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On Square-Integrable Representations of
Classical p-adic Groups

Chris Jantzen

Abstract. In this paper, we use Jacquet module methods to study the problem of classifying discrete series for
the classical p-adic groups Sp(2#n, F) and SO(2n + 1, F).

1 Introduction
1.1 Introduction

One of the central questions in the representation theory of p-adic groups is to determine
the discrete series. This paper studies the problem of determining the noncuspidal dis-
crete series for the classical groups Sp,,(F) and SO, (F). Let S,(F) denote Sp,,(F) or
SO2+1(F) (we treat the two families simultaneously). Now, a noncuspidal discrete series
representation occurs as a subquotient of a (parabolically) induced representation. Here,
we constrain where one needs to look for such discrete series representations. Ultimately,
we hope that such an analysis can be used to help prove exhaustion for the noncuspidal
discrete series.

First, we reduce the problem of classifying the discrete series to classifying those square-
integrable representations supported on sets of the form 8 ((p, 3); &) = {v*p}acgszU{c}
where p 2 p is an irreducible unitary supercuspidal representation of GL,(F), v = | det]|,
o an irreducible supercuspidal representation of S,(F), and 8 = 0 or % In general, if 7 is
an irreducible representation (not necessarily square-integrable) supported on § (( P, 0); cr)
as above, we define x( (7). This is a subquotient of the (normalized) Jacquet module taken
with respect to the smallest standard parabolic subgroup admitting a nonzero Jacquet mod-
ule; it is minimal with respect to an appropriate ordering. This is used to produce do(7),
which has the form

So(m) = ([ p, v p]) ® - - - @ §([V*p,v™p]) ® 0,

where a; < a; < --- < a; (6([vPp, *p]) denotes the generalized Steinberg representation
of GL(4—p+1)(F) whose minimal Jacquet module is 17p @ 1" 1p ® --- ® vbp). Ifm =
(ay—by+1)n+---+(ar—bx+1)n+r,let P = MN denote the standard parabolic subgroup
of S,,,(F) with Levi factor

M= GL(alflerl)n(F) X X GL(ukfkarl)n(F) X Sr(F)
Then, we show that

T Indg (50(71')) .

Received by the editors November 20, 1998.
AMS subject classification: 22E50.
(©Canadian Mathematical Society 2000.

539

https://doi.org/10.4153/CJM-2000-025-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2000-025-7

540 Chris Jantzen

Further, we show that 7 is square-integrable if and only if a; + b; > 0 for all i. Thus,
every square-integrable representation supported on & ((p, B8); O’) with p, 8, o as above, is
a subrepresentation of an induced representation of this form. We note that not every d
having the form described above occurs as do(7) for a square-integrable m. However, we
expect that with a couple of additional conditions on a;, b;, that will be the case.

We now discuss the contents section by section. The next section introduces notation
and recalls some general results that will be needed later.

Section 2.1 reviews some results of Zelevinsky on induced representations for general
linear groups. In Section 2.2, we define x (), do(7) for 7 an irreducible representation of
GL,,(F) supported on a set of the form {v®p},ep+z, where p is an irreducible unitary su-
percuspidal representation. We also establish some of the basic properties of xo(7), do (7).
In Section 2.3, we show how these can be used to show that the only irreducible square-
integrable representations of GL,,(F) are the generalized Steinberg representations, a result
originally due to Bernstein. The connection between dy(7) and the Langlands data (sub-
representation version of the Langlands classification) is established in Section 2.4.

We use Section 3.1 to review some background material on the representation theory of
Su(F). In Section 3.2, we recall a result which allows us to reduce the problem of classify-
ing the discrete series of S,(F) to that of classifying the square-integrable representations
supported on sets of the form §((p, 8); 7). In Section 3.3, we give a conjecture which,
when coupled with recent work of Moeglin, leads to an expected parameterization of such
square-integrable representations, at least for pairs (p, o) with “generic reducibility”.

The definitions and basic properties of xo(7), do(7) mentioned above are discussed in
detail in Section 4.1. In Section 4.2, we give the criterion for square-integrability mentioned
above. In Section 4.3, we use this to determine which sets $((p, 3); o) support square-
integrable representations. Section 4.4 gives some basic constraints on o (7).

In the fifth chapter, we give an example to show how these results may be applied. We
restrict our attention to the case where Indg(u% p ® o) is reducible, where P is the stan-
dard parabolic subgroup of S,,(F) with Levi factor M = GL,(F) x S,(F). By results in
Section 4.3, only & ((p, %); cr) will support square-integrable representations, so we restrict
our attention to representations supported on this set. The goal of this chapter is to classify
those irreducible, square-integrable representations whose dy has k = 2. The case k = 1 is
already known (cf. [Tad5]); we discuss this case in Section 5.1. In Section 5.2, we show that
if 7 is an irreducible, square-integrable representation and k = 2, then dy(7) has one of the
following forms:

1. do(m) = 8([v=p,1p]) ® S([v~tp,1p]) @ o, or
2. 8o(m) = 8([v=p,14p)) @ 8([v~p, 1)) @ &

fora,b,c,d € % +Zwitha>b>c>d> —%. Further, anything of form 1. or 2. above
actually occurs as 6y(7) for some irreducible, square-integrable representation 7. This fol-
lows from the discussion in Section 5.3. We note that the irreducible, square-integrable
representations appearing in Indg (5( [v=4p,vp]) @ 6([v~p,vp]) ® a) are classified by
the results in [Tad5] (where P and G are clear from context). In Section 5.3, we do a corre-
sponding analysis for Indg (5( [v=p,Pp]) @6([v %, %)) ® U) , though our approach is
somewhat different.

I would like to take this opportunity to thank a few people. In particular, conversations
with Henry Kim, Alan Roche, Paul Sally, and Marko Tadi¢ have been quite helpful during

https://doi.org/10.4153/CJM-2000-025-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2000-025-7

Classical p-Adic Groups 541

various stages of the research for this paper. My thanks go out to all of them, and to the
referee as well.

1.2 Notation and Preliminaries

In this section, we introduce notation and recall some results that will be needed in the rest
of the paper. This largely follows the setup used in [Tad1].

Let F be a p-adic field with char F = 0. Let | - | denote the absolute value on F, normal-
ized so that || = g™, @ a uniformizer. As in [B-Z], we let v = | det | on GL,,(F) (with the
value of n clear from context). Define x on GL(F) as in [B-Z]: if py, . . ., pi are representa-
tions of GL,,, (F), ..., GL,, (F), let p; x - -+ X p; denote the representation of GL,,+...1, (F)
obtained by inducing p; ® - - - ® p from the standard parabolic subgroup of GL,, +....+, (F)
with Levi factor GL,,, (F) X --- x GL,, (F).

Frequently, we work in the Grothendieck group setting. That is, we work with the
semisimplified representation. So, for any representation 7 and irreducible representa-
tion p, let m(p, ) denote the multiplicity of p in m. We write 71 = 7 + --- + 7 if
m(p, ) = m(p,m) + -+ + m(p, ) for every irreducible p. Similarly, we write 7 > m,
if m(p, ™) > m(p, my) for every such p. For clarity, we use = when defining something or
working in the Grothendieck group; = is used to denote an actual equivalence.

We now turn to symplectic and odd-orthogonal groups. Let

denote the n x n antidiagonal matrix above. Then,

SO241(F) = {X € SLays1(F) | "X o1 X = Jonr }s

Sp,,(F) = {X € GL,,(F) ’ Tx (] _]> X = (] —]) }

We use S,(F) to denote either SO,,4(F) or Sp,,(F). In either case, the Weyl group is
W = {permutations and sign changes on n letters}.

We take as minimal parabolic subgroup in S, (F) the subgroup Py consisting of upper
triangular matrices. Let @ = (ny, . .., ng) be an ordered partition of a nonnegative integer
m < n into positive integers. Let M, C S, (F) be the subgroup

Xi

M, = X X; € GLn,(F)7X € Su—m(F) )
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where X = J'X~!]. Then P, = M,Pg is a parabolic subgroup of S, and every parabolic
subgroup is of this form (up to conjugation). For o = (ny,...,n), let p1,..., pi be rep-
resentations of GL,, (F), ..., GL,, (F), respectively, and o a representation of S,_,,(F). Let
p1 %X -+ X pr X o denote the representation of S,,(F) obtained by inducing the representation
P1® - ® pr ® o of M, (extended trivially to P,). If m = n, we write p; X -+ X pg X 1,
where 1 denotes the trivial representation of So(F).

We recall some structures which will be useful later (c¢f. Section 1 of [Zell] and Sec-
tion 4 of [Tad3]). Let R(GLn(F)) (resp., R(Sn(F))) denote the Grothendieck group of
the category of all smooth finite-length GL,,(F)-modules (resp., S,(F)-modules). Set R =
D~ R(GLn(F)) and R[S] = @H>OR(S,1(F)). The operators x and x lift naturally to

X:R®R— R and x:RQ® R[S] — R[S].

With these multiplications, R becomes an algebra and R[S] a module over R.

Let 7 be an irreducible representation of S,(F). Then, there is a standard Levi M and
an irreducible supercuspidal representation p; ® - - - ® px ® o of M (with p; an irreducible
supercuspidal representation of GL,,, (F) and o an irreducible supercuspidal representation
of S,,—m(F)) such that 7 is a subquotient of p; X - -+ X pr X 0. We say that the multiset
{p1,-..,pr; o} is in the support of 7. Further, M and p; ® - -+ ® px ® o are unique up to
conjugation (cf. Theorem 2.9, [B-Z]). By Propositions 4.1 and 4.2 of [Tad3],

p1 X X Pio1 X Pi X Pigp Xooo X pp X0

=p1 X s X Pinp X Pi X Py X oo X pp X0,

where ~ denotes contragredient. Thus, if {p1, ..., pi_1, pi, Pit1, - - - , Pk; 0 } is in the support
of m,s0is {p1, ..., pi—1, Pi, Pi+1, - - - , Pis 0 }. Therefore, every {p1, ..., pi; o}, with p/ = p;
or p;, is in the support of 7. Further, these exhaust the support of 7. More generally,
we extend the definition of support as in [Tad5]: If 7 is a finite-length representation and
{p1, ..., pr;o}isin the support of 7’ for every irreducible subquotient 7’ of 7, we say that
{p1,...,px; o} isin the support of 7.

We recall some notation of Bernstein-Zelevinsky [B-Z]. If P = MU is a standard para-
bolic subgroup of G and ¢ a representation of M, we let igp(€) denote the representation
obtained by (normalized) parabolic induction. Similarly, is 7 is a representation of G, we
let rpg(m) denote the (normalized) Jacquet module of 7 with respect to P.

Next, we introduce some convenient shorthand for Jacquet modules (cf. [Tad3]). If
7 is a representation of some S,(F) and « is a partition of m < n, let s,(m) denote
the Jacquet module with respect to M,. Note that, by abuse of notation, we also al-
low s, to be applied to representations Mz when Mg > M, (c¢f. Section 2.1, [B-Z]).
Further, we define sgi as in [Tad5]: for 7 < p; X --- X pp X o with p; a supercusp-
idal representation of GL,,(F) and o a supercuspidal representation of S,_,,(F), we set
SGL(T) = S(s;4-.+m) (). We will occasionally use similar notation for representations of
GL,(F). If a = (ny,...,ni) is a partition of m < n, GL,(F) has a standard parabolic
subgroup with Levi factor L, = GL,, (F) X --- X GL,,(F) x GL,_,(F) (L, consists of
block-diagonal matrices; the corresponding parabolic subgroup of block upper triangular
matrices). If 7 is a representation of GL,(F), we let r,(7) denote the Jacquet module of ™
with respect to L.
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Finally, suppose  is a representation of S, (F). Consider
Mumin = {M standard Levi | ryg(m) # 0 but rg(w) = 0VL < M}.

Note that if 7 has supercuspidal support in the sense above, these are all conjugate. Then,
formally set

Smin(M) = > ruc().
MeMpnin
If h idal t of paraboli k m, then spin(7) € R® - - - @ RAR[S]. Wi
7 has supercuspidal support of parabolic rank m, then sy, (7) ® -+ @ RRR[S]. We

m
may define 1, similarly for representations of GL,,(F).

2 The Case of GL,(F)
2.1 Background Material

We now review some results on induced representations for GL,(F). This section is all
based on the work of Zelevinsky [Zell].

First, if p is an irreducible supercuspidal representation of GL,(F) and m = n mod 1,
we define the segment

n

[W"p,v"p] = (" p, " p, ..V p}
We note that the induced representation v™p x ™" p x - - - X 1" p has a unique irreducible
subrepresentation, which we denote by (([v"p, v"p]), and a unique irreducible quotient,

which we denote by §([v™p, v"p]).

Lemma 2.1.1 Let py, p; be irreducible unitary supercuspidal representations of GL,, (F),
GL,,(F). Suppose my < ny, my < ny satisfy my = n; mod 1, my = n, mod 1. Then,
([v™pr, V™" p1]) x 6([v™p, v"™ p]) is reducible if and only if all of the following hold:

L. ;mEp
2. m=En =m=mn
3. either (a) m; < myandmy—1 < ny < ny,—1,0r(b) my > myandm;—1 < n, < n;—1.

C([v™py, ™ p1]) X C([V™ pp, V™ p,]) is irreducible if and only if the same conditions hold.

