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The Dirichlet boundary value problem for

two non-overlapping spheres

Dieter K. Ross

A new method is found for solving the general Dirichlet problem

for two non-overlapping spheres of different radius. The

expression for the external potential involves hypergeometric

functions and is obtained from an infinite set of linear

equations. In essence the method makes use of the fact that

(I-A)'1 =I+A+A2+A3+... ,

where A belongs to a certain class of infinite matrices and I

is the unit matrix.

1. Introduction

The electrostatic potential exterior to two conducting spheres has

been obtained by Kottler [J] and Mitra [2]. These and other authors have

made use of Kelvin's method of images which, together with an ingenious set

of transformations, leads to the final result. More recently Shail [3]

solved the Dirichlet problem for two spheres. He reduced the problem to an

integral equation which, after using the transformations proposed by

Kottler [1] and Mitra [2], is found to have a simple iterative solution.

Now Ross [4], who was concerned with the potential near two dielectric

spheres, suggested that a more direct approach could be successful. He

expanded the potentials as series of spherical harmonics and showed that

the coefficients of these series satisfy an infinite set of linear

equations. These can, in principle, be solved by a matrix inversion. In

this paper it is found that the general Dirichlet problem for two
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non-overlapping spheres leads to an infinite set of linear equations which

can be solved explicitly by a matrix inversion. The final expression for

the potential is found to be consistent with that given by ShaiI [3] but

the present series is more rapidly convergent.

2. Expansions for the. potential

Consider two spheres 5j and S2 which do not overlap, are of

radius a\ and a2 and at separation if = 0\02 , where 0\ and 02 are

the centres of the spheres. [Here the suffix 1 and 2 is used to refer

to the first and second sphere respectively.] Let P be a typical point

in the vicinity such that. 0 .P = r. for i = 1 or 2 and let 6̂  and

82 be the angles P0\02 and PC^l • These coordinates are such that

ri = r2 and 6j = Q2 for any point P on the median plane. If we

suppose that the electrostatic potential $ vanishes at infinity and that

there are no charges in the region exterior to the two spheres then we may

apply Green's theorem to find the potential at the typical point P

outside the spheres. Thus

where the integration is over Sy + S2 , Q- is on the boundary of S.
Lr it

and has spherical polar coordinates fa., 9*, <£*) , P- = PQJ . *fe-} i s

the potential on the sphere 5. and 3/8n denotes differentiation along

the inward normal n . An expression for $(P) can be found by

integrating the above equation with respect to (j)'! , remembering that the
If

potential is independent of the azimuthal angle > <j> and using the

identities

p| = a\ + r? - 2ai

with

COSY. = cos8.cos0* + sinG .sinfHcos (<{>.-<(>$)

together with the addition formula.
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P (cosy) = P (cos6)P (cose*) + 2 [ i™ ', P^cose^cose^cosm^-i})*) .
w w w , ^ + m j ! w M

m=l

Here i^(x) is the associated Legendre function as defined in Hobson [5].

In this way we obtain

(1) HP) = I r^1)(a1/r1)
n+1Pn(cos61) + ̂

2)(a2/r2)"
+1Pw(cos62)]

n=o L -J

where

AM = I [ X [Q.)P fcose*)sineMe*
' o

and

By Schwarz's inequality it follows that

- \ r
0

f i
•'o

Since the potential and its gradient normal to the boundary of 5. are

integrable we obtain the result is bounded for all n . Thus
n

the two series in (l) representing $(P) are absolutely and uniformly

convergent in the region exterior to the two spheres, except perhaps at

the points where 6. = 0 or IT .

3. The boundary value problem

We shall consider the Dirichlet boundary value problem where the

potential outside the two spheres satisfies the conditions:

(2a) $ = B.P. (cos6.) on r. = a. for i = 1, 2 ,
1 / ^ 1 ^ ^

and
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(2b) $ •* 0 as r j and rz "*• °° •

In order to apply these conditions in equation ( l ) we shal l need the shift

formula of zonal harmonics, namely

P (cos82) , °° / i
n 1 r Im+n

1 »

which is valid for |rj | < i? , and a similar expression with the suffices

1 and 2 interchanged. These equations are given in Hobson [5] although

he defined the angles 6. in a slightly different way.

From the boundary conditions (2a) we get, after substitution of the

above result into equation (l), rearranging the absolutely convergent

series and making use of the orthogonality of the Legendre polynomials

, . GO

(]_) _ ( 2 )
k 3 7 8 ] & i ~ A " ^ t o / P n

1 s=o

and

2 m
8=0

(U) BZS i = A^ + t1 I P A^ for m = 0, 1 , 2,
8=0

where

(5) P m n = (^n)*T*2 , \ = a^R and 0 < tx + t2

Here 6. . is the Kronecker delta function. Elimination of A from
1,3 m

e q u a t i o n s ( 3 ) a n d ( 4 ) l e a d s t o

j ( 2 )
s

where

' m=o '

(2)
Similarly, on elimination of A we obtain
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B 6 B t 5" (s (1)1^(1)
* ' 1 n,fej ~ 2 ^n,k2 _ \ w»s n,s) s

where

, (1 ) . ijt2 J pw ^ m .
' m=o ' '

4. Inverse of the infinite matrices

Now it is a simple matter to verify that the sums of the rows and

columns of the matrices q are each of modulus less than 1 . Hence,

from Theorem 2.It,I of Cooke [6], it follows that 6 - q^' has the

unique and two-sided reciprocal

00 ( t • \\

I + I $"• . ^ - = r ? ' J t h e u n i t n^trix •
m=l % I n»sJ

The next step is to find a sufficiently simple expression for the

various powers of the matrices Q. . We begin with three lemmas.

