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Abstract

Some bounds in terms of Gateaux lateral derivatives for the weighted f-Gini mean difference generated
by convex and symmetric functions in linear spaces are established. Applications for norms and semi-
inner products are also provided.
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1. Introduction

Fora=(aj,...,a;) €R" and p=(p1, ..., py) a probability sequence, meaning
that p; >0 (i €{l,...,n}) and Z?:l pi =1, define the r-weighted Gini mean
difference, for r € [1, 00), by the formula [1, p. 291]:

Gr(p.a):= Z Z pipjlai—a;l"= " pipjlai—a;". (L)
] 1i=1 1<i<j<n
For the uniform probability distribution p = (1/n, ..., 1/n) we denote
Gr(a):=G(p,a) = - ZZml —ajl’—n > lai—ajl
i=1 j=1 I<i<j<n
For r = 1 we have the weighted Gini mean difference G (p, a), where

G(p, a) := ZZp,pﬂal ajl="Y_ pipjlai—ajl,  (1.2)

j=1li=1 1<i<j=<n

which becomes, for the uniform probability distribution p = (1/n, ..., 1/n), the Gini
mean difference

G(a)—zzzzml—aﬂ—— > lai—ajl.
j=1i=1 l<i<j<n
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2] Bounds in terms of Gateaux derivatives 421

For various properties of this and the Gini index
1 _ 1 &
R(a)=-G(a), wherea:=— E ai #0,
a i3

see [1, 11-13].

Now, if we define A :={(i, j) | i, j € {1, ..., n}}, then we can simply write from
(1.1) that
1
Grp.ay== > pipjlai—a;l’. r=1. (13)
2 £
@, )eA
The following result concerning upper and lower bounds for G,(p, a) may be stated
(see [2]).
THEOREM 1.1. For any p; € (0, 1), i €{1,...,n}, with Y _!_, pi=1 and a; € R,
i €{l,...,n}, we have the inequalities
1 pip+ pipj(1—pipy) ! .
— max 7 la; —ajl" t <G, (p,a)
2 G.)eh (I=pipj)"™ (1.4)
1
<= max |a; —aj|’,
2 (,))eA
where r € [1, 00).
REMARK 1.2. The case r = 2 is of interest, since
1 5 n 5 n 2
Gpw=1 3 pipslai—a)P =) pia? - (2 p) ,
(i,j)eA i=1 i=1
for which we can obtain from Theorem 1.1 the following bounds:
1 piDj 2 1 2
— max {——(a; —a; <Gsr(p,a) < - max (q; —a;)". 1.5
) (i,j)eA{ 11— Pipj( i j) <G(p,a) =< ) (i,j)eA( i j) (1.5)

REMARK 1.3. Since the function

=t
helt) =

defined for # € [0, 1) and r > 1, is strictly increasing on [0, 1) from Theorem 1.1 we
can obtain a coarser but perhaps a more useful lower bound for the r-weighted Gini
mean difference, namely (see [2]),

1 2r+ 2(1_ 2)r—1
Gr(p,a)zipm pm pm

=141 =0,

max |a; —a;jl’, (1.6)

(1—pz)—1 (i,j)eA

where p,, is defined by p,, :=min;¢1,.. o) {pi} > 0. For r =2, we then have

2

1 Pm
Gy(p,a) > = m a‘—a-z_ 1.7
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For other results related to the above, see [2]. For various inequalities concerning
G2 (p, a), see [6] and the references therein.

The main purpose of the present paper is to provide some bounds in terms of
Giteaux lateral derivatives for the weighted f-Gini mean difference generated by
convex and symmetric functions in linear spaces that has been introduced in the recent
work [3] and briefly recalled in the next section. Applications for norms and semi-
inner products are also provided.

2. Some preliminary results

2.1. Weighted f-Gini mean difference. Let f: X — R be a convex function on
the linear space X. Assume that f(0) =0 and f is symmetric, that is, f(x) = f(—x)
for any x € X. In these circumstances,

foo =TT f(x ;") — £ =0,

showing that f is nonnegative on the entire space X.