Proof This is a special case of Theorem 4.2 [Zell]. [ |

Next, consider a representation of the form
X = (p(ll)®~~®p(1k‘))®(p§”®~-®p§k2))®~~®(p$)®~'®p§§’”))

with p(lj ) an irreducible representation of GL» (F) for all i, j. By a shuffle of x, we mean the

usual: a permutation on Y such that for all , pgl), ceey pgk’) appear in that order. (That is, the
relative orders in the parenthesized pieces are preserved.) Further, if x is a representation
of a standard Levi M of GL,(F) and sh(y) is a shuffle of x, then sh(x) is a representation
of a standard Levi subgroup of GL,(F) which we denote by sh(M). We have the following:
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Lemma 2.1.2 (shuffling)

1. Suppose m is an irreducible representation of GL,(F) such that ryg(m) > x, where x has
the form

@M@ @VTp) @ WP ® - @U@ @ W Py ® - @ VI py),

where

(a) p1,...,pm are irreducible unitary supercuspidal representations of GL, (F),...,
GL,, (F),

(b) aix € Rwithoy) = oy = -+ = «;;; mod 1 foralli, and such that

(c) if pi = pi, then oy # o mod 1.

Then, for every shuffle sh(x) of x, we have rqwanc(m) > sh(x). Further, if rawanc(m) >
sh(x) for any such shuffle, we necessarily have ryg(m) > x, and therefore rg,(wpyg(m) >
sh(x) for every such shuffle.

2. iem(X) = icshmn (sh(x)) for any such shuffle.

Proof See Lemma 5.4 and Section 10 of [Jan3]. [ |

Lemma 2.1.3 Let(p1,01),- .-, (Pm, Quy) be pairswith py, . . ., py, irreducible unitary super-
cuspidal representations of GL,, (F), ..., GL,, (F); a1, ..., o € R such that p; = p; implies
a; # aj mod 1. Let 7(p;, o) be an irreducible representation of a general linear group sup-
ported on {v*p; }aca,+7- Let M be the standard Levi subgroup of G = GL,(F) which admits
T(p1,010) @ -+ @ T(Pm, Q) as a representation. Then,

L. 7(p1,a1) X+« X T(pm, o) is irreducible.
2.

mult (T(pl,al) ®Q® T(pm; am)a rMG(T(pla al) X X T(prmam))) =1.

Further, if 7'(p;, o) is an irreducible representation of a general linear group supported on
{Vapi}a€a1+7£; then

mult(T’(pl,al) - ®7_I(Pm7am)7rMG(T(plval) X X T(vao‘m))) =0
unless ' (pi, o) = 7(p;, ;) for all i.
3. Ifwis anirreducible representation of GL,(F) and ryc(m) > 7(p1, 1) ® - - - QT (0my Q)

then

T="T1(p1,01) X+ X T(Pm, Q).

Proof The first claim is an immediate consequence of [Zell, Proposition 8.5]. Claims 2.
and 3. follow fairly easily—see Corollary 5.6 and [Jan3, Section 10] for details. ]

https://doi.org/10.4153/CJM-2000-025-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2000-025-7

Classical p-Adic Groups 545

2.2 A Basic Lemma for GL,(F)

Let p be an irreducible unitary supercuspidal representation of GL,(F), 0 < ag < 1. Sup-
pose 7 is a representation of GL,,(F) of finite length, supported on {v®p}scqo+z- Then,
we make the following definition:

Definition 2.2.1 Let xo(m) denote the lowest element of r,;, (7) with respect to the lexi-
cographic order. x(7) is unique up to multiplicity.
Lemma 2.2.2  xo(7) has the form

1

Xo@) =@p@v" p@-- @)@ @ PRV Tlp® - @),

witha) < ay <--- < apanda; € o+ 7 for all i.

Proof Write

Qm

Xo=v"pR@vTPpR--- V.

Clearly, a; € o + Zforall i. Let j > 1 be the smallest integer such that aj;; > .
Suppose j > 1. Then, we claim that a, = a; — 1. To see this, observe thatif a, < a; —1

Xo=W"p@v*p) @v¥pR -+ @ p < rin()
\

WM xv2p)@vTp® - @v*p < ropn,.n(T)
I

Xo=Wp@vMp)@V¥p - Qv p < riin(T),

since v p X v*p = v*p x v* p is irreducible. However, xo < x{ in the lexicographic
order, contradicting the definition of xo (7). Thus, a; = a; — 1.

Next, suppose j > 2. Then, we claim that a; = oy —2 = ap — 1. First, if a; < ap — 1,
then the same argument as above tells us that

Xo=v"pRvTpRuUp@UMpR - @V p < rpin(m).

Again, x{ < xo lexicographically, contradicting the definition of xo. Thus, a3 = oy — 1 =
ayorasz = ap — 2 = a, — 1. However, if a; = a; — 1 = a, we have

Xo=v"p@v" pRv* @ rHp®R- - @V p < ()
I
(B~ o, v p]) X v P) @ Mp @ - @V < rn)(7)
4
Xo=v""p@vMp v T p@1Mp@ - @V p < fin(m),
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(noting that §([v™~1p, v p]) x v*~!pis the only irreducible representation of GL3,,(F)

containing v% p ® v*~!p ® v*~!p in its minimal Jacquet module) and again, we have

X4 < Xo lexicographically, a contradiction. Thus, we are left with a;; = a; — 2, as claimed.
We now move to the more general step. Suppose j > i. Inductively, we may assume

XO(T‘,):Va1p®ya171p®'”®l/a17i+2p®l/a,'p®yai+1p®.”®Vamp‘

We want to show that a; = oy — i + 1. First, if o; < oy — i + 1, we can use the same
argument that we used to show a; = oy — 1 to get

X(; _ V’)‘lp®yo‘1*1p®~'®V”‘1*"+3p®(1/“"/)@1/“‘*”2/))®1/O"”p®‘~®l/amp

A

= rmin(ﬂ-)~

However, x; < Xo lexicographically, contradicting the definition of xo. Similarly, if o;; =
oy — i+ 2, we can use the same argument we used to show az = a; — 1 to get

X(; _ Valp ®R® Va17i+4p ® (ValfiJer ® Va17i+3p ® Va17i+2p) ® Va,ﬂp R ® l/a"’p

< rmin(ﬂ-)~
Again, x§ < xo lexicographically, a contradiction. Thus, o; € {ag — 1,y — 2,...,
(o7 —i+3}U{Oél —i+1}.
Now, suppose o; = a1 — kwith k < i — 3. Then,
Xo = l/alp ®R-® Voqfkp ® Voqfkflp ® Vozlfkup R ® Va17i+3p
® WPV T ) @1 p® - @V p < rigin(T)
¢

_k—lp ® Val—k—2p R ® I/a]_i+3p

Va|p®_._®ya1—kp®ya1
® @ px v ) @U@ - @V < T mamn,. (T)
U
Xo=V"p® - ® Valfkp ® Valfkflp ® Va17k72p Q- @uaTit,
@V p @V TRV pR - @V p < ipin(T)

A8
(similarly commuting v ~* d poi—it3 a1—k=2
y gV p around v/ Dy sV 0

\
l/alp ®R-® l/al_kp® l/al—k—lp® l/al_kp® Val—k—2p® e ® Val—i+3p

@U@V PR @V < Fipin(T).
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Next,

VU@ @ g (0 g Rl g ek ) @ k2
® @V RV PR - @1 p < ropin ()
I
Vp @ @ v T p @ (5([b™ o, v R pl) x v ) @ MR
or
V@ @R ([N R p bR p]) x M Rp) @y k2
® @V P QU@ - @V < T psnm.m)(T)
U
VU@ @ e (M g M g R ) @ k2,
Q- QUITT2p @Y pR - @V P < Fyin(T)
or
Vip®- @ Mo T p v o v ) @ v T 2p
®-- @U@V @ @V < rin(7).

We can rule out the second of these possibilities since it is lexicographically lower than .
Thus, we have (shifting parentheses)

V0@ - @R (p Ry @ ik @ ek gy @ ekl
® @U@ UM PR @ U p < i (T)

\

Pp® - @Ry @ (S o ® R ) x R p) @ R

@@V RV PR @V < Ty snm.n(T)

U

= 0@ @ R @ (Vg @y g ) @ ke

Q- @V RV PR - @ U p < Fiin(T).

However, x; < xo lexicographically, contradicting the definition of x,. Thus, we cannot
have a; = oy — k with k < i — 3. The only possibility remaining is o; = a1 — i + 1, as
needed. Thus, by induction, we have a; = oy —i+1forl1 <i < j.

Now, in the statement of the lemma, we have a; = o and b; = o; — j + 1. Repeating
this argument to deal with a,, b, through ay, by finishes the lemma. [ |
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Definition 2.2.3 With notation as above, if
Xo(m) = (W"p@v" p@-- @1 p) @ @ WV p® - @V ),
set
So(m) = 8([" p, v p]) @ - - @ 6([1" p, ™ p]).

Corollary 2.2.4 Let 7 be an irreducible representation with xo(m), do(m) be as above. Let
M = GL (g, —p+1)n(F) X - -+ X GL(g,—pyr1)n(F). Then,

™ “— iGM (60(7‘(’)) .

Proof First, observe that by central character considerations, there is a direct summand V/
of the space of 1y, c(7) such that the semisimplification of V| consists of copies of xo (7).
By Frobenius reciprocity, this implies m < igum,,, (Xo(w)). By Lemma 5.5 of [Jan3], there
is an irreducible subquotient 8 of iy, (Xo(ﬂ')) such that m < iy (60). We claim that 8 =

do(m). Suppose not. Consider any x < ry, . m(0). Then, x < xo(7) lexicographically since

Xo(7) is the highest term in ry, M (iMMm;n (Xo(ﬂ'))). However, by Frobenius reciprocity,
0 < ryg(m). This implies x < ry,,.c(7), contradicting the definition of xo(7). Thus,

min

0 = do(m). |

2.3 A Result of Bernstein

We now give an application of the results of the previous section. A well-known theo-
rem of Bernstein (¢f. [Zell, Theorem 9.3]) says that an irreducible representation of a
p-adic general linear group is essentially square-integrable if and only if it has the form
§([v®p, v***p]) for some irreducible unitary supercuspidal representation p and some non-
negative integer k. A proof of this fact may be obtained fairly easily at this point.

We first recall the Casselman criterion. Let 7 be an irreducible square-integrable repre-
sentation of GL,(F). Suppose

X = l/mp] QK& l/akpk < rmin(ﬂ-)v

with p; an irreducible unitary supercuspidal representation of GL,,(F), o € R, and
ny +-+++ ny = n. Then,

ma; >0

mag +nyop >0

mag +monp +-o+Hn_jo_ >0

maog +nyop + -+ o + nmrag = 0.

Conversely, if 7 is an irreducible representation such that the inequalities above hold for
every X < rmin(7), then 7 is square-integrable.
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Theorem 2.3.1 (Bernstein) 7 is an irreducible square-integrable representation of GL,,(F)
if and only if w has the form m = 0([v~"p, v™p]), where p is an irreducible unitary supercus-
pidal representation of GL(F), m € %Z withm > 0, andn = (2m + 1)k.

Proof Asnoted in [Zell, Theorem 9.3], the Casselman criterion implies §([v " p, v p]) is
square-integrable.

In the other direction, we first claim that if 7 is square-integrable, supp(7) must be
contained in a set of the form {v*p}aca,+7 for some irreducible unitary supercuspidal p
and some oy € R. This follows easily from Lemma 2.1.2. For example, suppose supp(m) C
{vp1 Yacassz U {VPp2} s 12> but not completely in either. (Here, we allow the possibility
that p; = p; or ap = By mod 1, but not both.) By Lemma 2.1.2, we could obtain

X1 =P @ @v%p @1y @ - @ VP py < rpin ()
and
Xa =100 @ @Y @V @+ @ V¥ py < Figin ()

for some oy, ..., o B, ..., Be. One of the Casselman criterion inequalities for x; gives
may + -+ - + mag > 0. Similarly, one of the Casselman criterion inequalities for x, gives
101+ - -+ny8; > 0. Adding these gives nya; +- - - +nya +ny 81 +- - - +n,8, > 0. However,
by the Casselman criterion, we must have njay + -+ - + mag + mf; + --- + mfy = 0,
a contradiction. Thus, supp(7) must be contained in a set of the form {v*},cq,17> as
claimed.

Since supp(m) C {v*}acao+7> We can apply Lemma 2.2.2. Let x be as in Lemma 2.2.2.
If k = 1 (notation as in Lemma 2.2.2), then the Casselman criterion inequalities require
a; = —b;. By Corollary 2.2.4, e.g., we then get m = J([v ™% p, v* p]), as needed. Suppose
k > 2. The Casselman criterion inequalities require a; > —b;. So, suppose a; > —b;

fori = 1,...,j — 1and a; < —b; (note that if such a j did not exist, we would have
(a1 +(a—1)+--- +b1) +. o4 (ak +(ag—1)+---+ bk) > 0, contradicting the Casselman
criterion). Since a; > ay,...,a;_yand b; < by,...,b;_, we have

5[ p, 1% p]) x (17 p, 1 p]) = S([1p, 1 p]) X S([1" p, v p])
is irreducible for all i < j — 1. From this fact and Corollary 2.2.4, we have

= 6([7 p, v pl) X -+ x S([WPi=2 p, w2 p])
x {6([vP=1p, v~ p]) x ([ p, v p])}
X B([02 p, v pl) X -+ x B[, v p])
= 5[ p, v p]) X -+ x B([V12p, 12 )
x {6([v7 p, v p]) x §([v" =1 p, v~ p])}

X 6([be“p, vitpl) X - X (5([1/bkp, v%p))
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= §([Wp,v% pl) x S([W" p, v p]) X -+ x S([Vi=2p, v~ p])
x S([V7= p, =1 pl) x S([W77 p, v p]) X -+ x §([17 p, % p]).

