usually slow), or explicitly
computing the expected relative error using the current machine precision and discarding the
unreliable coefficients.

If we now consider the self-overlapping pattern AGAGAG, we know from theory that Poisson
approximations are not supposed to perform well. This is the reason why in Figure 4 we observe
that the plain Poisson approximations works only on a very limited range of the distribution
(approximately on [69, 103]). Once again, however, an order-(s = 4) or order-(s = 8) Gram—
Charlier expansion dramatically improves the reliability of the approximations, giving up to
six exact digits close to the expectation and at least one exact digit on a much wider range (up
to [24, 150] for order s = 8). We should note that in this case, the numerical issue observed for
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FIGURE 4: The relative error on a decimal log scale for the Gram—Charlier type-B approximation of

order s = 0 (solid line), s = 4 (dash—dot line), and s = 8 (dashed line) for pattern AGAGAG in an

order-1 homogeneous Markov model (parameter estimated on the complete genome of E. coli) of length
£ =400000.

high-order approximations for the previous pattern does not occur. We obtain a very similar
result for the even more self-overlapping pattern GGGGGG, and thus we omit the corresponding
figure.

As with near Gaussian approximations, we see that near Poisson approximations can dramat-
ically improve the reliability of Poisson approximations for a very modest cost (e.g. computing
moments up to order k = 4 or k = 8).

6. Conclusion

In this paper we derived from the explicit expression of the moment generating function
of a pattern random count N a new formula that allows us to compute an arbitrary number k
of moments of N. We also introduced three efficient algorithms to perform this computation.
The first algorithm allows the computation of pattern count moments of arbitrary order in
the framework of the heterogeneous Markov model, which is a completely new result (to
the author’s knowledge). The second algorithm, suitable for homogeneous models and low
complexity patterns, appears to have a better or similar complexity to state-of-the art known
algorithms, but with a far simpler implementation. Finally, the third algorithm uses partial
recursions, exploiting the sparse structure of the transition matrix to provide a logarithmic
complexity with the sequence length even for high complexity patterns. This very promising
approach however suffers from numerical instabilities in floating point arithmetic that need to
be investigated further.

We should note that our main result can be easily extended to mixed moments of several
pattern counts. For brevity, we give here such a result only for the particular case of two
patterns, 'W; and ‘W, in a homogeneous model. We assume that the final states of the DFA
could be partitioned into £ = ¥ U F> such that £ and #> count the number, N1 and N;, of
the occurrences of ‘Wi and W,, respectively. This is always possible by duplicating states. We
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consider
fO1, ) = Z P(N| = ni, No = np)yj'yy2,

ny,n2>0
and we then have
FO1y2) = pa(P+y101 + 32021
By introducing
g(y1.y2) = pa(T + y1 01 + 120271

we obtain for any ki, ko > 0,

( Ni! N»!
(N1 — k1)! (N2 — k)!

= 1 ko ! .
) kilka![g(y1, yz)]yf. ye-

As an application, we have considered the distribution of DNA patterns in genomic
sequences. In this particular framework, we have shown how order-(k = 3) and order-
(k = 4) moments allow us to obtain a better description of the distribution (with quantities
like skewness and excess kurtosis). We have also considered moment-based approximations,
namely Edgeworth’s expansion (near Gaussian approximations) and Gram—Charlier type-B
series (near Poisson approximations). For both approximations, we have seen how the additional
information provided by a couple of higher-order moments can dramatically improve the
reliability of these common approximations. As a perspective, it seems to be very promising to
develop near geometric or compound Poisson distributions with Gram—Charlier type-B series.

Appendix A. Moments and cumulants

For any random variable X and any £k > 0, we define the following quantities: g; :=
1/k! E(X!/(X — k)!), the coefficient of degree k in the polynomial g(y) defined in Section 3;
m;( := E(X%), the moment of order k; my := E((N — m’l)k), the centered moment of order k;
and ky, the cumulant of order k defined by

h(t) :=logE(e™) = Zlck(tk/k!).

k>1

Cumulants and moments are connected through the following formula:

— (k-1
Kk = mj — Z (1 B 1>/qm;(_l.

=1

Using this formula, we obtaink; = E(X), k2 = my = V(X), k3 = m3,and kg = ma— 3m2 Thg
skewness, y1, and excess kurtosis, y2, can be expressed in terms of the cumulants: y; = k3/k,
and y» = k4 //c2

Appendix B. Edgeworth’s expansion

We take Edgeworth’s expansion directly from [5], except for the explicit order-5 expansion
given in (14) below, which is a new contribution to the author’s knowledge (only order-3 explicit
expansions seem to be available in the literature).