For x=(x1,...,x;) € X" and p= (p1, ..., pn) € P* we define the weighted
f-Gini mean difference of the n-tuple x with the probability distribution p as the
positive quantity

1 n
Gr@x) =5 ), pipjifi—xp)= Y pipjfi—x)z0. (21

i,j=1 I<i<j<n

For the uniform distribution w= (1/n, ..., 1/n) € P" we have the f-Gini mean
difference defined by

| 1
GyWi=55 Y fli—x)=— > [Gi=x).
i,j=1 l<i<j<n
A natural example of such f-Gini mean difference can be provided by the convex
function f(x) := ||x||", with r > 1, defined on a normed linear space (X, || - |). We

denote this by

1 n
Gr(p, %) 1= 5 Y pipjllxi—xi" =Y pipjlxi —x;l

i j=1 I<i<j<n

We now need to consider another quantity that is naturally related to the f-Gini
mean difference. For a convex function f : X — R defined on the linear space X
with the property that f(0) = 0, define the mean f-deviation of an n-tuple of vectors
X = (x1, ..., Xp) € X" with the probability distribution p = (p1, . . ., pn) € P" by the
nonnegative quantity

Kp(p,x) =) mf(xl- -3 pkxk). 22)
i=1 k=1

https://doi.org/10.1017/5S0004972711002048 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972711002048
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The fact that K ¢(p, X) is nonnegative follows by Jensen’s inequality, namely

Kfm,w:>f<§: ( Ejpkm)) fO) =

i=1
For other Jensen’s type inequalities, see [4, 7-9].
A natural example of such deviations can be provided by the convex function

f(x):=|x]||", with r > 1, defined on a normed linear space (X, | - ||). We denote this by
n n r
K (p,X) =Y pilxi— Y pex (2.3)
i=1 k=1
and call it the mean r-absolute deviation of the n-tuple of vectors X = (x1, ..., X,) €
X" with the probability distribution p = (p1, ..., pn) € P".

The following connection between the f-Gini mean difference and the mean f-
deviation holds true [10].

THEOREM 2.1. If f:X — [0, 00) is a symmetric convex function with f(0) =

then for any n-tuple of vectors X = (x1, . . ., x,) € X" and any probability distribution
= (p1, ..., pn) € P" we have the inequalities
Gr(p. %) > 3K;(p,x) > G f(p,5X). (2.4)

Both inequalities in (2.4) are sharp and the constant % best possible.

The following particular case for norms is of interest due to its natural
generalization for the scalar case that is used in applications.

COROLLARY 2.2. Let (X, || - ||) be a normed space. Then for any n-tuple of vectors
x=(x1,...,x,) € X" and any probability distribution p= (p1, ..., pn) € P" we
have | :

Gr(p7 X) 2 EKr(pv X) 2 ?Gr(pv X) (25)

or, equivalently,

Z PlP]”xt _x_]” = Zpl

i,j=1

za;fmmxm<M>

n
Y
k=1
foranyr > 1.

REMARK 2.3. By symmetry we have

n
o opipjlxi—xI" =2 > pipjlxi —x;II",

ij=1 I<i<j<n
and since
n n 1
> nrs=5( 2 w2 =5(1- 20 =5 S e -
I<i<j<n i,j=1 i=1 i=1
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we may state from (2.6) the simpler inequality

n n
D pill=p) max x —x;l" =3 pi

i=1 SIS i=1

n r
Xi — Z DicXk
- 2.7

_2,Zpl<1—p, min_ v —x; "

2.2. The Gateaux derivatives of convex functions. Assume that f: X — R is a
convex function on the real linear space X. Since for any vectors x, y € X the function
&x.y :R—> R, gy (t) :== f(x +ty) is convex, it follows that the limits

. 4 _
Vi SO0 = lim fx tyt) £

exist, and they are called the right (left) Gateaux derivatives of the function f at the
point x in the direction y.
It is obvious that, for any # > 0 > s, we have