Therefore, by Frobenius reciprocity,

1

Tmin(M) > (Wp @1 p@ - @) @1 p @ T p @ @1 p® - @1

In particular, since a; < —b;, we see that
naj +n(a; — 1) +---+nb; <0,

contradicting the Casselman criterion. Thus, if 7 is square-integrable, we must have k = 1,
as needed. ]

2.4 Connection with the Langlands classification

In this section, we establish the connection between Jy(7) and the Langlands data for .
We shall also give a lemma which will be needed later.

Let us briefly review the Langlands classification for general linear groups. First, if ¢ is
an essentially square-integrable representation of GL,(F), then there is an €(J) € R such
that 59§ is unitarizable. Suppose dy, . . ., d are irreducible, essentially square-integrable
representations of GL,, (F), ..., GL,, (F) with £(6;) < --- < &(d). (We allow weak in-
equalities since we are assuming ¢; is essentially square-integrable; if we allowed d; essen-
tially tempered, we would have strict inequalities. The formulations are equivalent.) Then,
01 X -+ X J has a unique irreducible subrepresentation (Langlands subrepresentation).
Further, any irreducible representation of a general linear group may be realized this way.
We favor the subrepresentation version of the Langlands classification over the quotient
version since m < 1 X - - - X d tells us d; ® - - - ® dy appears in the (appropriate) Jacquet
module for 7.

For notational convenience, let §(p, m) = 5([V%ﬁlp, v pl) for m € Z with m > 0.
Then, v%0(p, m) = 5([V%M+ap, I/%mp]). Write

do(m) = v"6(p, m1) @ v*26(p,my) @ - - - @ v*5(p, my).

In particular, a; = % and m; = (a; — b; + 1). We then have the following:

Proposition 2.4.1 Let §y() be as above and uafé(p, my), Vo‘zlé(p, my),..., V‘)":(S(p7 my) be
a permutation of v*'6(p, my),v*d(p,my), ..., v*d(p,my) with af < aj < --- < ay.
Then,

V“llé(;;m{) x v §(p, my) X -+ X V%8 (p, my)
2 uM§(p,my) X V26(p,my) X -+ X V%O(p, my).
Further,
§o(m) = v 6(p,m}) ® v 8(p, m}y) @ -+ @ v 8(p, m))

is the Langlands data for .
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Proof First, we focus on showing

v 8(p,my) X V2 8(p,mp) X+ x v (p, my)

~

= VO“(;(P, ml) X Vazfs(/), mZ) X X Vak(s(pa mk)-

Suppose that ua{6(p, m{) = v*§(p, m;). For j < i, we have a; < a; (definition of dy(m)).
Further, since o; > aj, we must have b; > b;. Thus, by Lemma 2.1.1,

vYié(p,mj) x v¥o(p,m;) = v6(p, m;) x v*(p, m;)
is irreducible. Thus, we can commute v* §(p, m;) to the front as follows:
v o(p,my) X oo X vN20(p,mi—p) X VY10 (p, miy) X v (p, m;)
X VE(p, mMipy) X - X vH(p, my)
= vM0(p,my) X - X V25(p, mi_y) X vY6(p, mi) X v 5(p, miy)

X V¥ (p, migy) X -+ X vH*(p, my)

o~

VR S(py ) X - X V% 8(p, mi) X VU 8(p, mi—a) X v 8(p, myy)

X VY (p, migr) X -+ X v™*(p, my)

= v%6(p, m;) X v 0(p, my) x v20(p, mi_z) X v¥=16(p, mi_y)
X VE(p, mipy) X - X vH(p, my)
= v 8(p,m]) X vU8(p, my) X VI28(p, mi—s) X v 8(p, my—y)

X VY (p, migr) X -+ X vHO(p, my).

Next, we identify v 8(p, mj,) among the remaining terms. We can then use the same
argument to commute it into the second position, giving

VA8(p, my) X -+ X VS (p, my) = v 8(p,ml) x v 8(p,ml) X -+ .
Iterating this procedure, after k — 1 steps, we obtain
VO S(p,my) X -+ X V™8 (p, my) = v 8(p, my) X «-+ X V%8 (p, m),

as claimed.
The claim regarding the Langlands data is now straightforward. By Corollary 2.2.4, we
have

T v8(p,my) X -+ X VS (p, my) 2 VN 8(p,m]) X -+ X V¥ S(p, mp),

which has a unique irreducible subrepresentation whose Langlands data is §(w). Thus,
04 (m) must be the Langlands data for 7. [ |
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The lemma below will be needed in Section 4.2. Suppose
xi=@W"p@vTp® - @vYp)
xX2a= 0o pe-- @)
We let
mls. (x1,x2) =V"pRvp®--- QUVp

with v p @ v2p ® - - - @ V7% p the shuffle of x; and x, which is minimal with respect to
the lexicographic order (m.Ls. for “minimal lexicographic shuffle”).

Lemma 2.4.2  Let m,, m, be finite-length representations supported on {v®p}acag+z. Then,

Xo(my X ) = m.Ls. (X0(7T1)»X0(7T2))-

Proof First, by the characterization of the minimal Jacquet module of an induced repre-
sentation via shuffles, we have

m.Ls. (XO(m),Xo(ﬂ'z)) < min (M1 X ).

Thus, xo(m X m3) < m.ls. (Xo(m), Xo(ﬂ'z)) lexicographically.
On the other hand, by the characterization of the minimal Jacquet module of an induced
representation via shuffles, we have

Xo(m X m3) = sho(x1, X2)

for some x; < 7min(71), X2 < Tmin(7m2), and a shuffle shy. By definition, xo(m;) < x; and
Xo(m2) < X3 lexicographically. Therefore, shy (Xo(m), Xo(ﬂ'z)) < sho(x1, x2) lexicograph-
ically. Thus,

m.Ls. (xo(m1), xo(m2)) < sho(xo(m1), X0(m2)) < sho(x1, x2) = Xo(m1 X 72)

lexicographically. Combining the inequalities gives the lemma. ]

3 Supercuspidal Supports
3.1 Background material

In this section, we give some additional background material for S,(F). In particular, we
review the Casselman criterion, the Langlands classification, as well as some additional
structures on R, R[S] which we need later.

First, we review the Casselman criterion for the temperedness (resp., square-integra-
bility) of representations of S,(F). Let m be an irreducible representation of S,(F) and
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VY01 ®- - QUM P ®0 < Spin (), with p; an irreducible unitary supercuspidal representa-
tion of GL,,, (F), o an irreducible supercuspidal representation of S,,,(F) and o; € R. Then,
if 7 is tempered,

mia; > 0,

miag + mpap > 0,

myog + mpon + - -+ mpag > 0.

Conversely, if the corresponding inequalities hold for every element of spin(7), then 7 is
tempered. The criterion for square-integrability is the same except that the weak inequali-
ties are replaced by strict inequalities.

Next, we review the Langlands classification for S,(F). As in Section 2.4, if § is an ir-
reducible, essentially square-integrable representation of GL,(F), we have £(§) € R such
that v =594 is unitarizable. Let 41, . . ., & be irreducible essentially square-integrable rep-
resentations of GL,, (F), ..., GL,, (F) satisfying €(6;) < -+ < e(dx) < 0 and 7 a tempered
representation of S,,_,,(F). Then, §; X - - - X d; % 7 has a unique irreducible subrepresenta-
tion which we denote by L(y, . . ., d; 7). (Equivalently, we could formulate the Langlands
classification with 4, . . ., dx essentially tempered and €(;) < --- < (&) < 0.) Further,
any irreducible representation may be realized this way. As with general linear groups, we
favor the subrepresentation version of the Langlands classification for the following reason:
In the subrepresentation version, d; ® - -+ ® 0k @ T < S(y,....m0) (L((Sl, ey Ok 7')).

The Langlands classification is done in its general form in [Sill] and [B-W]; the Cas-
selman criterion in [Cas]. The discussion above is largely based on [Tadl]. The reader is
referred there for more details. We now turn to some structures we will need later.

Definition 3.1.1

1. If 7 is a representation of GL,,(F), set
n
m*(’T) = Z 1’(,’)(7’).
i=0
2. If 7 is a representation of S,,(F), set
n
wi(m) =Y si(m).
i=0

Observe that we may lift m* to a map m*: R — R ® R. With multiplication given
by x and comultiplication given by m*, R has the structure of a Hopf algebra (cf. [Zell,
Section 1.7]). In particular, if we define x: (R® R) ® (R ® R) — (R ® R) by taking
(M®n) X (r{®1)) = (1 x1{)® (72 X 7)) and extending bilinearly, we have m* (1) x 1) =
m* (1) X m*(1).

Now, define s: R® R — R® R by taking the map s: 7y ® 7, — 7, ® 71 and extending
it bilinearly. For notational convenience, write m: R ® R — R for multiplication. Set
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M*=(m®1)o (" @ m*)osom*. If wedefine x: (R®R) ® (R® R[S]) — R ® R[S]
by taking (11 ® 72) % (T ® ) = (11 X T) ® (1, % 0) and extending bilinearly, we have the
following:

Theorem 3.1.2 (Tadi¢) Fort € R, 8 € R[S], we have
1 (r % 0) = M*(7) x 1*(6).

In other words, with x and p*, R[S] acquires the structure of an M*-Hopf module over
R (cf. [Tad2]). We note that there is a corresponding result for the groups O,,(F) [Ban].
Therefore, we expect that once certain issues related to disconnectedness are addressed, it
will be possible to bring O,,(F) into this discussion as well.

Finally, we shall make use of the following:

Definition 3.1.3 Suppose p is an irreducible, unitary, supercuspidal representation of
GL,(F) and o and irreducible, supercuspidal representation of S,(F). For a > 0, we say
that (p, o) satisfies (Ca) if v* px o is reducible and v/” x o is irreducible for all 3 € R\{+a}.

It is well-known that if p 2 p, then vp x o is irreducible for all 3 € R. If p = p, then
thereis an o > 0 such that v*p x o is reducible (¢f. [Tad5]). Further, it is then the case that
v9p x o is irreducible for all 8 € R\ {£a} (cf. [Sil2]).

If o is generic and (p, o) satisfies (Ca), then o € {0, %, 1} (cf. [Shal], [Sha2]). If &
is nongeneric, one can have (p, o) satistying (Ca) for @ > 1 (¢f. [Re]). In general, it is
expected—and we shall assume—that o € %Z (Assuming certain conjectures, this has
recently been verified in [Mce2] and [Zh].) The problem of determining « for a given pair
(p, o) is difficult. However, we note that in the case ¢ = 1, much is known. In particular,
when n > 2 and p = p is tamely ramified (¢f. [Adl]), the value of a has been explicitly
calculated in [M-R] for a large collection of such p using a criterion from [Sha2].

3.2 Reducing the Problem Based on Supercuspidal Supports
Let p be an irreducible unitary supercuspidal representation of GL,,(F), 6 € R. Set

S(pvﬁ) = {Vapv V_Qp}aeB#A

If p = p, we may take 0 < 3 < %; otherwise 0 < 3 < 1. Suppose p1, p2, . . . , P are irre-

ducible, unitary, supercuspidal representations of GL,, (F),...,GL,, (F), and g1, 5, .. .,
On € Rywith0 < 5; < % if pj & p;, 0 < B; < 1if not. Further, assume that
8(p1,61),- -, 8(pm, Bm) are disjoint. Set

8((/01,/31), (p2,82), -+, (Pm,ﬁm)) = 8(p1, B1) U8(p2, B2) U -+ U S(pm), Brm)-

If o is an irreducible supercuspidal representation of S,(F), set

8((p1,81)s (02, 82); -+ s (pumy Bu); ) = 8(p1, B1) U 8(p2, Bo) U -+ - U 8(py ) U {0}

We note that every irreducible representation of S, (F) has supercuspidal support on a set
of this form.
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We now recall some results from [Jan3]. Suppose 7 is an irreducible representation
supported on & ((pl, 0B1), (02, 682)s - -+ s (Pms Bin)s cr). Then, there exist irreducible represen-
tations 71, 72, . . . , Tm—1 0f GLy, (F), GLy, (F), ..., GLg,,_, (F) and an irreducible representa-
tion 6, of Sk +.(F) such that

m—1
TS T X Ty X oo X Ty X0,
2. 7; is supported on 8(p;, §;) and 8,, is supported on § ((pm, Bm); U).

Further, 6, is unique. Similarly, one could single out (p1, 51), ..., (Pm—1, Bm—1)> resp.,

to produce 0y, . . ., 0,1, resp., supported on 8 ((p1,31); ), - - -, 8((Pm—1, Bu—1); 7), rESP.
Write (p;, 8;) () = 0;.

Theorem 3.2.1 Let Irr ((pl, B1)ys s (Pmy Bin)s 0’) denote the set of all irreducible represen-
tations of all S, (F), n > 0, supported on 8((p1, B1)ys s (Pmy Bin)s 0’). Then, the map

T (p1, S(T) ® - @ (Pm, Brw) ()

implements a bijective correspondence

Irr((p1, B1)s - -+, (Pmy Bm)s o) < Irr ((p1, 81); 0) @ -+ @ Irx ((pm, Bn); 7).

Further, 7 is square-integrable (resp., tempered) if and only if (p1, 51)(7), ..., (Pm, Bm)(T)
are all square-integrable (resp., tempered).

Remark 3.2.2 The correspondence described above also respects contragredience, dual-
ity, Langlands data, induction, and Jacquet modules in a sense made precise in [Jan3]. For
our purposes, the key feature is that it respects square-integrability.