Let X be a centered random variable (E(X) = 0) that admits finite moments of all orders
(we denote by o2 the variance of X), and let ®(¢) := E(e!X) (where i denotes an imaginary
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complex number) be its characteristic function. Let ¢ be the characteristic function of X/o;
we have ¢(t) = ®(¢/0). The definition of cumulants (see Appendix A) then allows us to write

the expansion:
¢ oo
log (1) = log d)(;) ~ Z i ink.

k=2
Then by defining Sy := ki /o 2*~2 we obtain
.S ro”
¢ (1) ~ exp{Z ﬁ( )”2} (12)

The Fourier transform of expansion (12) then gives

_ - s Sm+2 o >
q(x>—2(x>(1+§o {{kz} Hy 20 (2) H C ,((mH),) } Ly

where g (x) := op(ox) is the probability distribution function (PDF) of X /o (p(x) being the
PDF of X), Z(x) = exp(—x2/2)/+/2x is the PDF of a standard Gaussian variable, {k,, }, is the
set of all nonnegative integer solutions of the Diophantine equation k| + 2ky + - - - + sky = s,
r = ki + ky+ -+ kg, and the Hy(x) are the Hermite polynomials defined recursively by
Hy(x) := 1and Hi(x) := xHp_1(x) — H,g_l(x) forall k > 1.

The sets of {k;,}s for 1 <s <5 are

{km}t = {1}, {km}2 = {20, 01}, {km}3 = {300, 110, 001},

{kn }a = {4000, 2100, 0200, 1010, 0001},
and {ky,}5 = {50000, 31000, 12000, 20100, 01100, 10010, 00001},

and the explicit expression of (13) up to order s = 5 (such an explicit expression can be found
up tos = 3in [4]) is
q(x)
Z(x)

:1+0{H3(x)s—f}

2 S3
+ 02 H4(x)—+H6(x)2‘3‘2} +0° {H5(x)—+H7( )W+H( )—1}
S35 }

|
2 , gl
3150 " 2'4'2) Hio(x )2v3'24v

Hip(x )

+ot de)% + Hg(x>(

S S4Ss Sz 858 S35,
5 7 495 396 395 394
+tol () + H9(x)(_4;5y + _3;@) + H“(x)<2!3z25! + 2!3!4z2>
S 5
+H13(x)3,44, His(x )5,3,5} (14)

Appendix C. Gram—Charlier type-B series for near Poisson distributions

Gram—Charlier type-B series for near Poisson distributions is initially taken from [2], but we
derive new recurrence relations that are more adapted to a modern computational framework
than the explicit (and sometimes erroneous) formulae given in the original paper.
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Let ¥ (i) := e *A//i! be the PDF of a Poisson distribution of parameter A, and let A be the
differential operator defined by Ay (i) := ¥ (i) — ¥ (i — 1). Our objective is to approximate
the PDF F of a discrete nonnegative random variable X with

F(i) :Zc,-Afw(i).

j=0
To this end, we use a moment method and find a solution (cg, ¢, ..., ¢s) of

N

Y ¢jPlG) =E(x*) forall0 <k <s

j=0
with P/ (1) 1= Y, i* ATy (i) for all j, k > 0.

It is clear that we have PO(A) 1, and we have the following recurrence relation for all
k,j=>0:
dP? 1 dpP
P19+1()‘) = A[1"19(/\) + d—;(k)} and ij+ ) = ——(A)

We hence find that ¢o = 1, and we derive the following recurrent relation for k > 1:

k—1
1 by b >
cr = Pk(/\)(E(X gcjpk(x).

Note that P,f () is always a scalar. If we now define gi := 1/k! E(X!/(X — k)!) then we can
show, by recurrence, for all k£ > 1 that we finally have

o = — ]) k+Z( 1)1 gl g;' (15)

The explicit first five terms of this formula are

2 3 4
8 8 g 82 8
cz=g2—7], C3=—g3+81g2—§1, 64—g4—g1g3+‘T—§‘
2 3 5
8183 8182 81
cs = —gs+ -——t =,
5 85 T 8184 ) 6 30
2 3 4 6
8184 8183 8182 8
¢ = g6 =185+ = — ¢ 4 T T4
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