R e (G SR, f[f( SR f(X)]
t

> sulg[f(x * sys) - f(x)] =V_fx)(») (2.8)
. f&x+sy)— fx)
S

for any x, y € X and, in particular,

Vof@)(u—v)= fu) — f(v) = Vi f0)u—v) (2.9)

for any u, v € X. We call this the gradient inequality for the convex function f. It will
be used frequently in the following in order to obtain various results related to Jensen’s

inequality.
The following properties are also of importance:
Vi f)(=y)==V_fx)(), (2.10)
and
Vi f @) (ay) =aVi f(x) () (2.11)

forany x, y € X and o > 0.
The right Gateaux derivative is subadditive while the left one is superadditive, that is,

Vif)+2) =V f)(y) + Vi f(0)() (2.12)
and

Vofx)+2) = Vo f)(y) + V- f(x0)(2) (2.13)
forany x, y, z € X.

Some natural examples can be provided by the use of normed spaces. Assume that
(X, || - I) is a real normed linear space. The function f : X — R, f(x) := %||)c||2 isa
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convex function which generates the superior and inferior semi-inner products

O ] et 1
L Y t '
For a comprehensive study of the properties of these mappings in the geometry of

Banach spaces see [5].
For the convex function f, : X — R, f,(x) := [x]|? with p > 1,

plIxIIP=2(y, x)si) if x #0,

Vi o)) = {0 ifx=0

forany y € X. If p =1, then we have

Il ="y, x)say  if x #0,

Vi i) (y) = {+(—)||y|| ifx=0

forany y € X. This class of functions will be used to illustrate the inequalities obtained
in the general case of convex functions defined on an entire linear space.
The following result for the general case of convex functions holds (see [3]).

THEOREM 2.4. Let f: X — R be a convex function. Then, for any x,y € X and
t € [0, 1], we have
(1 =DV_fMy —x) = Vi f)(y —x)]
>tf)+A =0 f(y) = fex+A=1)y)

(2.14)
>t(1=)[Vifx+ A =Dy)(y —x)
—V_flix+ 1A -0y)(y—x)]1=0.
The following particular case for norms may be stated.
COROLLARY 2.5. If x and y are two vectors in the normed linear space (X, || - ||)
such that 0 ¢ [x, y] :={(1 —s)x + sy, s € [0, 1]}, then, for any p > 1, we have the
inequalities
pr(L=DlylI?~2(y —x, )i — [x[IP7(y — x, x)s]
>tlx|I” + (X =Dlyll” — lltx + A = )yl” 2.15)
> pt(1 = 0)lltx + (1 = DYIIP2[(y — x, 1x + (1 = 1) y);
—(y—xtx+ (1 —-1)y)il>0
foranyt € [0, 1]. If p > 2 the inequality holds for any x and y.
REMARK 2.6. If the normed space (X, || - ||) is smooth and the norm generated by the
semi-inner product [+, -] : X x X — R, then inequality (2.15) can be written as
pr(1={ly =2, Y17 72y] = [y = x, %1721}
(2.16)

= tllxll” + A = Dllyl” = llex + A = 0)yll?
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for any r € [0, 1]. Moreover, if (X, (-, -)) is an inner product space, then (2.16)
becomes

pt(l =)y —x, [ylIP "2y — ||lx[IP%x)
2.17)
> tl|x[|” + (1 = Ollyll? — llzx + 1 —0)yl|?

for any ¢ € [0, 1].

3. Bounds in terms of Gateaux derivatives

In the following result we provide some upper and lower bounds for the nonnegative
quantity
Gy, %) — ;K7(p, %)
considered in Theorem 2.1.

THEOREM 3.1. If f: X — R is a symmetric convex function with f(0) =0, then,

for any n-tuple of vectors X = (x1, ..., x,) € X" and any probability distribution
P=(p1,..., pn) € P, we have the inequalities
1 n n n
3 Z Z pipjV-f(xi — Xj)(Z PkXi — xj)
j=1i=1 k=1
>Gyr(p,x) — %Kf(p, X) (3.1

n n n n
> % Z ZPinVJrf(Z DicXk —xi><Xj — Zpkxk> > 0.
k=1 k=1

j=1i=I
PrROOF. Utilizing the gradient inequality (2.9), we have

V_fxi — Xj)(z DXk —Xj> > flxi —xj)— f(xi - Z Pka>
=1 =1 (32)

n n
> V+f<xi -y Pka) (Z PkXk — Xj)
k=1 k=1

forany i, j € {1, ..., n}. By the symmetry of the function f and the subadditivity of
the Gateaux derivative V4 f(-)(-) in the second variable, we also have