3.3 A Conjecture of Tadi¢

Suppose that (py, 1), (p2,52)s -5 (Pm, Bm), 0 are as in Section 3.2. We let
R((pl, 61), (p2,02)5 -+ (Pms ﬁm)) denote the subalgebra of R generated by the represen-

tations supported in 8((p1, 61), (p2,02)5 -+ (Pmy ﬁm)). Then,

R((plyﬁl)v (p2a52)7 sevy (pmvﬁm)) = R((Ph/@l)) b2 R((pZaﬁZ)) Q- ® R((pmu@m))

as Hopf subalgebras of R (¢f. Remark 8.7 of [Zell]). On irreducible representations,
this tensor product decomposition is determined by the (appropriate) Jacquet
module (¢f. Lemma 2.1.3 2.). If we let R((pl,,é’l),(p2,52),...,(pm,ﬂm);a) de-
note the additive subgroup of R[S] generated by representations supported in

8((p17ﬂ1)7 (plvﬁl)a ceey (pmvﬁm); 0)) then

R((phﬁl)v (pZaﬁZ)v ceey (pmaﬁm)) U)
= R((p1,31);0) @ R((p2,2);0) @ -+ - @ R((pm3 Bm); 0)

aSR((plyﬁl)v (p2a52)7 sevy (pmaﬁm)) = R((Ph/@l)) ®R((p27ﬁ2)) Q-+ ®R((pm7ﬁm)) M*-

Hopf modules (¢f. [Jan3, Proposition 10.10]). On irreducible representations, this tensor
product decomposition corresponds to that described in Theorem 3.2.1 above.
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Conjecture 3.3.1 Suppose (p;1,01), (p2, 02) both satisfy (Car) (same value of ), 0 < 8 <
1 Then
2 ’

R((p1,B)s01) = R((p2, B); 02)

as R((pl, B)) ~ R((pz, ﬁ)) M*-Hopf modules. A similar result should hold if p; 2 p; for
i=1,2.

Of course, if two irreducible representations correspond under the isomorphism, they
should have supercuspidal support of the same parabolic rank. We also note that this iso-
morphism should send tempered (resp., square-integrable) representations to tempered
(resp., square-integrable) ones and commute with ~ and * =duality operator (c¢f. [Aub],

[S-SD).

That R((pl,ﬁ)) &~ R((pz,ﬂ)) is conjectured in [Zel2] (or more precisely, is an im-
mediate consequence of a conjecture in [Zel2]). That it holds follows from the results in
chapter 7 of [B-K]. The conjecture above was suggested by Marko Tadic.

It is not difficult to describe the conjectured isomorphism. For concreteness, suppose
that (p1, 01), (2, 02) both satisfy (C1/2). For R((pl, 5)) = R((pz, ﬁ)), we want

SV p1, 7 1) «— ([P py, P py])
and
S([v=B%py, v p1]) e 8([v 5y, ™5 py))

for all x, y € Z with x < y. This gives a bijective correspondence between irreducible es-
sentially square-integrable representations in R(( o1, 8 )) and those in R ((p2, ﬁ)). This im-
mediately extends to a bijective correspondence between irreducible essentially tempered
representations in R (( o1, 0 )) and thosein R (( 02, B )) (since any irreducible essentially tem-
pered representation in R(( pi, B )) may be written as an irreducible product of irreducible
essentially square-integrable representations in R((p;, 3))). Finally, in general, two irre-
ducible representations correspond if their Langlands data correspond. Equivalently, two
irreducible representations m; € R((pl,ﬂ)), T € R((pz,ﬂ)) correspond if dy(m;) and
do(m,) correspond (cf. Chapter 2).

We cannot be quite as explicit about the isomorphism R((pl, 3); 01) &~ R((pz, 08); 02) ,
but we can describe an inductive procedure. Suppose we know the map for irreducible rep-
resentations whose supercuspidal support has parabolic rank < n — 1. Let m; €
R((p1 ,3); 01), ™ € R((pz, 08); 02) be irreducible representations with supercuspidal sup-
port of parabolic rank n. If 71, m, are nontempered, m; <— m, if their Langlands data
correspond. This is a question of whether a collection of irreducible essentially tempered
representations from R((pl, 6)) and R((pz, ﬁ)) correspond and whether a tempered rep-
resentation from R((p17 B); 01) and one from R((pz, 08); 02)—b0th having supercuspidal
support of parabolic rank < n—correspond. Thus, if 7}, m, are nontempered, we can
check if m; <— m,. If m;, m, are tempered but 7#;, 7, are nontempered, we can simply
check whether #; <— #,. Thus, the only problem is when 7;, 7, and 71, 7, are all tem-
pered. By [Jan3, Corollary 4.2], this forces 3 = 0 and

T =pP1 X P1 X - X PN Ty =P X P XX Py N,

n n
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noting that the hypothesis (C1/2) forces both of these to be irreducible (by [Gol]). These
should correspond under the isomorphism, finishing the inductive procedure. The same
argument works for (Car) with a # 0 or (C0) when 3 # 0 (or in the case where p; 2 p;). In
the case where @ = 0 and 8 = 0, we have p; xo; = T1(p;; 0;) D T2 (p;; 0;). Forisomorphism
purposes, these cannot be distinguished, giving rise to two such isomorphisms.

While it is easy enough to describe the expected isomorphism, it is likely to be very diffi-
cult to show that it respects x and p*. It is included here mainly for motivation; which we
take up momentarily. As for evidence for this conjecture, we point to the fact that the con-
ditions (Ca), o = 0, %, ... generally seem to be enough to determine how induced repre-
sentations supported on 8 (( 0, 0); U) decompose, especially when Jacquet module methods
are employed (cf. [Tad3], [Tad4], [Tad5], [Janl], [Jan2]).

To see the significance of this conjecture to the problem at hand, suppose, e.g., (p, o)
satisfies (C1/2). Then, the conjecture gives a bijective correspondence between irreducible
square-integrable representations supported on 8((p, B); a) and those supported on
8((p’, B);0") for any other (p’,0”') satisfying (C1/2). Now, if we let p’ be the trivial rep-
resentation of F* and ¢’ the trivial representation of SO (F), we have (p’, ') satisfying
(C1/2). In this case, Moeglin [Mcel] has parameterized the irreducible square-integrable
representations based on the results of Kazhdan-Lusztig [K-L]. Thus, we can expect an
analogous parameterization for any pair (p, o) satisfying (C1/2).

4 Basic Results
4.1 A Basic Lemma for S, (F)

Let p be an irreducible unitary supercuspidal representation of GL,(F), ¢ an irreducible
supercuspidal representation of S, (F).

Definition 4.1.1 Let 7 be an irreducible representation supported on 8 ((p, 08); U). Set

X(m)

={x <smn(m) | x=v"p® - Q@v*p®ochasa; + -+ a, minimal for s, (7)}.
Then, let xo(m) € X(7) which is minimal in the lexicographic ordering.
Lemma 4.1.2 Assume (3 € %Z Then, xo(m) has the form

Xo(m) = (W p @1 pR- @vp) R @ W1 pe - @ 1v%p) ® 0,
witha; < ap, < -+ < gy

Proof Take 7 ® o < sg () irreducible such that xo(7) < spin(7 ® o). Since 8 € %Z, we
may apply Lemma 2.2.2 for 7 to finish the proof. ]

Definition 4.1.3 With notation as above, if 3 € %Z and

1

Xo(m) = W p@ 1" p@- @p) @@ W@ pe - @ V%)),
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set
So(m) = ([ p, v p]) ® - - - @ §([V"p,v™p]) ® 0.

Lemma 4.1.4 Suppose xo(m), do() as above, 5 € %Z Let M = GL 4, —p,+1)n(F) X -+ X
GL(akfka)n(F) X Sr(F). Then,

T = igm (50(7‘(’)) .

Proof The proof parallels that of Corollary 2.2.4. ]

4.2 A criterion for square-integrability

Theorem 4.2.1 Suppose 7 is an irreducible representation with xo(m) = (W"p & ---
®Vblp)®...®(Vamp®...®yhmp)®o_

1. is nontempered if and only if a; + b; < 0 for some i.

2. m is tempered but not square-integrable if and only if a; + b; > 0 for all i and equality
occurs for at least one i.

3. m is square-integrable if and only if a; + b; > 0 for all i.

Proof (3)(=) Suppose not—say 7 is square-integrable but a; + b; < 0 for some i. Fix i to
be the smallest value of i for which a; + b; < 0. Now, for j < i we know that a; < a; and
aj+b; >0 > a; + b;. Therefore, b; > b;. Thus,

8([vip, v p]) x 8([1" p, v p]) 2 6([" p, v p]) x 8([v/% p, v p])

by irreducibility. Using these equivalences, we may commute d([1% p, 1% p]) forward:

m > 5([W"p, v p]) X -+ x S([V1 p, v pl) x S([VYp, 1 p])
x ([ p, v pl) x - -+ x [V p, v p]) X o
= 5[ p, v pl) x -+ x 5([W1p, v p]) x S([V"~' p, ¥~ p])

Am

X ([ p, vt p]) X -+ X §([Vp, v p]) X &

= §([vhp, v pl) x S([V1 p, v p]) X -+ x §([VP=1 p, v~ p])

Am

x ([P p, v p]) x -+ x §([WP p, v p]) X 0.
Therefore, by Frobenius reciprocity,

sminwz(1/‘"p®-'-®Vb*p)®(l/“1p®---®bep)®"' .

However, since a; + b; < 0, this violates the Casselman criterion for square-integrability.
Thus, 7 square-integrable implies a; + b; > 0 for all i.

https://doi.org/10.4153/CJM-2000-025-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2000-025-7

Classical p-Adic Groups 559
(2)(=) The proof that 7 tempered implies a; + b; > 0 for all i is essentially the same as
that used in (3)(=) above.

We now argue that if 7 is not square-integrable, then a; + b; = 0 for some 7. If 7 is
tempered but not square-integrable, we have

T ([ p, v pl) X - x ([v % p,v™p]) 1§
for some square-integrable . We have k > 1. For convenience, we will use &([/% p, 1% p])
and 0([v~% p, v% p]) interchangeably when i < k. Write 6y(8) = §([v%1 p,v%1p]) @ - - -
® 0([v% p, v p]). Note that

T 6([v " p, v p]) X o x O([vT M p,vMp]) &
= o([v " p, v p]) X -+ x 6([v™ " p, v p])

X 8([1P%1 p, v p]) x - x ([V™ p, v p]) X 0.

Let (5([1/51//), Vallp]), ... ,6([V’Bflp, l/aflp]) be the permutation of &([v%p,v%p)),...,
5([v% p, v p)) satisfying

La<o<---<q
2. ifal =/, then g/, > G/.

We claim that
([ p, v p]) x -+ x ([ p, v p]) 22 6([w% p, v p]) x -+ x S([W¥ p, v p)).
Since the proof of this claim is very similar to the proof of Proposition 2.4.1, we omit the

details. (To apply that argument here, one also needs the following observation: By (1)(=)
above, 3; + aj > 0 for j > k.) As a consequence,

m s 8% p,v i p]) x - x ([ p,v p]) 1 0.
Therefore, by Frobenius reciprocity we see that
smin(T) > (@ @)@ @ pR-- @V p) @0

We shall show that this is, in fact, xo (7).
‘We now check that

Xo(ﬂ'):(l/allp(g)~‘~®Vﬁ1/p)®~‘~®(l/af/p®"~®l/ﬁf/p)®a.
In fact, we show more—we check that

Xo (81 p, 1 pl) ¢ -+ x 8([w ™ p, v p]) x &)

:(l/al,p®-~-®1/*61,p)®-~-®(1/a‘,p®~-~®l/ﬁf,p)®o’.
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To do this, consider 7 ® o < sqgL (6([1/‘“1;), vipl) X oo X 0([vT%p, v%p]) X 5) with
7 irreducible and Xo((S([V_alp,Valp]) X oo X O([v™%p,v%p]) X 6) < $min(T ® 7). To
calculate this, we write

a+l

M (617 p,v%p)) = 81w~ p, v Ppl) x ([ p, v p))
]

as in [Tad5]. It follows from Theorem 3.2 that

soL (0([v™ " p, v p]) X -+ x 8([v~%p,v™p]) % 0)
= M&L (0(v™ " p, v p])) X -+ x MEL(3([v™ % p,v™p])) X sg.(6) @ o,

where we use s%; () to denote that part of s () attached to the general linear group (i.e.,
sL(8) = s2,(8) ® o). Por 8([v~%p,v%p]) with j < k, thei = —aj,a; + 1 terms
in Mg, ((5([1/ﬂfp, I/afp])) (which both give rise to a copy of d([v~% p, ¥ p])) minimize
[(=i+D)+(=i+2)+ - -+a;]+[i+(G+1)+--+0a;]. Thus, 7 < J([v™% p,v¥p]) X
<X O([vT%p, v p]) X s& (6). If we let

S0(§) = {1" < s, (8) | 7" irreducible and sy (7' ® o) < X(8)},

we must clearly have 7 < §([v ™% p,v*p]) X - - x §([v™%p, v™p]) x s)G((LJ)(é). Now, by
Lemma 2.4.2 (writing xo(8) = x{(§) ® o as above)

Xo(8([v™ v pl) x -+ x 8([v~ " p, v p]) x 58 (8) © 0)
=mls.((v"p®@ - @V "p),..., " p@ - @V %p),x0(8)) ®0c
= (Va]lp®...®Zjﬂllp)®...®(Va£p®...®yﬂ[/p)®o'7
by the construction of Wp®-- QU p) Q- @ Wp®--- @1V p) ® o, as needed.
Since 7 is assumed not to be square-integrable, we have k > 1 and —ay + oy = 0.
Therefore, 8/ + o/ = 0 for some i. This finishes the case (2)(=).
(1)(=) Write m = L(é([uﬂ‘p, v pl), ..., 8([%p, v%pl); T). Write
0o(T) = (5([l/ﬂk+lp7 V)R- ® 6([Vﬁip7 v p)) ® 0.
Then,

7 ([P p, v p]) x -+ x §([v%p, v p])

X 8([1V7 p, 1 p]) - x §([W 7 p, v p]) X 0.