LEMMA 1. Let {U } with n = 1, 2, 3, ••• be a set of functions

of (*i, £2) which satisfy the difference equations

(10) U = U
2n+l 2n

and

U2n ' U2n-1 ^Zn-Z

where t\ and t2 are positive constants such that 0 5 tj + t2 < 1 and

the initial conditions are

01 = 1 , U2 = 1 - t\ .

Then the following deductions can be made:

(a) if ti = t2 = 0 then U = 1 for all n ,

(b) if t\ and tz are not zero then

(12) U2n-1 ^ ^
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and

(13) U^ = £"t2~1{£1sinh?ZM + t2sinh(n+l)\i}/s±nh\i

with \i positive and given by

(I1*) coshu = (l-t\-t\

(d) o < *v2n_x < d-tl)u2n ,

where the equality is only •possible when t\ = 0 .

The proof of (b) is based on the general theory of linear difference

equations as discussed in the book by Durell and Robson [7] and the

conclusion in (a) may be obtained by a direct substitution of (h). The

inequalities in (d) follow from the fact that

0 ~ t\U2dU2n+l ~ *2{*isinh?7M + t2sinh(n+l)u}/sinh(n+l)y < tz{t\+tz)

Combining this with equation (10) gives the required resul t .

LEMMA .2 .

^ (i+k) k

k=o >• 'k=o > ' 3 l

where i^\^a^ b\o\z) is the hypergeometric function, i and j are

positive integers and \x\ and \z\ are eaah less than 1 . This

identity can be proved by using the power series expansion

min(k, j) (-k)n(-j)nz
n

2Fx{-k, -j; 1; s) = I — , . ,
n=o n

given in Bateman C£]j and changing the order of the sunmation on the

left-hand side of the identity.

LEMMA 3 .

I xK 2^1 ( - i , -k; 1; A) zF^-k, -j; 1; B)
k=o

= (1-x+Axf (l-x+Bxf 2Fx{-i, -o\ 1; S)/(l-xf+;j+1
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where

S = xAB/[(l-x+Ax){l-x+Bx)] .,

i and j are positive integers and \x\ , \A\ and \B\ are each less

than 1 .

This identity can toe proved by using the expansion

, -j; 1; B) - (l-B) I I m
m=Q <-

changing the order of the summation and applying Lemma 2 appropriately.

We shall now prove, by induction, that the matrix of coefficients of

the w-th power of q is given by
n,s

(15) t1 {tit2) V2n-1
 2 lI ' ' ' l 2 ' 2n-l

for n = 1, 2, 3

This result is trivial for n = 1 since

^m,s i v i 2/ n^Q { n }{ s

= t"{+s (*i*2) 2*"i(-

This follows from a transformation formula for the hypergeometric function

given in Bateman [S].

Let us consider the matrix product

kt0

2F1\-m, -k; t\ t2 /Ui A 2Fx(-k, -s;
{ 2n-l)

then from Lemmas 1 and 3 it follows, after a considerable amount of

algebra, that

k=o

This completes the proof.

r / (Dl" (1) _1 \ q ) q ~
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Equation (15) may now be used to find the inverse of the matrix

î» o ~ *?«. I which, when applied to equation (8), determines the set of
ft jO 71 yS

constants A

(16)

then

(17)

A
s

In particular, if we make use of the symbol

U* = Um(t2, tx) when Um = Ujtu t2)

n=l

X
The formula for

(2)
4 can be deduced from the above by interchanging

the suffices 1 and 2 . The equations for A can be simplified by

making use of the transformations

(18) sinhXi = txsinhu and sinhX2 = t2sinhy .

If we combine these with equation (lit) then we find chat

coshAi = #2 + tjcoshy , cosh\2 = t\ + t2cosnM an<i P = Xj + X2 ,

and on substitution of these identities into (13) we obtain

Finally equation (17) becomes

T Slnh

I ,
n=l sinh1 S ftl(n

)sinh 2(ny+X2)

2M -

sinh2X2
1
i

sinhX1sinhX2

It is a simple matter to verify that this result is consistent with

the paper of Mitra [2] who treated the case of two conducting spheres

whence k\ = k2 = 0 and the hypergeometric function disappears
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altogether. This work is also in agreement with the result obtained by

H)
Shail [3] who did not express the coefficients A in terms of

©

hypergeometric functions and did not make use of their properties in order

to improve the convergence rate.
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