V+f<xi -3 Pm) (Z PiXk — Xj>
k=1 k=1
= V+f<Z PkXk — xi) (xj - Z pkxk> (3.3)
k=1 k=1
V+f<z PkXk — xi)(xj) — V+f<z PkXk — Xi> (Z Pka>

k=1 k=1 k=1

v

foranyi, je{l,...,n}.

https://doi.org/10.1017/5S0004972711002048 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972711002048
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Utilizing (3.2) and (3.3), we may state that

V_fxi — Xj)<2 PkXk — xJ')
=1
> fxi—xj) — f(xi -y Pka>
k=1
> V+f<z PrXk — xz'> (Xj - kak>
k=1 k=1
> V+f(2 DkXk — xz'>(xj') - V+f(2 DkXg — xi) <Z Pm)
k=1 k=1 k=1

forany i, je{l,...,n}
Now, if we multiply inequality (3.4) by p; > 0 and sum over j from 1 to n, we get

Z piV_fxi — xj)(Z PkXk — Xj)
i=1 =1
> Z pjf(xi —xj)— f(xi — Z Pm)
j=1 k=1
> Z ij+f(Z PkXk — xz') <xj - Z kak>
=1 =1 =1
>y PjV+f(Z PiXk — Xi)(xj)
= =1
—Vif (Z PrXic — Xi) (Z Pka)
k=1

k=1

34

(3.5)

>0,

where the last inequality follows by the subadditivity of the function

V+f<z PiXk — x,-)(-) withi € {1, ..., n}.

k=1
Finally, if we multiply inequality (3.5) by p; > 0 and sum over i from 1 to n, we

get the desired result (3.1). O
The following particular case for norms holds.

COROLLARY 3.2. Let (X, || - ||) be a normed space. Then for an n-tuple of vectors

X=(x1,...,x,) € X" and the probability distribution p= (pi1, ..., pn) € P",
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we have the inequalities

n n n
r Z Z pipjlixi — lelr_2<2 PkXk — Xj, X| — xj>
j=11=1 k=1 i
n n n r
>3 pipjllx—x =Y pifx =Y prk
1j=1 =1 k=1
r—2
>VZZP1P1 ZPka—XI
X <)Cj — Z PkXk, Z DicXk —xl> > 0.
k=1 k=1 s

j=11=1
If r > 2 then we have no restriction on X and p. If r € [1, 2) then we need to assume
that x; — xj #0and Y }_, prxk —x; #0foralll, j€{l, ..., n}

(3.6)

REMARK 3.3. The case r = 2 produces the simpler inequality

ZZZP1P1<Z PkXk — Xj, X| — >
1i=1
"~ n 2
Xi— ) Prk
k=1

> Z pipjllx —xjl)* - Z P
1=
n n n n
>2 Z Z pzpj<xj - Z PkXks Z PkXk — X1> >0,
k=1 k=1 s

(3.7)

1,j=1
j=11=1

which holds for any n-tuple of vectors x = (x1, ..., x,) € X" and any probability
distribution p = (py, . .., pn) € P".

REMARK 3.4. If the normed space (X, | - ||) is smooth and the norm generated by
the semi-inner product [-, -] : X x X — R (see, for instance, [5]), then inequality (3.7)
can be written as

ZZ ZPIPJ [Z PkXp — Xj, X| — xj}

j=11=1
n 2
Xl — Zpkxk
k=1

n

> Z pipilx = x> = pi
1,j=1 =1

In what follows we provide upper and lower bounds for the nonnegative quantity

considered in the second part of Theorem 2.1, namely,

(3.8)