We can now argue as we did to show a; + b; = 0 for some 7 in (2)(=).
The converse directions now follow immediately. ]
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4.3 Supports for Square-Integrable Representations

Proposition 4.3.1 Suppose p is an irreducible unitary supercuspidal representation of
GL,(F) and o an irreducible supercuspidal representation of S,(F). Let 8((,0, ﬂ);a) be as
in Section 3.

L If p 2 p, there are no irreducible square-integrable representation supported on

S ((p, B); U) for any .
2. Suppose p = p and (p, o) satisfies (Ccr). Then, there are irreducible square-integrable
representations supported on & ((p, 08); cr) ifand only if 3 = @ mod 1.

Proof Claim 1 follows from [Tad4, Theorem 6.2]. In the case where 5 ¢ %Z, the second
claim also follows from [Tad4, Theorem 6.2].

We consider 2. when 3 € %Z First, assume that (p, o) satisfies (Ca) and § #Z o mod 1.
Now, suppose there were an irreducible square-integrable representation 7 supported on

S((p, 3); a). Write

Xo(m) = W p@ " p@-- @1 p) @ W p RV pR - @ 1)
®...®(Vakp®yak_1p®...®kap)®0"

noting that a;, b; = = —3 mod 1. By Lemma 4.1.4, we have

pr, v%=1p]) x 6([1/bkp, v%pl) X o.

m e 6([ p, v pl) X - x O([v
Observe that, by [Tad3, Theorem 13.2], §([v%p, v%p]) x o = §([v%p, v=U%p]) x o is
irreducible. Thus,

br—1

m = 8([p, v pl) X - x ([ v pl) X ([ p, v p]) X o

Therefore, by Frobenius reciprocity,

b1

Smin(M) > (M p @1V p@ - @)@ @ W p@ v Tl p @ v p)

bk71p®"'®l/7ukp)®0'.

QW kpe v

However, it follows from Theorem 4.2.1 that we have —b; + (—by — 1)+ -+ (—a;) < 0 <

ap + (ag — 1) + - -+ + by, contradicting the construction of xo(m). Thus, there can be no
irreducible square-integrable representation supported on 8 (( P, 3); a) , as claimed.

The converse direction of 2. follows immediately from the fact that v* x ¢ has a square-

integrable subrepresentation. ]

We note that in the case where o is generic, the above proposition follows from [Mu].

https://doi.org/10.4153/CJM-2000-025-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2000-025-7

562 Chris Jantzen

4.4 Some Constraints on x(m)

Lemma 4.4.1 Suppose (p, o) satisfies C(«) and 7 is an irreducible representation supported
on 8((p, ﬁ);a) with =a mod 1. If

Xo(m) =" p@ @V R @V R @V @0,

then for each 1 < i < k, we have b; < a. Further, if « > 0, there is at most one i for which
b,‘ = Q.

Proof First, we define a representation we will need in the proof. If & > 1, let 6, =
v%p x §(vp; o), which is irreducible (¢f. [Tad3]). If a = %, let 6, denote the irreducible
subquotient common to V%p X (5(V%p; o) and 5([V’%p, l/%p]) X 0 (0, is needed only for
a > 0). We observe that 0, is the only irreducible representation containing v“pQv*p® o
in its minimal Jacquet module. Further, s,y (6,) > vp @ v % ® 0.

Let i be the largest value for which b; > 0. Then, [Vip, v p] C [VPip, v% p] for all j > 1.
Therefore, commuting arguments give

T 8([vP p, v p]) X -+ x §([V =1 p, v p]) x S([V% p, v p])
x §([V7 p, v p]) X+ x 8([%p, % p]) x &
= ([ p, v pl) X -+ X SV p, v p]) X S([WP p, v p])
x o x ([ p, v p]) x 8([v p, v p]) X 0.

If b; # o, we get

ai—1

T (WMpx - x V) x o x (W p x - x VP p) X (VT p X - x Vb )

XX (W% px - x V) X (p x - x P p x Whip) o

ai—1

> WP XX V) XX (W p X e X VI p) X (0 p X - x U0 )

b;+1

XX W x e x V) x (Vip x e x P p x vTlip) Mo

since v p x 0 = vt p x o is irreducible. However, by Frobenius reciprocity, this contra-
dicts the minimality of xo () above. Thus, b; = a.
Now, suppose b; = awand j < i is the largest value for which b; > 0. Then, a commuting
argument gives
T 8([v" p, v p]) X o X ([ p, v p)) 1 0
= 5([W*p, v pl) x - x ([ p, w2 p])

x 8([Whip,vip]) x 8([W¥p, v%p]) % o,
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where a), = a,, if m < j, a1 if j < m < i, apyy if i < m, and similarly for b),. If
b > o= b;, we can use a commuting argument to get
T §([VHp, v p]) x - x B[V p, 2]
x 8([1" p, v p]) x 8([17p, 1% p]) X &
I
T Wipx - xp)x - x (V%2p x -+ x VPi-2p)
X (Whpx - x Vip) x (Wipx - x VT p x vbip) o
S (WP XX W p) X e X (V%2p x - x Vo2 p)
X Whipx - xvlip)x (Wipx - x Vit p x vlip) o
since v p x 0 = v b p x ¢ is irreducible. This contradicts the minimality of x () above.
If b; = o = b;, observe that §([v“p, v%p]) x §([v¥p,v%p]) — Vi%ip X -+ X ity x
(W%p x vip) x --- x (v*p x v*p). Thus, arguing as above, we get
T (1/”‘/,0 X oo X Z/bl/p) X - X (Z/“k/—zp X +ee X ka/—zp)
X (V%p x - x V4t p) x ((V“fp X Vp) X oo X (VY X Z/O‘p)) X o
U
(o) (M) = W p@ - @)@ @ (W@ - @ V)
QWp®-- @) @ ((Vajp®yajp)®.“®(Va+1p®l/a+1p)) ®0,
I
smin(M) > (W p® - @V P) @@ (Vi p® - @) @ (V@ - @ LT )
® ((Va]p®yalp) R ® (ya+lp®ya+lp)) QWP ) @0,

again contradicting the minimality of x,(7) above. This finishes the proof. ]

The following refinement is of interest when o > 1.

Lemma 4.4.2 Suppose (p, o) satisfies C(«) and 7 is an irreducible representation supported
ong ((p, ); 0). If (now using —b; for lower ends)

Xo(m) =" p@ - @v )@ @ @v ) @0,

then there is a B with o+ 1 > (8 > 0 such that each of {—08,—0 — 1,...,—«a} appears
exactly once among by, b, . . ., by and there are no other negative b;’s.
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Proof Let [—dy,ci],...,[—dk, ck] be the permutation of [—by, a;], ..., [—bk, a;] having
di > -+ >di (and if d; = d;;1, then ¢; < ¢;y1). Then, we claim that

7w 6([v™p,vop]) X --- x 8([v~%p, v%p]) X 0.

To see this, observe that if a; > a; and b; < bj, then (vl p,v%p]) x 6([v~ip,v%p]) =
S([v~ip, % p]) x 8([v " p, 1% p]) (by irreducibility). One can get from §([v =" p, v p]) x
o x 6([v 8 p, v p]) to ([N p, v p]) X - X 6([v%p, v%p]) through a sequence of
such transpositions, hence equivalences are preserved. Therefore,
™ 5([v N p, v p]) X - x 8([v%p,v%p)) X 0,

as claimed.

If di > 0, we are done: = a + 1. So, suppose dy < 0. By Lemma 4.4.1, dy > —a.
Then, we need to check that dy = —«. If dp > —a, we would have

™~ (5([1/7‘11/)7 l/clp]) X oeee X (5([1/*dk_1p7 l/ck_lp])
< (14 p,up)) X v 1
= 5([1/_d‘p, yc‘p]) X oo X 6([V_dk—1p’ VCk—lp])

x 8([v~ %1 p, v%p]) x v¥p x o,

which, by Frobenius reciprocity, contradicts the minimality of do(7) (switching signs on
—dj lowers the exponent total). Thus, if dy < 0, we have dy = —a.

Now, consider di_;. If dy_; > 0, we are done: § = a. So, suppose dr_; < 0. We
have dy_; > dy = —a. Further, by Lemma 4.4.1, we cannot have dy_; = dy = —a, so
dr—1 > —a. We need to check that dy_; = —a + 1. Suppose this were not the case. Then,

™ — (5([1/_d1p’ Z/C]p]) N, (5([Z/_dk72p7 I/Ckfzp])

—dx—

X 5([1/7’1“‘“,0, v*1pl) x v p X 5([1/7dkp, v%pl) X o

~

=~ §([v%p,vp]) X -+ x §([v™ %2 p, v p])

X 6([V—dk—1+1p7 VCk—lp]) % 5([V—dkp7 VCkp]) % V_d"_‘p oy
= (5([1/_’il'p7 4 p]) X e X (5([V_dk*2p7 l/ck*zp])
X 8([v™ %= p, % p]) X 6([v ™% p, v%p]) x Vi p 2 o

by the irreducibility of v ~%-1

minimality of d¢ (7).

Finally, suppose we have d; = d;y, +1foralli < jwith j < k—2.1fd; > 0, we are done:
B = —dji1. So, suppose d; < 0. An argument similar to that in the preceding paragraph
shows that we cannot have d; > dj;; + 1. Thus, it remains to show that we cannot have

p X o. Again, by Frobenius reciprocity, this contradicts the

https://doi.org/10.4153/CJM-2000-025-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2000-025-7

Classical p-Adic Groups 565

d; = dj,. Suppose that were the case—say d; = d;; = . Then,

m s 8([v N p, v p]) X - x B[ p, v pl) X 8([v T p, 1))
x v Tpx 8([v 7, v p]) x 8([v " p, v p]) x - x S([v%p, v%p]) X o
= 5([v N p, v p]) x - x Sl p, v p]) X ([ p, 1 p])

X §(lv™7p, vt p]) x v p x A([

P,V p]) X - x S([p, v%p]) X o
< 8([v ™M p, v p]) X -+ x 8([v™ U p, 9 p)) x 8([v " p, 1))

X 6([v™ " p, v p]) x v p x v p x 8([v ", vo2p]) x v p

X 8([v ™72 p, v p]) X - x ([V¥p,v%p]) X o
= §([v ™ p,vp]) X o x 8w p, v p]) x O[T p, 1))

X 8w p, v p)) X 6([v 7P p, v p]) x v T p x v T p x v p

x 0([v™ 7 2p, V5% p]) x - x 8([V*p, v%p]) X o.

Now, the only irreducible representation of GL3,(F) containing v 7p®@ v 7p@ v "™ pin
its rmin is v p x C([v™7p, v~ p]). Since

rmin (V0 X C(w o, v D)) > v Tp@ v p@ v,
we see that

Supp (M) > ([~ p, v p]) @ - @ (v~ p, v~ p]) @ B([v 7 p, 1))
@ (" p, v p) @ 6([v " p, v p) @ v p@ v p
Qv p@ ([ T, v p) @ - @ 8([vp, v p]) @ 0,
where s,,, denotes the Jacquet module taken with respect to the appropriate parabolic

subgroup. Now, the only irreducible representation of GL(;,,+,)(F) containing v~ 7p ®
d([v="2p, v p)) inits m* is v~V p x 8([v =72 p, v+ p]). However,

m* (v""p x 8([v™""p, v p])) = 8([v " p, v p)) @ v p.
Thus,

Sapp (1) > ([~ p, v p) ® - @ 8([w ™4 p, w571 p]) @ 6([v ™" p, v p])
R0([v " p, v p]) @ 6([v "2 p, v p) @ v Tp@ v ")
®6([v™ "2 p, v p]) @ v p @ 6([v T p, v p])

Q- ®@6([p, v%p]) @ 0.
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Iterating this argument, we can eventually commute v~ 7 p to the right end to get

Sapp (M) = ([ p, 1 p) @ -+ @ 8([v™ =" p, 5" p]) @ 6([v™ " p, v p])
®@6([v™" p, v p]) @ 6([v T p, v p) @ v p@ v
®3([v " 2p, v p]) @ - @ 8([V*p,v*p]) @ v P ® 0.

Finally, we observe that the only irreducible representation of S, (F) containing v "p® o
in its sy is 77 p X . However,

smn(¥ Tpxo) >V pRo.
Therefore,

Sapp (1) > ([~ p, 1 p]) @ -+ @ S  p, v p]) @ 5[~ p, 1 p])
® 6w p, v p)) @ 8([v g, v pl) @ v p @ 1T
© 6,1 p)) @ - @ 61V p, v p)) @V p @ 0,

contradicting the minimality of §o(7) (by total exponent considerations). This finishes the
proof. ]

Remark 4.4.3 1t is an easy consequence of the arguments above that if i < j with both
bi,bj < 0, then b; > bj.

5 Example: the Two-Segment, (C%) Case

In this chapter, we give an example to show how our results can be applied. Through-
out this chapter, we assume (p, o) satisfies (C%). We then use the results of the preceding
sections to help classify the square-integrable representations supported on § (( 0, %); 0’) in
the case where § consists of two generalized Steinbergs; k = 2 in the notation of Defini-
tion 4.1.3. In light of Lemma 4.4.1, we may write §, for such a representation in the form
S([v=brp, v p]) @ 6([vtp, v p]) ® o with by, b, > —%; for convenience, we do so.

5.1 The One-Segment Case

In this section, we discuss the square-integrable representations with dy consisting of one
generalized Steinberg representation (i.e., k = 1 in the notation of Definition 4.1.3). This
discussion is based on results from [Tad5].

Lemma5.1.1 Suppose b € L+ Z withb > 1. Then, 6([v="p,1¥p]) x o decomposes as a
direct sum of two irreducible representations (both tempered, neither square-integrable). We

write

5([vbp,v7p]) @ 0 2 6([v"p, 1V pls 001 @ 6([v " p, 10 pl; 0)a.
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Proof See [Tad5, Theorem 3.2]. [ |

By convention, we let 6([v~?p, ¥p]; o), denote the component with the larger Jacquet
module.

By Theorem 4.2.1 and Lemma 4.4.1, a square-integrable representation supported on a
single segment appears as a subrepresentation of §([v~?p, v7p]) x o for some a, b € % +7
witha > b > —1. (Alternatively, we could use a more direct argument for the one-
segment case to reduce to just considering the above induced representations; cf. [Tad5,
Proposition 4.4]).

Theorem 5.1.2  Suppose a,b € 5 + Zwitha > b > —3.

1. Ifb = —3, we have
3([wip,v*p)) % o = 6([vp, 1 pli o) + L(8([v™p,v "2 pl)s0).

The unique irreducible quotient (Langlands quotient) is L((S( (v, v pD; U); the unique
irreducible subrepresentation is 5([1/%p, Vipl;o). Further, 6( [V%p, veplso) is square-
integrable.

2. Ifb> —%, we have

5([v~p, 1)) % 7 = 6([vp, v pls o)1 + 8([v 0 p, v pls o) + L(6([v~ p, 1P p))s ).

The unique irreducible quotient (Langlands quotient) is L(&([V’“pwhp]);a);
S(v=tp,vpl;o), and S([v~p,v°pl;0), are subrepresentations. Further,
S([v=lp,v%];0)1 and §([v~tp,vpl;0), are square-integrable. We note that
§([v="lp,vpl;0), (resp., 5([v="tp,vpl;0);) may be characterized as the unique irre-
ducible subquotient common to S([v"bp,1%p]) x o and S([V'p,v%]) x
§([v=tp, v pls o) (resp., 6([VP* p,vp]) X 6([v~"p, v pl;0)2).

We note that & (6([v="p,v"pl;0)) = 6([v~"p,vp]) ® o (by convention, if b = —1,
we taket = 1 and write 5([V%p7 vipl;o) = (5([I/%p, Vipl;o)).

Proof For 1., the properties of 5([V%p, v°pl; o) are given in [Tad5, Theorem 2.1]. That
0 ([1/% p,V?p]) X o has two irreducible subquotients follows from [Jan1, Proposition 3.6]
and [Aub] or [S-S]. The identity of the other irreducible subquotient follows immediately
from 6([1/%,0, vipl) x o =d([v %, 1/_%,0]) x o (¢f. [BDK, Lemma 5.4]).

For 2., the properties of §([v~tp, 1%p]; o), are given in Theorems 3.3, 4.2, and 4.3 of
[Tad5]. That 6([v~tp,%p]) x o has three irreducible subquotients follows from [Janl,
Proposition 3.6] and [Aub] or [S-S]. The identity of the other irreducible subquotient fol-
lows immediately from §([v="p, v%p]) x o = 6([v%p, ¥p]) x 0.

Finally, the fact that ((5([1/*hp7 Vipl; U)t) = 6([v~p,*p]) ® o follows from Theo-
rems 2.1, 3.3(ii), and 4.2(iv) of [Tad5]. [ |

We will need the following lemma in the next section.
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Lemma 5.1.3 Supposea,b, f,g € % +7.
1. Supposea > f > b > —%. Then,
§([v="p,vplia)y = 6([v/ ™ p,v%p]) % 5([v~"p, v pl; o),

and is the unique irreducible subrepresentation.
2. Supposea >b> g > —3. Then,

S([v="p, v pls o) = 6((14H p, 1" p]) 3 6([v 4 p, v 5 0);
and is the unique irreducible subrepresentation.

Proof We start with 2. First, we check that 6([t8"p,vbp]) ® 6([v—8p,v°pl;0);
appears with multiplicity one in S((b—g)n) (8([8* o, vPp]) % 8([v=2p, v pl;0);). Write

w* (6([V‘gp, vipl; O‘)t) = >, Tk ® b with 7, 0y irreducible (repetition possible). We note
that since

s (6([v=2p,vpl50);) < sy (6([v~2p,vp])  7)
=8p@5([v " p, 1)) x o+ 1 p @ ([ 8p, v p]) x o,

we have that an element of i (7)) begins with either 8p or v*p unless 7, = 1. Now, by
Theorem 3.1.2,

1 (O[5 p, 1)) % 6([vp, 1 pls o))

b+1 b+l
=22 D v v ) x 8V p v pl) x e 6([v p, v pl) By
k i=gtl j=i
To obtain a copy of §([!p,vPp]) ® §([v~¢p,*pl;0);, we must have 7, = 1 (since

Tmin (5([1/g+1,0, I/bp])) contains neither v8p nor v%p), hence 6, = §([v—8p, pl;7);. Fur-
ther, since 7min (5([1/‘5’”;), l/bp])) does not contain v~ !p, we must have i = g + 1. Then,
j = g + 1 gives the only copy of 6([v8*!p, v¥p]) ® §([v2p, vp]; 7);. Note that by Frobe-
nius reciprocity, we immediately see that §([8*!p, vPp]) x §([v=¢p, v°pl; o), has a unique
irreducible subrepresentation.

Calculate:

5([vtp,vpli o) = 8([vp,vp]) x &
< 8([v=Ep,vp)) x 8([v"tp,v ¢ "p]) % &
= §([v=2p,1°p]) x 8([*" p,v"p]) x &
= §([18* p, 10 p]) x 8([v2p,vp)) % 0,

where §([v=tp, v ¢ 1p]) x o = §([18"! p, v¥p]) x o is irreducible by [Tad3, Theorem 9.1].
By [Jan3, Lemma 5.5], we have 6([v~p, v%p];0), — 0([v8* p,v¥p]) x @ for some irre-
ducible § < d([v—8p, vp]) X 0.
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Next, we claim that 6 # L((S([V_“p, v8p]); U). Ifwehad § = L((S( (v, 18p)); 0) , then
by Frobenius reciprocity,
Smin (5([V_hpa VaP]HT)t) > (Vbﬂ ® Vb_lp Q- Vg+1p)
® (l/gp® l/gilp® e ®]/7ap) R o.

By the Casselman criterion, this would contradict the square-integrability of
§([v~tp,vp]; o); (or alternatively, the fact that o (5([V’hp, vipl; o),) =V H®
-~ ®v~bp) ® o, which follows from the preceding theorem).

Finally, that 6([v~?p, v%p);0)1 — §([v8p, vPp]) x 6([v2p, vp]; o), follows from
the fact that §([v~"p,v%p]; o), may be characterized as the irreducible subquotient of
§([v=tp, 1°p]) xo containing 1/ p@V* ! p@- - - @V PRV pRL )@ - - @ (1T PRV P) DT
in its spi, (an easy consequence of Theorems 3.3(i) and 4.2(iv) of [Tad5]). Then, the fact
that §([v=p, v%p];0), = 8([L8"p, Pp]) x 6([v3p, v*p]; o), follows from the fact that
S([v8 1 p, vPp]) % 6([v2p, *p]; o)1 admits a unique irreducible subrepresentation.

A similar argument may be used to verify 1. (it is slightly easier). ]

5.2 Constraints on ()

Definition 5.2.1 Suppose T is an irreducible representation of GL,,(F) and 7 a represen-
tation of S,,(F). Write

pr(m) =Y mi& @0,
where &; ® 0; is irreducible and m; is its multiplicity. Let I, = {i | & = 7}. We set

pwri(m) = Zmi& ®6; = Zmﬁ ® 0;.

i€l; i€l;

Similarly, if € is a representation of GL,(F) and

M &) =m0 e,
j

let J; = {j | 5;1) = 7}. We set

wrey (1) o ¢ _ @
M=) ntV e => nred?.
j€l- j€l:
Lemma 5.2.2 Let T, &, 7 be as in Definition 5.2.1.

1. Suppose supp(7) N [supp (&) U supp(€)] = @. Then,

pExT) = (10 &) » wi(m).
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2. Suppose supp (1) N supp(w) = . Then,
pr (€ m) = M7(&) % (1@ ).

Proof First, with notation as above,

prExm) =3 " mini(e x &) @ (€7 x 0)).

4 J

For 1., observe that if{ﬁl) # 1, then 55-1) x & 2 T (since supp(fgl)) C [supp(&)Usupp(€)]).
Therefore, 5;1) = 1. From the formula M* = (m®1) o (®m*) osom™, this forces 5;2) =¢
and n; = 1. Therefore, we must have §; = 7. The claim 1. follows.

For 2., observe that if §; # 1, then §;1) x & 2 7 (since supp(§;) C supp(m)). Therefore,

& = 1. Then, we must have §; = 7 and m; = 1. Therefore, we must have 651) = 7. The
claim 2. follows. [ |

Lemma 5.2.3 Leta,b € % +7Zwitha>b> f%.
1. Supposeb < f < a. Then,
3w papy O 0,013 0),) = 61! p,v%p]) @ 6([v =" p, v/ pls o),
2. Suppose —1 < g < b. Then,
it gy (8", pls 0)) = ([ p,1Pp]) @ 6([v 2 p, 1 pl; 0.
Proof This follows immediately from the proof of Lemma 5.1.3. ]
Supposea>b>c>d > —% have a,b,c,d € %-l—Z. Set
= 8([v = p,v"p]) % 8([v~p, v’ pli o)
) = 8([v = p,v’p]) % 8([v?p, v pls o),
m' = 6([v""p,vp)) % 8(lv~p, v pls0);.

Consider the following multisets:

X, = {6 < | 0 is irreducible and M;([V‘”p,llbp])Xls([V‘*lp,I/“ﬁ])(a) # 0}
X/ = {6 < x| s irreducible and 510t bl x 31t pnp)) () 7 O}

X" ={0 < x| 0 s irreducible and 11511, o) (et puappy (0) 7 0
We note the following:

Lemma 5.2.4 Suppose 7 is an irreducible subrepresentation of ;. Then, m € X;.

https://doi.org/10.4153/CJM-2000-025-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2000-025-7

Classical p-Adic Groups 571

Proof This follows immediately from Frobenius reciprocity and the fact that
S p, v p)) < 8([v ! p, v p) @[V~ p, v p]) < 6([v~p, vp]) < m* (8([vp,v"p]) X
§([v=p,v"p])). n

Lemma5.25 X, =X/ =X/

Proof 1. X, = X/'.

If b = c, there is nothing to prove. Suppose b # c.

Let m* = 0([v~p,v%p]) x 8([v*p, vPp]) x 6([v~%, v pl;o),. From Lemma 5.1.3,
we have m, < 7;*. Also,

m < 8 p,vp)) x 81w, v pl) 0 8([vp, i pli o) = .

Now, Lemma 5.2.2 2. and an easy calculation give

c+1

Bt gy (e panply (T ) = 8 ([ p, 1)) x 8([v° p, v%p])

@ 8(lv = p,vp]) x 8([v~p,vpl; 0);.

Since M;“([Vmpwp])(&[y’fp,u”p])) = 5([vp,v]) ® §([v°p,vp]) and (by
Lemma 5.2.3) 45 (1, o)) (6([v=p,vbpls0),) = 8([v* p,vPp]) ® 6([v~p, v pl; o), we
get

c+1 c+1

13 (e paply oot prepy () = ([ 0,081 8([1H p, v%p])

® 8([v=p, v p]) » 8([v~p, v pls 0);.
Since m; < 7;*, we must have equality. Similarly, since
* —b a
M3y ol v parea)y (32 VD))
= 6([v" p,vPp]) x 8([v° p,vp]) ® 8([vp, v p)),
Lemma 5.2.2 2. tells us

B30t ptply (et gy (T ) = 0 p, 0P p]) 3 6([v5 p, v%p])
® 8([v = p,vp]) % 6([v~p, v pls 0);.
From this, it is immediate that

Xy = X{" = {0 < m" | 0 is irreducible and 5 eu1, o)) (e pp)) (0) 7 0F-

2. X, =X/
If a = b, there is nothing to prove. Suppose a # b.
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The proof is similar to the proof that X, = X/. Let 7} = &([vp,1"p]) x
S([v" 1 p, v7p]) x 8([v~p, ¥p);o),. Then one can easily check that m, < i, w < wk
Now, calculations like those above tell us

/
M;([,,hﬂp’l,up])(ﬂt) = M;([Vh+1p7yap])(ﬂt) = M;([,,h+1p’l,up])(77:)

= 3([v""'p,v"p]) @ 8([v ™ p, 1" p]) 3 8([v~p, v pl; 0):.
Since 'u;([l/”lp,l/bp])X(s([l/[”p,l/“pj)(e) # 0 implies u;([ubﬂpﬂuum)(e) # 0, we get
X, = X/ = {0 <} | s irreducible and fi5((e+1 10 p)) 5[ pap)) (0) 7 O}
as needed. [ ]

Suppose 7 is an irreducible, square-integrable representation supported on 8 (( 0, %); 0’) .
Further, suppose do(7) consists of two generalized Steinberg representations (and o). By
the results in chapter 4, dy(7) has one of the following forms:

L. () = 8([v~?p,vPp]) @ ([v~*p,vp]) ® 0

2. 8o(m) = 8([v=<p,vPp]) @ 8([v~p,v"p]) ® 0

3. So(m) = 6([v=p,vp]) @ 6([v~bp,vp)) @ 0

fora,b,c,d € % +Zwitha>b>c>d> —%. The three possible forms are distinct if
the inequalities among a4, b, ¢, d are strict. In the next two propositions, we show that the
inequalities are strict and that the first possible form does not actually occur. We note that
if o is generic, the fact that the inequalities are strict follows from [Mu] (and holds for &,
with an arbitrary number of segments).