>0

1K r(p. %) — G/ (p,3%).
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THEOREM 3.5. If f: X — R is a symmetric convex function with f(0) =0, then,
for any n-tuple of vectors x = (x1, ..., x,) € X" and any probability distribution

=(p1, ..., pn) € P", we have the inequalities

2 Z ZP:PJV f(Z PrXk —xj)(z Py — 2 +x1)

le

1 1
> _K;p.x)—Gs(p.~
z 5 (P, %) f<P 2X)

(3.9)
1 — o x
Z‘[Zzpzp,Wf(x )(Zpkxk—x x’)
4 j=1i=1 k=1 2
. n i+ .
B ZZPzP}V f( )(Zpkxk—x 2)@)}20.
j=1i=1 k=1
PROOF. Consider inequality (2.14) for t = 1 to get
1 + +
VPO =0 = Ve oy o)z TEEIOL f<¥)
(3.10)

1
4[v+f(x§y)(y—x) Vf( )(y—x)]

for any x, y € X. Now, if in (3.10) we choose

n n
=Y pexx and y=) " puxk —x;
k=1 k=1

with i, j € {1, ..., n} and take into account the symmetry of the function f, then

e () (o 242)
- V+f(x, Z pkxk) (Z e - 2 )]
[ (v zpkxk) IO S | R e et
) (- 5)
%

)5
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for any i, j € {1, ..., n}. Furthermore, if we multiply (3.11) by p; p; > 0 and sum
over i and j from 1 to n, we deduce that

[ZZPzP]V f(z DXk —x]><z pexc — X; +x]>

j=1i=1

B Z Z p’pJVJrf(xz Zkak) (Z P — = +x’)]

j=1i=
1 1
> —Kf(p, x) -Gy (p’§X> (3.12)
_4[ZZP,pJV+f(xl x’)(Zpkxk—lerx’)
j=1i=
Xi — Xj Xi +xj
- ZZMP,V f( )(Zpkxk— ) > 0.
j=li=

By the symmetry of the function and the symmetry of summation,

Z Z PlPJVJrf(xz Z Pka) (Z prxk — 2 +x1)

j=1i=

_ZZPIPJVHC(XJ ZPMk) (Z P — 2 +x1)

j=li=1

(3.13)
_ZZPIPJVJFJC(Z Pik _xj><XL 0 Zkak>
j=1i=
- ZZPIPJV f<z PkXk —x1>(z DR — X +xj>
j=1li=

Finally, on utilizing the relations (3.12) and (3.13), we deduce the desired
result (3.9). O

The following particular case for norms can be stated.

COROLLARY 3.6. Let (X, || - ||) be a normed space. Then, for an n-tuple of vectors
x=(x1,...,X) € X" and the probability distribution p= (p1, ..., pn) € P", we
have the inequalities

VZZPZPJ Zpkxk—x]
j=11=

= Zpi Xi — ZPka
i=1 k=1

r=21 n n
X+ x;
<zm— LY )
k=1 k=1 i
~ A Z plpj”xl_xj”

1]1
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n n

1 r=2 < X+ x;j
Zg’ZZPszIIXI—XjII |:<I;kak— > JCl—xjs

j=11=1

n
x|+ xj
—<Zpkxk— ) J7xl—xj>:|20~

k=1

(3.14)

If r > 2 then we have no restriction on X and p. If r € [1, 2) then we need to assume
that x; — xj #0and Y j_y prxk —xj #0foralll, j€{1,..., n}.

REMARK 3.7. The case r =2 is of interest since it produces a much simpler

inequality,
X] —i— X
530S p,p,<z pis z s = x;)
j=11=
2 1 &
> Z pi||xi — kZ PEXk| = 'Zl pipjllxi — x;I?
- b (3.15)
X] + Xj
SO WD IEEE )
] 11=
X+ x;
—<me<— ! f,xl-xjﬂzo,

k=1 2 i
which holds for any n-tuple of vectors x = (x, ..., x,) € X" and any probability
distribution p = (py, ..., py) € P".
REMARK 3.8. If the normed space (X, || - ||) is smooth and the norm generated by the

semi-inner product [-, -] : X x X — R, then inequality (3.15) can be written as

.oon
2zzplp]|:zpk-xk— xl'iz‘xj’ Zpkxk—x]']
j=11= —
Xi — Zpkxk

z Z Di
i=1
4. Other bounds

In [3] we also established the following upper bound for the weighted f-Gini mean
difference.