Proposition 5.2.6  For m, §o(m) as above,a > b > c¢>d > —%.
Proof First, suppose that §y(7) is of the form 1. above. Then,

T 8([v™p,1p]) x 8([v ™ p,1v"p]) x & = 5([vp, v p]) x 5([vp,vPp]) x &
U
™ = 8([vp,v"pl) @ 8([vp, 1V pls o) or 6([vp,v7p]) 30 L(3([v~"p, v p)); 0)

(some t) by [Jan3, Lemma 5.5] and Theorem 5.1.2. However, if 7 — §([v“p, v?p]) X
L((S([V_bp, vp)); 0) , we would have

o= Wp® VYo v ® (Vdp ® Vd_lp Q- ® l/_hp) ® 0 < Spin (),

giving the contradiction x; < xo(m). Thus, if §y () is of the form 1. above, we must have
m < m (notation as above). Similarly, if do(7) is of the form 2. (resp., 3.) above, then
m < 7] (resp., m — w/").

Suppose dy() is of one of the forms above with b = ¢. By Theorem 4.2.1, it is not of the
second form; for b = ¢, forms 1. and 3. are the same. Note that in this case, 7, = 7/’. By
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Lemmas 5.2.4 and 5.2.5, 7 € X; = X/, som < ([v~lp,vbp]) x 8([v—p,vpl;0),. Since
S([v="tp,vbp]) x 6([v—4p, v°pl;0); is unitary, Frobenius reciprocity tells us

Xo=0pe v pe vt per e @r ) ® 0 < swin(r),

giving the contradiction x{ < xo(w). Thus, b > c.

A similar argument gives a > b.

Suppose ¢ = d. We write ¢ for both. By Lemma 4.4.1, ¢ > —%. By Theorem 4.2.1,
do() is not of form 3.; forms 1. and 2. are the same. First, it is an easy consequence of
Lemma 5.2.2 that

* —b a
15 101 oy (et gy (O "0, p)s 0):)
= 5[ p, Pp]) x 6([v ™ p, v p]) @ ([ p, vpls o).

Therefore, an argument like that in the proof that X; = X/’ (Lemma 5.2.5) tells us

B3 0oty 0190 (T8 = B0t gty et ) ()
= 3 (e iy (1 ()
= 0([v*p,vPp]) x 6([v+ p,1%p))
® d([v~p,vpl) X 6([v~°p, v pl; o).

where 71'3 = §([v=p,vp]) x §([vp,v°pl;0); and 71'3 = d([v—p,vp]) X

S([v*p, vbp]) x 6([vH p, vp]) % §([vp, v°pl; 0);. Now, m, < 71}j and th < ﬂf. Thus,
X; = X;r, where

X;r = {9 S ﬂ'j | 6 is irreducible and Mg([yc+1p7ybp])Xg([yc+1p7yup])(9) 7é 0}'

Then, 7 € X, = XtT has
T < 71';r =d0([v"p,vp]) % 6([1/*bp, vipl; o).
As above, this tells us
Xe= WP v P @ p® - @v ) @0 < spin(),
giving the contradiction x§ < xo(7). [ ]

Proposition 5.2.7 Supposea > b > ¢ > d > —1. Then, §y(n) cannot have the form

2
§([v=p,v"p]) ® 8([v~p,v"p]) ® 0.

Proof Suppose this were possible. As noted in the proof of the previous proposition,
if So(m) = 6([v~9,vbp]) ® 6([v~p,vp]) ® o, then 1 — 7, (some t). Thus, by

Lemma 5.1.3,

T ot 2 5[V p, v pl) x Sl p, v p]) x 8([vp, v pls o)
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Therefore, by [Jan3, Lemma 5.5],

c+1

™ 6([vp,v0p]) x 0

for some (irreducible) § < &([v = p,v%p]) x 6([v~%p,vpl;0),.  Further, since
'u;([vf”p-,vhp])x&([umpy,ﬂp])(7T) =% 0, we claim that ME([WIP’MM)(H) # 0. (In the proof of

Lemma 5.2.5, we observed that
“;([V”]p,l/hp])X(;([l/”]p,l/“p])(Trf**) = 5([VC+1p7 pr]) X 5([VC+1P, Vaﬂ])
® 6([v~p, v p]) » 6([v~*p, v pls o)y,
which may be rewritten as M;([ucﬂp,ybp]) (5([1/”1,0, Z/bp])) X ,u:;([umpwp]) (5([1/_Cp, vepl) %
S([v—p, I/Cp];O')t). The claim follows.) Therefore, by Lemma 5.2.5 (with b = ¢), we
have 6 < 6([vp, v°p]) x §([v~p, vp]; 0);. Since §([v " p, vp]) x 6([v—4p, v*p); o), is
unitary, the fact that m < §([°"!p, v?p]) x 6 and Frobenius reciprocity combine to tell us
xo=0pr@ " p@- @)@ Wp 1 e @)
[ (Vap X I/“_lp R ® Z/_dp) ®o < smin(ﬂ-)-

However, this gives the contradiction x| < xo(7). [ |
We summarize these results below:

Corollary 5.2.8  Suppose (p, o) satisfies (C}) and  is an irreducible, square-integrable rep-
resentation supported on 8((p, 1); ). If 8o(m) consists of two generalized Steinberg represen-
tations (and o)—i.e., k = 2 in the notation of Definition 4.1.3—then do(m) has one of the
following forms:

(a) 8([v=<p,vPp]) ® 6([v=p,1"p]) ® o or
(b) §([v=p,vp)) @ 6([v~tp, 1)) ® o
fora,byc,de s+ Zwitha>b>c>d> —1.

In the next section, we shall see that both possibilities actually occur.

5.3 The Two-Segment Case

By Corollary 5.2.8, we need to look for square-integrable subrepresentations in
§([v=4p,vp]) x 8([v="p,1p]) x o and §([v~°p,v’p]) x 6([v™9p,1"p]) x o (where
we continue to assumea > b > ¢ > d > 7;). The first of these is covered by the results
in [Tad5, Section 8]; we summarize what we need in Theorem 5.3.1 below. The remainder
of this section will focus on §([v~p, v?p]) x 6([v~%p, %p]) x & (or more precisely, on
5([v=<p,v"p]) x 6([v=p, v pl; 0),).

Theorem 5.3.1 §([v—"p,v°p]) x 6([v~"p,vp]) x o has exactly four irreducible subrepre-

sentations. They are all square-integrable and are pairwise inequivalent. (In Remark 5.3.3 2.
below, we will show that 5y = §([v =, v°p]) ® §([v"p,vp]) @ o for all four.)
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Proposition 5.3.2 Suppose 7 is an irreducible subquotient of 5([v~" p,v%p]) x - x
S([v~%p,v%p]) x 0. Assume that ay, ... ,ax = % mod 1 with

1. ag > --->a;>0.

2. a; > b; foralli.

3. b > —% and there is at most one value of i for which b; = —%.

Then, §o(m) has the form 6([1/_b1'p, l/allp]) Q- Q 6([1/_bk'p, V“k/p]) ® o with ai,...,a,
bi,...,b{ a permutation of ay, ..., ar b1,..., b

Proof First, for c = % mod 1 with ¢ > 0, let m(c) be the number of terms of the form v“p
or v~ °p which appear in a given element of x (7). We note that m(c) is well-defined and is
the same for every subquotient of 6([v " p, % p]) x --- x ([~ p, v%p]) x o (it is just
a matter of the supercuspidal support).

Write 8o(m) = 6([v=b p, v p]) @ - -+ @ 8([v~lnp, v p]) @ 0. We first claim m = k.
Observe that b, = —% for some (exactly one) i if and only if m(%) is odd. Similarly, by
Lemma 4.4.1, we have that b} = —1 for some (exactly one) j if and only if m(3) is odd.

Now, suppose m(%) is even. Then, every 6([v " p, % p]) contains y%p and y_%p exactly
once each. Therefore k = %m(%). On the other hand, any term in sy,;, (7) must be of the
form v*p ® - -- withx € {ay,...,ax, by,..., by} (an easy consequence of Theorem 3.1.2,
e.¢.). In particular, we must have a{ > 0. Thus, ), > --- > a{ > 0. Since m(}) is even,
b]’» > % for all j. Therefore, each 5([V_bj/p, 1/“1'/,0]) contains I/%p and 1/_%,0 exactly once
each. Thus, m = %m(%) =k

The argument when m(}) is odd is similar but a little more involved. The same sort of
argument as above tells us k = %[m(%) + 1]. To relate m to m(%), we consider three cases:
al # —3,a) > al = —3,and a} = af = —3. If a] # —3, we can argue as above to get
m = 3[m(3) + 1]. Suppose a} > af = —3. Ifb; # —3 for any j, we get one copy of ™ ip
from each of 6([1/_b1/p, l/allp]), ceey 6([V‘brlnp, I/a*:'p]) and one copy of V%p from each of
6([1/*}’2';7, I/al,p]), . ,5([1/4’;1/0, Vu'iip]), giving a total of 2m — 1. Thus, m = %[m(%)+ 1]. If

wehadaj > a{ = —3 and b= —1 for some j (exactly one), we would get a total of 2m —2
copies of v¥1p. Since this has the wrong parity, we could not have had b; = —%. Finally,
suppose aj = aj = —1. Since §( vt p, v 2p]) x 8([v p, v~ 2 p]) is irreducible, we have

that p* () contains a term of the form (5( [V’bl'p, V’%p]) X 6([1/*175/), V’%p])) ®---. Fur-
ther, since 7y, (6([1/4’1/,0, I/_%p]) X 5([1/_171/,0, I/_%p] )) contains terms of the form I/_%p ®
V_%p ® - - -, we see that sy () also contains terms of the form l/_%p ® I/_%p ®---. How-
ever, we claim this cannot occur. If b; is the (unique) element of {ay,...,a, by, ..., b}
which has b; = —%, then a term of the form I/_%p ®V*p®--- musthavex € {ay,...,a,
bi,...,bi_1,b; —1,biy1,...,bi}. Since —% is not in this set, we have a contradiction. Thus
we cannot have aj = f%. We now have m = %[m(%) + 1] = k for the case m(%) odd, as
needed.

We now claim that af, ..., a;, bf,...,bj are the same as ay, ..., ax, by, ... by up to per-
mutation. For ¢ = %mod 1, let n(c) (resp., n'(c)) be the number of times ¢ appears in
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ay,...,ax, by, ..., b (resp,aj,...,a;,b,...,b;). Observe that
m(c) —m(c+1) forc > 1,
n(c) = n'(c) = 1 1, /1 Y
m(3) —2 bm(i)J forc= -7,
where | -] denotes the greatest integer function. The proposition follows. ]
Remark 5.3.3

1. One can weaken the second hypothesis to a; > b; for all i without changing the result.

2. It follows from Proposition 5.3.2 and Corollary 5.2.8 that if 7 is one of the irreducible,
square-integrable subrepresentations of 6([v~9p, vp]) x d([v~tp,*p]) x & of The-
orem 5.3.1, the only candidates for §o() are 6([v9p,vp]) ® §([v~p,1%]) ® &
and 6([v~p, vbp]) ® 6([v %, %p]) ® 0. Since §([v~4p,vp]) @ 6([vlp,v%p]) ® o
corresponds to a lower o (and Frobenius reciprocity tells us &6([v "%, p]) ®
S([v=tp,vp]) @ 0 < S(drertyn (brariyn (7)), We see that &(m) = ([v~p,vp]) ®
§([v="p, %)) ® 0.

Now, suppose 7 is an irreducible subquotient of §([v—p, ?p]) x §([v—p, %p; ), <
§([v=<p,v¥p]) x 8([v=9p,vp]) x o. By the preceding proposition, §,() must be one of
the following:
S([v=—<p,vp]) @ 8([vp, 1)) @ 7, S(v~p,v'p]) @ 8([vp,"p]) @ o,
S(w—p,vp)) @ 8([v"tp, v p) @ 0, 8([v"tp,vp]) @ 8([vp,1v"p]) @ o,
S, v5p]) @ 8([v—p,*p]) @ 0,  8([vp,vp]) ® 8([v—p, tp]) @ o,
S(v=p, ) @ 8([vp, v p)) @ 0, 8([v"p,vp]) ® 8([v~p, ")) @ 0,
S([v=p,v'p)) @ 8([v"p, v’ pl) @ o, 3l p,vp]) @ 8([vp,vip)) @ 0,
5[ p,vip]) @ 5[y p, v pl) @, S(Ivp,vp]) @ 6([v " p, v p]) @ .

We observe that by Corollary 5.2.8, we cannot actually have §o(7) = d([v—p, vtp]) ®

([v=p,vp]) ® 0.
Next, write u* (6([1/_dp, Vipl; 0’)[) = >4 Tk ® Ok. Then, by Theorem 3.1.2,

1w (8([v=p, v p]) x 8([v"p,v"pl;0);)

b+1 b+l
=2 D 8w p, ) x 6([Wp, v p) x T ® 8(1 p, v p]) 4 b
k i=—c j=i
Consider, e.g., the question of whether we can have dy(m) = d([v"0p, %)) ®

§([v=p,v"p]) ® o. For this to happen, we must have §([v=tp,v%]) ® § <
u* ((5([1/*610, vPp]) x 6([v—4p, V”p];a)t) for some irreducible 8 with 0 ([~ p, vp]) @ o <
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sgr(8). However, since 6([v~"p, v¥p]) contains neither vp nor v/¥p, we must have i = —c¢
and j = b+ 1 above. Thus, 7, = 6([vp, v%p]). However, we then have

smin (8([v™p, vpl30);)
> smin (6([v ", v p) @ 0k) > Wp@ v o @rTip @,

in violation of the Casselman criterion. Thus we cannot have dy(7) = 6([v¢p, %)) ®
5([v=p,v*p]) ® 0. The same argument tells us do(7) cannot be d([vp,v%p]) ®
5([v=p, vp)) @0, 8([v =" p, v p) @3([v=2p, v p)) @0, ([ —"p, ) @([v " p, v p])@
o, 8([v=<p,p]) @ §([v~"p,v7p]) ® o, or §([vp, v4p]) @ §([v %, vbp]) ® 0.

To show that &y () cannot be §([v~%p, v°p]) @3([v~p, 1P p]) @ 7, we use the same basic
argument as above to conclude that j = b+ 1 and 7, = 6([v~%p, v p]), also violating the
Casselman criterion.

Finally, we consider the possibility that do(7) = S([v=p,v%p)) ® 6([vp,0p]) ® 0.
We apply the usual commuting argument:

7 8(lvp,vp]) x ([v~"p,v’p]) x &
il
Sy, vp]) x 8(lvp,"p]) ® o < sqr()
il

S([v™,vPp]) @ (v ™p, v°p]) @ & < S((arbr 1y (et 1ym) ()

since 5([v ™%, °p]) x 6([v~"p, ¥p]) is irreducible. We now argue as above. We must have
aterm of the form 6 ([v~%p, ¥p])®6 in p* (5([V"p, Vp)x([v=p, vp; 0),). Ifi = —c,
we get 7, = 0([v%p, v p]), which leads to a violation of the Casselman criterion. If
i # —c, then we must have 7, = §([v~%p, v "p]) x 6([v°"'p, v~ p]) (irreducible). Then,

Smin (3([1 =0, 013 0)1) > smin (3" p, v p]) x ([ p, 7~ p]) @ 6)
> (y_ip@)y_i_lp@-~-®l/_ap)®~-~ ,
again violating the Casselman criterion. Thus we have the following:
Corollary 5.3.4 If 7 is an irreducible subquotient of 5([v—p,¥p]) x 6([v—%p, v%p); o),
then 6o(mw) must be one of the following: d([v™°p, vpl) @ 6([v9p, %)) ® o,
S([v=p,vp]) ® 6([v="tp,vp]) ® 7, or 6([v =t p,vp]) ® §([v~p, 1*p]) ® 0.

Corollary 5.3.5 &([vp,vbp]) x §([v=p,vpl;0); has a unique irreducible quotient
(Langlands quotient). All other irreducible subquotients are square-integrable.

Proof The Langlands classification gives the first claim. By [Jan3, Lemma 3.4], there is

no other subquotient with &, = §([v=p,*p]) ® 5([v~%p,vp]) ® o. By the preceding
corollary and Theorem 4.2.1, all other irreducible subquotients are square-integrable. M
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Lemma5.3.6 S§([v—p,v°p]) x5([v%p,v"pl; o), decomposes as the direct sum of (exactly)
two inequivalent irreducible subrepresentations.

Proof First, we claim that §([v~p, vp]) ® §([v~p, v7p]; &), appears with multiplicity 2
in p* (5([V_‘p7 vp]) x 6([v%, u“p];a)t). To see this, write p* (6([V_dp, V“p];a)t) =
Zk Tr ® 0. Then,

w (8([v=p, vop]) x 6([v~p, v pls 0);)

¢+l ¢+l
=3 D3> 6w p,vpl) x 81w p, vp)) x T ®@ S([v p, v p]) 4 By
k i=—c j=i
The only terms which can contribute to /,Lg([y,cpvufp]) have either i = —corj = c+ 1
(since v“p appears only once in §([v~¢p, v p])). Suppose i = —c. If 7 = 1, we have 6, =
§([v=9p,1v°pl; o), and j = —c contributes one copy of §([vp, v°p]) R ([v "4 p, v p]; 7 );.
If 7 # 1, then any term in r,yi, (74) must have the form v9p ® - - - or v*p ® - - - . Therefore,

j = d+1.So, 7 = §([v~°p, v%p]). However, this is not possible: having §([v~p, v%p]) @6;
in p* (5 (lv=4p,v°p); a)t) violates the Casselman criterion for the square-integrability of
§([v=p,vp]; 7). The same argument works for the case j = ¢ + 1. The claim follows.

Next, a similar argument tells us that the multiplicity of §([v~p,v%p]) ®
S([v=p,vpl; o), in 6([vp,vp]) x 6([v"%, 1 p]; o)) is one. (One needs the obser-
vation that §([v9p,v%pl;0); appears with multiplicity one in &([v“"'p,1%p]) x
§([v="p, v°pl; o), which follows from the proof of Lemma 5.1.3 or [Tad5]).

We can now verify the lemma. By Frobenius reciprocity (or [Go]), §([v™p, v p]) %
§([v=p, vp]; o), has at most two components. By Lemma 5.2.5, one of those components
is also a subquotient of §([v~p, v%p]) x 6([v~p, v°p]; 7);. The preceding discussion of
multiplicities tells us this component cannot be all of §([~p, v°p]) x §([v~p, vpl; 0)s,
hence we have exactly two components. That they are inequivalent follows from [Go]. ®

Proposition 5.3.7 7] admits exactly two irreducible subrepresentations, and they are in-
equivalent. Further, an irreducible subquotient w of 1] appears as a subrepresentation if and

only if“;([wﬂp,ybp]) (m) # 0.

Proof First, we claim that ug([ymwbp])(ﬂt') = §([vtp,vbp]) ® (6([1/*510, vpl) x
S([v=p, I/“p];a)t). To see this, write p* (5([V”’lp, V“p];a)t) = Tk ® k. Then,

b+1 b+l
pry =30 T e v pl) x 6([vp, v pl) x e @ 8(1 p, v p]) x4 B
k i=—c j=i
To contribute to /‘;([,,mp,,bp])» we must certainly have i = —c. Further, if 7 # 1, then
Tmin (%) consists of terms of the form v ® --- or 1%p & - --. Since v¥p and v*p do not
appear in 6 ([ p, ¥ p]), we must also have 7, = 1. Therefore, j = ¢+ 1 and the claim is

immediate.
Next, write ([ =p, v°p]) x §([v=4p,vpl;0); = Ty ® T, (¢f. Lemma 5.3.6). The same
basic argument used above tells us /65,1, 4, (8([v ' p,vbp]) x T;) = 6([v°" p,vbp]) @
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T;. Therefore, by Frobenius reciprocity, 6(["!p,?p]) % T; has a unique irreducible

subrepresentation—call it /). Note that since T} 2 T, we have 7V 2 7r/). Since

c+1

m! =3([v*p, vp)) % (81w p, vp)) % 6(1v~p, v pli o))

>~ §5([v p, 1Pp]) % (Th & T)

and 7/, 7/ appear with multiplicity one in §([v**'p,p]) x (6([v~p,vp]) x
§(lv=9p,vpl;0);) (by K3 (e pol) considerations), we see that 7/, /) < 7! (just
consider the subspace V/ + (Voo & Vi) inside the space for S([v 1 p, vPp]) x
(6([v=<p,v°p]) x 8([v~p, v pl; o))

Now, it is an easy consequence of Frobenius reciprocity that 15 must be non-

e p,ubpl)
zero for an irreducible subrepresentation of 7r/. Therefore, /(") and 7/® are the only
irreducible subrepresentations. Further, since u;( )(7rt’ ) = §([vp, vPp]) @ (T +
(™) # 0, then 7 = 7! or

7/, The proposition follows. ]

[v+1p, bl
T), if 7 is an irreducible subquotient of 7, with 3

l/”lp,l/b

Now, Lemma 5.2.2 tells us ug([y,,ﬂpyap])(ﬂt”) = ([ p, %)) @ 6([v~p,0p]) %
5([v=%,vp]; o);. An argument like that used for Lemma 5.3.6 tells us §([v"p, vp]) x
S([v=4p,v°pl;0); decomposes as the direct sum of two inequivalent irreducible subrep-
resentations. (Here, we need the observation that §([v="p,v¥p]) ® 6([v—%, v p]; o),
appears with multiplicity one in §([v~“p, vPp]) x 6([v=%,vbpl;0);. To see this, write

uw ((5([1/_dp, pr];a)t) = > 4 Tk ® 6. Then,

w* (5([v="p,v*p]) x 5([v~p, v pl;0),)

b+1 b+l ) ) . )
= N> s p,vp)) x 61w p, 1P p]) X Tie @ 8([1 p, v pl) 2 b
i=—c j=i k

Ifi = b+ 1, we get one copy 6([v~"p, ¥p]) ® 6([v4p, vpl;o,. If i # b+ 1, we must have
7 = 8([v=p, v/ p]) or 7 = 8([v="tp, v p]) x 6([v! p, v~ p]) (irreducible). In either
case, we get a contradiction to the Casselman criterion for §( [v=4p,p];0),.) From these
observations and Theorem 5.3.1, or by arguing as in the proof of the preceding proposition,
we get the following:

Proposition 5.3.8 w' admits exactly two irreducible subrepresentations, and they are in-
equivalent. Further, an irreducible subquotient 7w of 7]’ appears as a subrepresentation if and

only if k5 (1 o,y () 7 0.

Theorem 5.3.9 Suppose (p, o) satisfies (C1/2). Leta > b > c>d > —% with a,b,c,d €
% +7. Then, ] = §([v—“p, vPp)) x 6([v—4p, v°pl; o), has exactly 3 irreducible subquotients
—denote them ]9, /D, 7/ We may characterize them as follows:

1. 7w/ is the unique irreducible quotient (Langlands quotient). It is nontempered and has
So(m/ @) = 6([vbp,v°p]) ® 5([v~p,1p]) ® 0.
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2. 71',’(1) is a subrepresentation. It is square-integrable and has 60(7Tt'(1)) =0([v=%,v]) ®
5([v="p,v%0]) ® o (and is therefore one of the square-integrable representations from
[Tad5] discussed in Theorem 5.3.1 above).

3. w!® is a subrepresentation. It is square-integrable and has §o(n/®) = 6([vp, v’ p]) ®
S([v=p,vp]) ® 0.

Further, we note that 771'(2) % 7r2’(2) (assuming d > —% so that both are defined).

Proof We first address claims 1.-3. In light of Corollary 5.3.5 and Proposition 5.3.7, all we
need to do is show that there are at most three irreducible subquotients and determine J,
for the subrepresentations.

First, we note that arguments similar those done in Propositions 5.3.7, 5.3.8, and
Lemma 5.2.5 can be used to show that /L;([,,—cp,,,bp])(ﬁt/) = 28([v=p,p]) ®
[V—bp,wp])(”t,) =6([vtp,v°p]) @ 6([v~%p, v°p]; 0);. Therefore,
we see that 6 ([v=p, v p])®@6([v 4 p, 1*p]) @0 appears in s((c+p+1)n,(a+d+1)m (7] ) with multi-
plicity 2 and §( [v=p,17p])@5([v—p, v°p]) Q0 appears in S((a+b+1)n,(c+d+1)m) (1)) with mul-
tiplicity 1. Observe that if 7 is an irreducible representation with §o(7) = 6([v~p, v°p]) ®
5([v="tp,vp]) ® o, then the usual commuting argument tells us

5([v=p,v*pl;0); and

= (v p,vp)) x 8([v"p, v p]) x o
3
5(v=p,v°p]) x 8([v""p,v"p]) ® & < sci(m)
3
S([v="p,0%p)) @ ([, vp)) ® 0 < S((asbi 1y (crdiyn)(T)

since 6([v~%p, v°p]) x 8([v "t p, v*p]) is irreducible. Therefore, by Corollary 5.3.4 and (the
proof of) Corollary 5.3.5, we see that 7/ has at most 4 irreducible subquotients.

By Lemma 5.2.5, choose /) € X, = X/ = X/’ (there will turn out to be only one
possible choice). By Propositions 5.3.7 and 5.3.8, we have 7/} < 7/ and 7/ — /',
Therefore, Frobenius reciprocity tells us p* (7, () contains both a copy of §([v~p, VP p]) ®
S([v=p,vpl; ), and 8([v "t p, v%p]) @ 8([v—p, v°pl; o);. Thus, there are at most 3 irre-
ducible subquotients. The claims about do(7/ MY and 6, (m/ @) are now immediate.

Finally, that 7/® 2 7} follows immediately from the observation above that

15 e pury (T D) = ([ p, vPp]) @ 6([v~"p, v pl; 0. n
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