(3.16)

-~ Z pipilixi — x;||* > 0.
ljl

THEOREM 4.1. Assume that  : X — R is a symmetric convex function with f(0)=0.
If x and y are two vectors and t € [0, 1] with (1 —t)x +ty =0, then, for any

n-tuple of vectors X = (x1, . . ., x,) € X" with the property that x; — x; € [x, y] for
alli, je{l,. n}, we have the inequality

A= f @)+t =G (p. x), (4.1)
for any probability distributionp = (p1, . .., pn) € P".
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It is thus natural to ask for an upper bound for the positive quantity
A =D f@) +1f ()] =GP, %)
The following result holds.

THEOREM 4.2. Assume that f : X — R is a symmetric convex function with f(0)=0.
If x and y are two vectors and t € [0, 1] with (1 —t)x +ty =0 then, for any

n-tuple of vectors X = (x1, . . ., x,) € X" with the property that x; — x; € [x, y] for
alli, j € {1, ..., n}, we have the inequality
0< 310 =Df@ +1f ] =GP, % 42
<3V fMG —x) = Vi f0)(y — 0],
for any probability distribution p = (p1, ..., pn) € P".
PROOF. Since x; — x; € [x, y]fori, j € {1, ..., n}, then there exist ;; € [0, 1] such
that x; —Xxj= (1 — t,-j)x +tijy fori, je{l,...,n}.
Letp=(p1, ..., pn) € P". Then by the above equality we get that
pipj(xi —x;)) =0 —t;))pipjx +tijpipjy
forany i, j € {1, ..., n}. If we sum over i, j from 1 to n, then we get
n n
0= pipjxi —x))= Y _[(A—=t;))pipjx +tijpip;y]
i,j=1 ij=1
\ n 4.3)
= (l — Z l‘l’jp,'pj>x + (Z tijpipj)y'
ij=1 ij=1

Now, due to the fact that (1 — #)x + try = 0 and the representation is unique, we get
that r = er'l,jzl LjpiDj-
On the other hand, we have (see Theorem 2.4)
(L =iV f(M(y = x) = V4 f)(y — x)]
>t fx)+ A —t)f(y) — fltijx + A —1;5)y] (4.4)
=tij fx)+ A —1) f(y) — flxi —xj).
Now, if we multiply (4.4) by p;p; >0, sum over i and j from 1 to n and divide
by 2, then we get

1 n
SV FOO =0 = Ve f@G =01 D pipjtij(1 =)

ij=1 (4.5)
[(1 =0 f () +tf ()] = G £ (p. X),

=

N —

which is an interesting inequality in itself provided that one knows the parameters f;;
foranyi, je{l,...,n}
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In the case that these are not known, since #;; (1 — #;;) < le foranyi, je{l,...,n},
then

n 1
Z pipjtij(1 —t;j) < 7
ij=1

which together with (4.5) provides the desired result (4.2). d
The following particular case for norms is of interest.

COROLLARY 4.3. Let (X, || - ||) be a normed space. If x and y are two nonzero
vectors and t €[0,1] with (1 —t)x +ty =0 then, for any n-tuple of vectors
X=(x1,...,x,) € X" with the property that x; —x; €[x,y] for all i, je€
{1, ..., n}, we have the inequality

0< 3 =D)xI"+tIylI'l— G, (p. %)

(4.6)
< &rlly —x, Y)illyl" ™2 = (v — x, x)llx 1”21,

for any probability distributionp = (p1, ..., pn) € P andr > 1.

REMARK 4.4. We observe that if (X, (-, -)) is an inner product space, then inequality
(4.7) has a simpler form, namely,

0 <A =DlxI" + 1IN = Gr(@, %) < g7y —x, [¥II" 2y — lIx]I"2x), (4.7)

for any probability distribution p = (p1, ..., pp) € PP andr > 1.
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